Academic literature on the topic 'Landscape-aware algorithm selection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Landscape-aware algorithm selection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Landscape-aware algorithm selection"
Škvorc, Urban, Tome Eftimov, and Peter Korošec. "Transfer Learning Analysis of Multi-Class Classification for Landscape-Aware Algorithm Selection." Mathematics 10, no. 3 (January 29, 2022): 432. http://dx.doi.org/10.3390/math10030432.
Full textAverianov, А. А., E. D. Androsova, and A. V. Rusakov. "Winemaking terroir – the guideline for choosing of grape rootstocks for soils with different characteristics." Dokuchaev Soil Bulletin, no. 116 (September 25, 2023): 155–87. http://dx.doi.org/10.19047/0136-1694-2023-116-155-187.
Full textHamzei, Marzieh, Saeed Khandagh, and Nima Jafari Navimipour. "A Quality-of-Service-Aware Service Composition Method in the Internet of Things Using a Multi-Objective Fuzzy-Based Hybrid Algorithm." Sensors 23, no. 16 (August 17, 2023): 7233. http://dx.doi.org/10.3390/s23167233.
Full textLiu, Xiao, and Yun Deng. "A new QoS-aware service discovery technique in the Internet of Things using whale optimization and genetic algorithms." Journal of Engineering and Applied Science 71, no. 1 (January 3, 2024). http://dx.doi.org/10.1186/s44147-023-00334-1.
Full textDissertations / Theses on the topic "Landscape-aware algorithm selection"
Jankovic, Anja. "Towards Online Landscape-Aware Algorithm Selection in Numerical Black-Box Optimization." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS302.
Full textBlack-box optimization algorithms (BBOAs) are conceived for settings in which exact problem formulations are non-existent, inaccessible, or too complex for an analytical solution. BBOAs are essentially the only means of finding a good solution to such problems. Due to their general applicability, BBOAs can exhibit different behaviors when optimizing different types of problems. This yields a meta-optimization problem of choosing the best suited algorithm for a particular problem, called the algorithm selection (AS) problem. By reason of inherent human bias and limited expert knowledge, the vision of automating the selection process has quickly gained traction in the community. One prominent way of doing so is via so-called landscape-aware AS, where the choice of the algorithm is based on predicting its performance by means of numerical problem instance representations called features. A key challenge that landscape-aware AS faces is the computational overhead of extracting the features, a step typically designed to precede the actual optimization. In this thesis, we propose a novel trajectory-based landscape-aware AS approach which incorporates the feature extraction step within the optimization process. We show that the features computed using the search trajectory samples lead to robust and reliable predictions of algorithm performance, and to powerful algorithm selection models built atop. We also present several preparatory analyses, including a novel perspective of combining two complementary regression strategies that outperforms any of the classical, single regression models, to amplify the quality of the final selector
Conference papers on the topic "Landscape-aware algorithm selection"
Jankovic, Anja, and Carola Doerr. "Landscape-aware fixed-budget performance regression and algorithm selection for modular CMA-ES variants." In GECCO '20: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3377930.3390183.
Full textJankovic, Anja, Gorjan Popovski, Tome Eftimov, and Carola Doerr. "The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449639.3459406.
Full text