Academic literature on the topic 'Landmark Estimation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Landmark Estimation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Landmark Estimation"
Sakai, Atsushi, Teppei Saitoh, and Yoji Kuroda. "Robust Landmark Estimation and Unscented Particle Sampling for SLAM in Dynamic Outdoor Environment." Journal of Robotics and Mechatronics 22, no. 2 (April 20, 2010): 140–49. http://dx.doi.org/10.20965/jrm.2010.p0140.
Full textLiu, Shengli, Xiaowen Zhu, Zewei Cao, and Gang Wang. "Deep 1D Landmark Representation Learning for Space Target Pose Estimation." Remote Sensing 14, no. 16 (August 18, 2022): 4035. http://dx.doi.org/10.3390/rs14164035.
Full textFujii, Hajime, Yoshinobu Ando, Takashi Yoshimi, and Makoto Mizukawa. "Shape Recognition of Metallic Landmark and its Application to Self-Position Estimation for Mobile Robot." Journal of Robotics and Mechatronics 22, no. 6 (December 20, 2010): 718–25. http://dx.doi.org/10.20965/jrm.2010.p0718.
Full textFloreskul, Volodymyr, Konstantin Tretyakov, and Marlon Dumas. "Memory-Efficient Fast Shortest Path Estimation in Large Social Networks." Proceedings of the International AAAI Conference on Web and Social Media 8, no. 1 (May 16, 2014): 91–100. http://dx.doi.org/10.1609/icwsm.v8i1.14532.
Full textFong, Li Wei, Pi Ching Lou, and Ke Jia Tang. "Vehicle Kinematic State Estimation Using Passive Sensor Fusion Approach." Applied Mechanics and Materials 271-272 (December 2012): 1709–12. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.1709.
Full textMohd Shah, Hairol Nizam, Zalina Kamis, Azhar Ahmad, Mohd Rizuan Baharon, Muhd Akmal Noor Rajikon, and Kang Hui Hwa. "Vision Based Position Control for Vertical Take-off and Landing (VTOL) Using One Singular Landmark." Modern Applied Science 13, no. 9 (August 22, 2019): 33. http://dx.doi.org/10.5539/mas.v13n9p33.
Full textChen, Yao Chang, Ta Ming Shih, and Chung Ho Wang. "Stereo Vision Specific Observation Model for EKF-Based SLAM." Applied Mechanics and Materials 373-375 (August 2013): 238–41. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.238.
Full textHsu, Chen-Chien, Cheng-Kai Yang, Yi-Hsing Chien, Yin-Tien Wang, Wei-Yen Wang, and Chiang-Heng Chien. "Computationally efficient algorithm for vision-based simultaneous localization and mapping of mobile robots." Engineering Computations 34, no. 4 (June 12, 2017): 1217–39. http://dx.doi.org/10.1108/ec-05-2015-0123.
Full textD’Amelio, Richard, and Thomas J. Dunn. "Revisiting the Santa Barbara sense of direction scale, mental rotations, and gender differences in spatial orientation." PsyPag Quarterly 1, no. 115 (June 2020): 7–10. http://dx.doi.org/10.53841/bpspag.2020.1.115.7.
Full textChen, Haiwen, Jin Chen, Zhuohuai Guan, Yaoming Li, Kai Cheng, and Zhihong Cui. "Stereovision-Based Ego-Motion Estimation for Combine Harvesters." Sensors 22, no. 17 (August 25, 2022): 6394. http://dx.doi.org/10.3390/s22176394.
Full textDissertations / Theses on the topic "Landmark Estimation"
Soh, Ling Min. "Recognition using tagged objects." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/844110/.
Full textLuo, Chong. "Driver's Gaze Zone Estimation in Realistic Driving Environment by Kinect." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38076.
Full textZhao, Sanqiang. "On Sparse Point Representation for Face Localisation and Recognition." Thesis, Griffith University, 2009. http://hdl.handle.net/10072/366629.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Alqahtani, Faleh Mohammed A. "Three-dimensional facial tracker using a stereo vision system." Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/131825/1/Faleh%20Mohammed%20A_Alqahtani_Thesis.pdf.
Full textLandmann, Tobias [Verfasser]. "A case study for Skukuza: Estimating biophysical properties of fires using EOS-MODIS satellite data : A field and remote sensing study to quantify burnt area and fire effects in South African semi-arid savannas / Tobias Landmann." Aachen : Shaker, 2004. http://d-nb.info/1172610657/34.
Full textZemánek, Ondřej. "Počítání vozidel v statickém obraze." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2020. http://www.nusl.cz/ntk/nusl-417211.
Full textCruz, Daniel Filipe Gonçalves. "Automatic anatomical landmark location estimation in orthopedics." Master's thesis, 2021. http://hdl.handle.net/10316/98097.
Full textA Artroplastia total do joelho (ATJ) é um procedimento cirúrgico que consiste na substituição da região articular do joelho por uma prótese do joelho. Foram investigados e desenvolvidos sistemas de navegação baseados em computadores para melhorar o resultados destes procedimento cirúrgicos. Estes sistemas ajudam o cirurgião em planear a posição mais adequada para as próteses e auxiliam-no durante o procedimento cirúrgico a seguir da forma mais eficiente o plano cirúrgico definido.Esta tese é desenvolvida na recente introdução de sistemas de navegação por vídeo para ATJ e é focada em navegação image-free. Este tipo de navegação, requer a aquisição de determinadas pontos de referência anatómicas durante a cirurgia. No entanto, muitas vezes o processo de identificação destes pontos de referência é realizado manualmente, o que é demorado, tem falta de precisão e alta variabilidade, levando a erros significativos no posicionamento das próteses. Este trabalho apresenta uma pipeline para deteção e localização automática dos pontos de referência a partir de imagens RGB capturadas durante a cirurgia. O objetivo é guiar e assistir cirurgiões em localizar os pontos de referência fornecendo sugestões em tempo real sobre a localização dos mesmos. A solução proposta é baseada em algoritmos do estado da arte de deep learning, que combinamos com uma estratégia rápida e eficiente de gerar dados de treino que desenvolvemos especificamente para o nosso problema. Os resultados experimentais obtidos utilizando dados de cirurgias reais revelam um desempenho promissor, apresentando capacidade de generalização para diferentes dados intra-operatórios e estimações confiáveis que atendem aos requisitos clínicos e funciona em tempo real.
Total knee arthroplasty (TKA) is a surgical procedure that consists in replacing the entire knee joint by artificial knee implants. Computer-based navigation systems have been investigated and developed to improve the outcome of TKA procedures. These systems support the surgeon in planning the most adequate position for the implants, and assist during the procedure in effectively following the defined surgical plan. This thesis is built on the recent introduction of video-based navigation systems in the context of TKA and is focused on image-free navigation. This type of navigation requires the acquisition of particular anatomical landmarks intra-operatively. The accurate localization of these anatomical landmarks is essential for the success of the surgery. However, the landmark identification process is often conducted manually, which is time-consuming, lacks accuracy and has high variability, leading to significant errors in implant positioning. This work presents an end-to-end pipeline for automatic detection and localization of anatomical landmarks from RGB images acquired during the surgery. The aim is to guide and assist surgeons in locating the anatomical landmarks by providing real time suggestions about the landmark location. The proposed solution is based in state-of-the-art deep learning strategies, which we combine with a fast and effective labelling framework which we developed specifically to provide the required annotations. The experimental results using real surgery data show encouraging performance, presenting generelization capabilities for unseen data and reliable predictions that meet the clinical requirements, running in real-time.
Cheng, Yi-Tseng, and 鄭亦曾. "Landmark Oriented Generalized Biologically Inspired Features for Age Estimation." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/75001536503865780052.
Full text國立臺灣科技大學
機械工程系
104
We propose the Generalized Biologically Inspired Features (GBIFs) and a moving segmentation scheme followed by soft boundary regression for age estimation. The GBIF is more advantageous than the Bio-Inspired Feature (BIF) for capturing age-related facial traits. The moving segmentation is proposed to better determine the age groups, leading to an improvement on the age estimation accuracy. Different from most approaches that segment the age groups in an ad-hoc way, the moving segmentation allows one to define age groups using the local minima in the misclassification rate across ages. The extraction of the GBIF depends on the partition of component regions defined by facial landmarks. In addition to the partition of component regions, we also study the appropriate age grouping and hierarchical classification, and determine the best configuration for age estimation. The proposed approach with the most appropriate settings outperforms most of the state of the art on two benchmarks, FG-NET and MORPH.
Honari, Sina. "Feature extraction on faces : from landmark localization to depth estimation." Thèse, 2018. http://hdl.handle.net/1866/22658.
Full textKarmali, Tejan. "Landmark Estimation and Image Synthesis Guidance using Self-Supervised Networks." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5899.
Full textBooks on the topic "Landmark Estimation"
Ramsay, James. Curve registration. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.9.
Full textDesai, Anjali, and Andrew S. Epstein. Doctors’ Prognostic Accuracy in Terminally Ill Patients (DRAFT). Edited by Nathan A. Gray and Thomas W. LeBlanc. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190658618.003.0031.
Full textBook chapters on the topic "Landmark Estimation"
Lee, Donghoon, Junyoung Chung, and Chang D. Yoo. "Joint Estimation of Pose and Face Landmark." In Computer Vision -- ACCV 2014, 305–19. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16817-3_20.
Full textLiu, Yin, Ying Cui, and Zhong Jin. "Neighborhood-Preserving Estimation Algorithm for Facial Landmark Points." In Intelligent Science and Intelligent Data Engineering, 630–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36669-7_77.
Full textSommer, Stefan, Alexis Arnaudon, Line Kuhnel, and Sarang Joshi. "Bridge Simulation and Metric Estimation on Landmark Manifolds." In Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, 79–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67675-3_8.
Full textPayer, Christian, Martin Urschler, Horst Bischof, and Darko Štern. "Uncertainty Estimation in Landmark Localization Based on Gaussian Heatmaps." In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, 42–51. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60365-6_5.
Full textGalindo, Ramiro, Wilbert G. Aguilar, and Rolando P. Reyes Ch. "Landmark Based Eye Ratio Estimation for Driver Fatigue Detection." In Intelligent Robotics and Applications, 565–76. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27541-9_46.
Full textWu, Hongbo, Chris Bailey, Parham Rasoulinejad, and Shuo Li. "Automatic Landmark Estimation for Adolescent Idiopathic Scoliosis Assessment Using BoostNet." In Medical Image Computing and Computer Assisted Intervention − MICCAI 2017, 127–35. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66182-7_15.
Full textAvisdris, Netanell, Leo Joskowicz, Brian Dromey, Anna L. David, Donald M. Peebles, Danail Stoyanov, Dafna Ben Bashat, and Sophia Bano. "BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes." In Lecture Notes in Computer Science, 279–89. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-16440-8_27.
Full textYu, Yu, Gang Liu, and Jean-Marc Odobez. "Deep Multitask Gaze Estimation with a Constrained Landmark-Gaze Model." In Lecture Notes in Computer Science, 456–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11012-3_35.
Full textSarkar, Rajib, Siddhartha Bhattacharyya, Debashis De, and Asit K. Datta. "Landmark Identification from Low-Resolution Real-Time Image for Pose Estimation." In Lecture Notes in Electrical Engineering, 1–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8477-8_1.
Full textTrusheim, Felix, Alexandru Condurache, and Alfred Mertins. "Visual Landmark Based 3D Road Course Estimation with Black Box Variational Inference." In Computer Analysis of Images and Patterns, 332–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64689-3_27.
Full textConference papers on the topic "Landmark Estimation"
Suganya, S., and Narasimhan Ranga Raajan. "Augmented reality-landmark estimation." In 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering (ICONRAEeCE). IEEE, 2011. http://dx.doi.org/10.1109/iconraeece.2011.6129793.
Full textBurgos-Artizzu, Xavier P., Pietro Perona, and Piotr Dollar. "Robust Face Landmark Estimation under Occlusion." In 2013 IEEE International Conference on Computer Vision (ICCV). IEEE, 2013. http://dx.doi.org/10.1109/iccv.2013.191.
Full textFarrokhsiar, Morteza, and Homayoun Najjaran. "Rao-Blackwellized Particle Filter Approach to Monocular vSLAM With a Modified Initialization Scheme." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87610.
Full textLiu, Hong, Meijia Song, Wei Shi, and Xia Li. "Position Constraint Loss For Fashion Landmark Estimation." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054508.
Full textWen, Zhihua, and Michael Rabinovich. "Network distance estimation with dynamic landmark triangles." In the 2008 ACM SIGMETRICS international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1375457.1375507.
Full textLim, Jihu, Dohun Kim, Sanghyun Park, and Joonki Paik. "Face Landmark Estimation-based De-identification System." In 2022 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2022. http://dx.doi.org/10.1109/iceic54506.2022.9748390.
Full textCivir, Cevdet, and Cihan Topal. "Robust Landmark Selection for 3D Face Pose Estimation." In 2019 27th Signal Processing and Communications Applications Conference (SIU). IEEE, 2019. http://dx.doi.org/10.1109/siu.2019.8806384.
Full textLi, Ming, Zhonghua Liu, Jianan Huang, and Kenji Imou. "Landmark direction angle estimation based on omnidirectional image." In 2010 International Conference on Information and Automation (ICIA). IEEE, 2010. http://dx.doi.org/10.1109/icinfa.2010.5512316.
Full textChin, Yi, and Chun-Jen Tsai. "Bayesian dense motion field estimation with landmark constraint." In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5652489.
Full textWerner, Philipp, Frerk Saxen, and Ayoub Al-Hamadi. "Landmark based head pose estimation benchmark and method." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8297015.
Full text