Academic literature on the topic 'Lanthanide-ion-doped'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lanthanide-ion-doped.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lanthanide-ion-doped"

1

Wu, Su Li, Liu Ye, Yan Hui Ning, Wen Bin Niu, and Shu Fen Zhang. "Approaches to the Multicolor Tuning of Lanthanide-Ion Doped Upconversion Nanoparticles." Advanced Materials Research 679 (April 2013): 69–74. http://dx.doi.org/10.4028/www.scientific.net/amr.679.69.

Full text
Abstract:
In recent years, lanthanide-ion doped nanocrystals have attracted considerable attention for its promising applications in multiplexed biological labeling. These materials can convert near-infrared (NIR) light into visible and offer low autofluorescence, high resistance to photobleaching, high penetration depth and large anti-Stokes shifts. With the development of these techniques, the ability to manipulate multicolor output has become more important for its biological and photovoltaic applications. This review mainly focuses on the recent development of various approaches for the multicolor tuning of lanthanide-ion doped upconversion nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Haohao, Marcus Lau, Takumi Sannomiya, Bilal Gökce, Stephan Barcikowski, Osamu Odawara, and Hiroyuki Wada. "Laser-induced growth of YVO4:Eu3+ nanoparticles from sequential flowing aqueous suspension." RSC Advances 7, no. 15 (2017): 9002–8. http://dx.doi.org/10.1039/c6ra28118d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dugasani, Sreekantha Reddy, Byeongho Park, Bramaramba Gnapareddy, Sreedhara Reddy Pamanji, Sanghyun Yoo, Keun Woo Lee, Seok Lee, et al. "Tunable near white light photoluminescence of lanthanide ion (Dy3+, Eu3+and Tb3+) doped DNA lattices." RSC Advances 5, no. 69 (2015): 55839–46. http://dx.doi.org/10.1039/c5ra07360j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gao, Laixu, Xuchen Shan, Xiaoxue Xu, Yongtao Liu, Baolei Liu, Songquan Li, Shihui Wen, Chenshuo Ma, Dayong Jin, and Fan Wang. "Correction: Video-rate upconversion display from optimized lanthanide ion doped upconversion nanoparticles." Nanoscale 12, no. 36 (2020): 18987. http://dx.doi.org/10.1039/d0nr90159h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Yuan, Gongxun Bai, Li Jiang, Youjie Hua, Liang Chen, and Shiqing Xu. "Lanthanide Nd ion-doped two-dimensional In2Se3 nanosheets with near-infrared luminescence property." Nanophotonics 9, no. 8 (January 9, 2020): 2407–14. http://dx.doi.org/10.1515/nanoph-2019-0450.

Full text
Abstract:
AbstractUltrathin two-dimensional (2D) materials have drawn great attention in recent years due to their promising applications in biomedicine and atomically optoelectronic devices. In this work, we have fabricated a 2D In2Se3 nanosheet doped with Nd3+ ions via the two-step method of solid phase synthesis and liquid exfoliation. Owing to the special inner 4f-4f energy level transitions, lanthanide ions can emit photons with almost the same energy in different environments. Here, a stable near-infrared luminescence from Nd3+-doped 2D In2Se3 nanosheets has been realized, which includes emission bands around 910, 1057, and 1324 nm. The doping of Nd3+ ions extends the emission region of In2Se3 nanosheets. Moreover, the photoluminescence mechanism of Nd3+ ions was investigated through a series of optical measurements. This work not only provides a reliable method to fabricate lanthanide ion-doped 2D materials but also possesses a great significance for luminescence study of lanthanide ions in the 2D matrix.
APA, Harvard, Vancouver, ISO, and other styles
6

Bai, Gongxun, Zhibin Yang, Huihong Lin, Wenjing Jie, and Jianhua Hao. "Lanthanide Yb/Er co-doped semiconductor layered WSe2 nanosheets with near-infrared luminescence at telecommunication wavelengths." Nanoscale 10, no. 19 (2018): 9261–67. http://dx.doi.org/10.1039/c8nr01139g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xia, Jiale, Hongyang Zhao, Wei Kong Pang, Zongyou Yin, Bo Zhou, Gang He, Zaiping Guo, and Yaping Du. "Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries." Chemical Science 9, no. 14 (2018): 3421–25. http://dx.doi.org/10.1039/c7sc05185a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanner, Peter A., and Ka Leung Wong. "Synthesis and Spectroscopy of Lanthanide Ion-doped Y2O3." Journal of Physical Chemistry B 108, no. 1 (January 2004): 136–42. http://dx.doi.org/10.1021/jp035583o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhu, Yongsheng, Dongqin Bi, Huiqiao Wang, Yinhua Wang, Xiumei Xu, Zhiwen Lu, and Wen Xu. "Fine-tuning of multiple upconversion emissions by controlling the crystal phase and morphology between GdF3:Yb3+,Tm3+ and GdOF:Yb3+,Tm3+ nanocrystals." RSC Advances 7, no. 5 (2017): 2426–34. http://dx.doi.org/10.1039/c6ra27024g.

Full text
Abstract:
Fine-tuning of multi-color emission characteristics of upconversion lanthanide-ion-doped nanocrystals is of high importance for 3-D color displays, multi-color bio-imaging, and multiplexed cellular labeling.
APA, Harvard, Vancouver, ISO, and other styles
10

Gong, Guo, Shaowen Xie, Ya Song, Haihu Tan, Jianxiong Xu, Changfan Zhang, and Lijian Xu. "Synthesis of Lanthanide-Ion-Doped NaYF4 RGB Up-Conversion Nanoparticles for Anti-Counterfeiting Application." Journal of Nanoscience and Nanotechnology 18, no. 12 (December 1, 2018): 8207–15. http://dx.doi.org/10.1166/jnn.2018.15801.

Full text
Abstract:
Well-defined and mono-dispersed lanthanide-ion-doped NaYF4 up-conversion nanoparticles (UCNPs) were synthesized via thermal decomposition using lanthanide oleate as the precursor. By rational selecting the dopant pairs of the doped lanthanide ions (Y3+, Yb3+, Er3+ and Tm3+) with accurate molar ratios, three-primary-color (RGB) UCNPs which exhibited green (UCNPs-G), blue (UCNPs-B) and red (UCNPs-R) fluorescence, respectively, were prepared. The X-ray diffraction (XRD) patterns showed that the three UCNPs were purely hexagonal-phase NaYF4 crystals. Transmission electron microscopy (TEM) images revealed that the synthesized UCNPs exhibited well-defined nanosphere morphology with uniform size distribution. The average diameters were 23.95±3.35 nm for UCNPs-G, 20.63±2.59 nm for UCNPs-B, and 19.24±2.37 nm for UCNPs-R, respectively. After surface modification employing polyacrylic acid (PAA) as modifier, the obtained UCNPs were converted to be hydrophilic, which can be used as fillers to construct luminescent polymer films and luminescent ink in anti-counterfeiting application.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lanthanide-ion-doped"

1

Magne, Sylvain. "Etat de l'art des lasers à fibre : étude d'un laser à fibre dopée ytterbium et spectroscopie laser de fibres dopées." Saint-Etienne, 1993. http://www.theses.fr/1993STET4027.

Full text
Abstract:
Cette thèse montre l'intérêt de l'amplification optique et des lasers à fibres dopées par des ions de terres-rares pour l'instrumentation et les capteurs à fibres optiques. Nous détaillons les avantages et les inconvénients d'une telle technologie placée dans son contexte d'optique intégrée, ainsi que ses perspectives d'utilisation. Apres rappel de la théorie de la propagation guidée dans les fibres optiques, les technologies permettant de réaliser des fibres optiques dopées sont décrites. Une étude comparative des méthodes d'analyses de préformes et de fibres dopées permettant de déterminer leurs profils de guidage et de dopage est également présentée. Le comportement amplificateur des fibres optiques dopées est ensuite décrit théoriquement en insistant sur les limites fixées par l'élargissement inhomogène de la transition laser. L'évolution du gain intégré de la fibre est mise en évidence en fonction des paramètres influants (longueur, rayon de dopage. . . ) en soulignant l'intérêt d'un rayon de dopage optimisé. Le seuil d'accrochage du laser est modélisé par des équations et des abaques sans dimension déterminant la longueur de fibre optimale en fonction des pertes de la cavité laser. La conception générale du laser à fibre est ensuite synthétisée et les technologies des composants d'optique intégrée adaptés à la fibre amplificatrice le constituant sont comparées. Les techniques expérimentales concernent principalement l'étude de l'accordabilité par excitation sélective de sites et de la limitation du gain par émission stimulée sur la transition de pompage induisant une absorption résiduelle non saturable ; l'étude des effets de transferts dans les fibres dopées par luminescence coopérative : l'étude d'un procédé de changement de valence par irradiation y conduisant à une réduction des ions uranium placés en matrice verre fluoré (zblan) ; la démonstration d'un effet laser à trois niveaux, fonctionnant en régime continu et en contre-réaction externe par réseau
APA, Harvard, Vancouver, ISO, and other styles
2

Vetter, Ulrich. "Lanthanide Doped Wide Band Gap Semiconductors: Intra-4f Luminescence and Lattice Location Studies." Doctoral thesis, 2003. http://hdl.handle.net/11858/00-1735-0000-0006-B555-B.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lanthanide-ion-doped"

1

Zhang, Fan. "Upconversion Luminescence of Lanthanide Ion-Doped Nanocrystals." In Photon Upconversion Nanomaterials, 73–119. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45597-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dramićanin, Miroslav. "Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing." In Luminescence Thermometry, 113–57. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-08-102029-6.00006-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Spectroscopic Properties of Lanthanide (Ln3+) and Transition Metal (M3+)-Ion Doped Glasses." In Inorganic Glasses for Photonics Fundamentals, Engineering, and Applications, 209–60. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118696088.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Naveen Kumar Reddy, B., S. Sailaja, K. Thyagarajan, and B. Sudhakar Reddy. "Study of RE ion–doped oxide glass materials for photonic applications." In Spectroscopy of Lanthanide Doped Oxide Materials, 293–304. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102935-0.00007-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lanthanide-ion-doped"

1

Torres, Francisco R., Pedro H. L. Sanches, Hernane S. Barud, and José Maurício A. Caiut. "Biocomposites of Eu3+-doped gellan gum and nanocellulose for 3D printing." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w1a.2.

Full text
Abstract:
Development of biocomposites of Eu3+-doped gellan gum reinforced with cellulose nanocrystals, using the lanthanide ion as a probe to study the structure and to obtain a luminescent compound with 3D printing properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Shuyu. "Lanthanide-ion Doped Perovskite Nanocrystals with Tailored Optical and Structural Properties." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/acpc.2021.t2f.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sanches, Pedro H. L., Francisco R. Torres, and José Maurício A. Caiut. "Preparation and spectroscopic study of Eu3+-doped cellulose nanocrystals for further interaction with fibroin to obtain luminescent cholesteric films." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w1a.1.

Full text
Abstract:
Obtaining Eu3+-doped cellulose nanocrystals from bacterial cellulose and performing a spectroscopic study of base materials using the lanthanide ion as a probe for the potential development of luminescent nanocomposites as a reinforcement material and films.
APA, Harvard, Vancouver, ISO, and other styles
4

Casanova, D., D. Giaume, M. Moreau, T. Gacoin, J. P. Boilot, and A. Alexandrou. "Luminescent lanthanide-ion doped nanoparticles as single-biomolecule labels and oxidant sensors." In Biomedical Optics (BiOS) 2007, edited by Marek Osinski, Thomas M. Jovin, and Kenji Yamamoto. SPIE, 2007. http://dx.doi.org/10.1117/12.705067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Casanova, D., D. Giaume, T. Amirtha, T. Gacoin, J. P. Boilot, and A. Alexandrou. "Fluorescence resonance energy transfer using lanthanide-ion doped oxide nanoparticles as donors." In Biomedical Optics 2006, edited by Marek Osinski, Kenji Yamamoto, and Thomas M. Jovin. SPIE, 2006. http://dx.doi.org/10.1117/12.646479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sojka, L., D. Furniss, Z. Tang, H. Sakr, E. Barney, T. M. Benson, A. B. Seddon, et al. "Numerical modelling of lanthanide-ion doped fibre lasers operating within mid-infrared wavelength region." In 2016 18th International Conference on Transparent Optical Networks (ICTON). IEEE, 2016. http://dx.doi.org/10.1109/icton.2016.7550681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography