Academic literature on the topic 'Landing on a mobile target'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Landing on a mobile target.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Landing on a mobile target"
Kwak, Junyoung, Sangwoong Lee, Junsoo Baek, and Baeksuk Chu. "Autonomous UAV Target Tracking and Safe Landing on a Leveling Mobile Platform." International Journal of Precision Engineering and Manufacturing 23, no. 3 (January 31, 2022): 305–17. http://dx.doi.org/10.1007/s12541-021-00617-8.
Full textWang, Zian, Zheng Gong, Yang Yang, Yongzhen Liu, Pengcheng Cai, and Chengxi Zhang. "Guidance Law for Autonomous Takeoff and Landing of Unmanned Helicopter on Mobile Platform Based on Asymmetric Tracking Differentiator." Mathematics 11, no. 1 (December 24, 2022): 66. http://dx.doi.org/10.3390/math11010066.
Full textSergeev, A. A., A. B. Filimonov, and N. B. Filimonov. "Control of Autonomous Landing of UAV of Airplane-Type on the Static and Dynamic Sites with Using of "Flexible" Kinematic Trajectories." Mekhatronika, Avtomatizatsiya, Upravlenie 22, no. 3 (March 2, 2021): 156–67. http://dx.doi.org/10.17587/mau.22.156-167.
Full textAvilés-Viñas, Jaime, Roberto Carrasco-Alvarez, Javier Vázquez-Castillo, Jaime Ortegón-Aguilar, Johan J. Estrada-López, Daniel D. Jensen, Ricardo Peón-Escalante, and Alejandro Castillo-Atoche. "An Accurate UAV Ground Landing Station System Based on BLE-RSSI and Maximum Likelihood Target Position Estimation." Applied Sciences 12, no. 13 (June 30, 2022): 6618. http://dx.doi.org/10.3390/app12136618.
Full textYue, ZHU, HE Shuai, DUAN Xuechao, and XU Ziqi. "UAV Landing Aid Hexapod Robot based on ArUco Marker and Sparse Optical Flow." Journal of Physics: Conference Series 2281, no. 1 (June 1, 2022): 012002. http://dx.doi.org/10.1088/1742-6596/2281/1/012002.
Full textZhu, Jiangcheng, Jun Zhu, and Chao Xu. "A simultaneous trajectory generation method for quadcopter intercepting ground mobile vehicle." International Journal of Advanced Robotic Systems 14, no. 4 (July 1, 2017): 172988141771770. http://dx.doi.org/10.1177/1729881417717702.
Full textIbarra Jiménez, Efraín, and Manuel Jiménez-Lizárraga. "Robust tracking-surveillance and landing over a mobile target by quasi-integral-sliding mode and Hopf bifurcation." Journal of the Franklin Institute 359, no. 5 (March 2022): 2120–55. http://dx.doi.org/10.1016/j.jfranklin.2021.12.017.
Full textKownacki, Cezary. "Artificial Potential Field Based Trajectory Tracking for Quadcopter UAV Moving Targets." Sensors 24, no. 4 (February 19, 2024): 1343. http://dx.doi.org/10.3390/s24041343.
Full textChoi, Sally H. J., Gary K. Yang, Keith Baxter, and Joel Gagnon. "Evaluation of Aortic Zone 2 Proximal Landing Accuracy During Thoracic Endovascular Aortic Repair Following Carotid-Subclavian Revascularization." Vascular and Endovascular Surgery 55, no. 4 (February 4, 2021): 355–60. http://dx.doi.org/10.1177/1538574421989851.
Full textAccomando, Filippo, Andrea Vitale, Antonello Bonfante, Maurizio Buonanno, and Giovanni Florio. "Performance of Two Different Flight Configurations for Drone-Borne Magnetic Data." Sensors 21, no. 17 (August 26, 2021): 5736. http://dx.doi.org/10.3390/s21175736.
Full textDissertations / Theses on the topic "Landing on a mobile target"
Alatorre, Sevilla Armando. "Landing of a fixed-wing unmanned aerial vehicle in a limited area." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2801.
Full textThe development of this thesis consists of designing some control strategies that allow a fixedwing drone with classical configuration to perform a safe landing in a limited area. The main challenge is to reduce the aircraft’s airspeed avoiding stall conditions. The developed control strategies are focused on two approaches: the first approach consists of the designing airspeed reduction maneuvers for a fixed-wing vehicle to be captured by a recovery system and for a safe landing at a desired coordinate. The next approach is focused on landing a fixed-wing drone on a moving ground vehicle. A dynamic landing trajectory was designed to lead a fixedwing vehicle to the position of a ground vehicle, reaching its position in a defined distance. Moreover, this trajectory was used in a cooperative control design. The control strategy consists of the synchronization of both vehicles to reach the same position at a desired distance. The aerial vehicle tracks the dynamic landing trajectory, and the ground vehicle controls its speed. In addition, we will propose a control architecture with a different focus, where the ground vehicle performs the tracking task of the aerial vehicle’s position in order to be captured. And, the drone’s task is to track a descending flight until the top of the ground vehicle. However, considering the speed difference between both vehicles. Therefore, we propose a new control architecture defining that the aircraft performs an airspeed reduction strategy before beginning its landing stage. The aircraft will navigate to a minimum airspeed, thus, allowing the ground vehicle to reach the fixed-wing drone’s position by increasing its speed. The control laws of each strategy were determined by developing the Lyapunov stability analysis, thus, the stability is guaranteed in each flight stage. Finally, the control strategies were implemented on prototypes allowing us to validate their performance and obtain satisfactory results for safe landing of a fixed-wing drone with classical configuration
Hansén, Rasmus, Axel Ringh, Victoria Svedberg, and Nils Landin. "Autonomus Helicopter Landing on a Mobile Platform." Thesis, KTH, Optimeringslära och systemteori, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105551.
Full textDen här uppsatsen undersöker problemet att autonomt landa en modellhelikopter på en mobil plattform genom att använda olika regulatorer för attityd- och translationsdynamiken. Den matematiska beskrivningen av helikoptern utgår från dynamiken för en stel kropp med 6 frihetsgrader. Eftersom landning kan genomföras med låga hastigheter och små vinklar används en linjär modell för att göra problemet mer lätthanterligt. Insignalerna till systemet är kraften från stjärtrotorn och lutningsvinklarna av huvudrotorns Tip-Path-Plane. En kaskadregulator används för att styra translationssystemet med eulervinklarna och kraften från huvudrotorn, som insignaler. Regulatorn testas i en MATLAB-simulering mot en glatt referensbana med godkända resultat. För landingsproceduren används en banplaneringsstrategi som bygger på linjär prediktiv reglering (PR). Kaskadregulatorn används sedan för att följa translationsreferenserna, vilka blir valda så att även attitydsystemet anpassas efter plattformens attityd i landningsögonblicket.
Gising, Andreas. "MALLS - Mobile Automatic Launch and Landing Station for VTOL UAVs." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-15980.
Full textThe market for vertical takeoff and landing unmanned aerial vehicles, VTOL UAVs, is growing rapidly. To reciprocate the demand of VTOL UAVs in offshore applications, CybAero has developed a novel concept for landing on moving objects called MALLS, Mobile Automatic Launch and Landing Station. MALLS can tilt its helipad and is supposed to align to either the horizontal plane with an operator adjusted offset or to the helicopter skids. Doing so, eliminates the gyroscopic forces otherwise induced in the rotordisc as the helicopter is forced to change attitude when the skids align to the ground during landing or when standing on a jolting boat with the rotor spun up. This master’s thesis project is an attempt to get the concept of MALLS closer to a quarter scale implementation. The main focus lies on the development of the measurement methods for achieving the references needed by MALLS, the hori- zontal plane and the plane of the helicopter skids. The control of MALLS is also discussed. The measurement methods developed have been proved by tested implementations or simulations. The theories behind them contain among other things signal filtering, Kalman filtering, sensor fusion and search algorithms. The project have led to that the MALLS prototype can align its helipad to the horizontal plane and that a method for measuring the relative attitude between the helipad and the helicopter skids have been developed. Also suggestions for future improvements are presented.
Peluchon, Mathias. "Autonomous landing of multicopters on mobile platforms : Design of an autonomous landing solution for multicopters on mobile platforms, based on a ultrasonic local positionning technology." Thesis, KTH, Fordonsdynamik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261186.
Full textDet här arbete studerar hur man kan använda 3D positionering med ultraljud för att landa multicenter. Målet är att utveckla en lösning för autonom landning av olika system på mobila plattformar, i synnerhet på båtdäck, med en teknik som utvecklats ett fransk företag, Internest. Först, lägesalgoritmnerna ska förbättras så att de kan ge exakt positionsmätningar i rörliga referensramar. Sedan gjordes en första implementering av lägesalgoritmen med PID som studerades och testades. Till sist, implementerades och och förbättrades algoritmen med banplannering, feedforward reglering, och en referensmodell. Allt detta arbete är genomfört i ett industriellt sammanhang, med målet att utveckla enkla men effektiva lösningar som kan användas i olika applikationer, med olika system.
Williams, Christopher G. "Physics-based modeling and assessment of mobile landing platform system design." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Sept/08Sep%5FWilliams.pdf.
Full textThesis Advisor(s): Papoulias, Fotis ; Gordis, Joshua. "September 2008." Description based on title screen as viewed on November 4, 2008 Includes bibliographical references (p. 73-74). Also available in print.
Stenström, Jonathan. "Simultaneous Trajectory Optimization and Target Estimation Using RSS Measurements to Land a UAV." Thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131117.
Full textLizarraga, Mariano I. "Autonomous landing system for a UAV." Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1655.
Full textThis thesis is part of an ongoing research conducted at the Naval Postgraduate School to achieve the autonomous shipboard landing of Unmanned Aerial Vehicles (UAV). Two main problems are addressed in this thesis. The first is to establish communication between the UAV's ground station and the Autonomous Landing Flight Control Computer effectively. The second addresses the design and implementation of an autonomous landing controller using classical control techniques. Device drivers for the sensors and the communications protocol were developed in ANSI C. The overall system was implemented in a PC104 computer running a real-time operating system developed by The Mathworks, Inc. Computer and hardware in the loop (HIL) simulation, as well as ground test results show the feasibility of the algorithm proposed here. Flight tests are scheduled to be performed in the near future.
Lieutenant Junior Grade, Mexican Navy
Zhao, Honglin, Xianming Zhao, and Tingxian Zhou. "Remote Control Multiple Mobile Target System with CDMA." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/611458.
Full textAt present, multiple mobile targets will be remote controlled in many remote control and telemetry system, in which multiple access technology will be applied. This paper proposes a communication scheme to remote control multiple mobile targets using Coded-Division Multiple Access(CDMA) technique. It's feasibility, advantage and shortcoming are analyzed. Moreover, the key techniques of Direct-Sequence Spread Spectrum(DS/SS) system, i.e. the correlation detection and delay lock-on techniques, are studied and stimulated on the experimental model. The results of theoretical analysis show that the CDMA system has the peculiar advantage over the conventional multiple access system, such as FDMA and TDMA.
Barber, D. Blake. "Accurate target geolocation and vision-based landing with application to search and engage missions for miniature air vehicles /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1704.pdf.
Full textArragattu, Prashanth Kumar. "ISCSI performance for mobile appliances using intermediate target storage." Thesis, Wichita State University, 2009. http://hdl.handle.net/10057/2433.
Full textThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering
Books on the topic "Landing on a mobile target"
Omode, Akemi. Mobile suit gundam wing: Blind target. San Francisco: Viz Communications, 2001.
Find full textManzitti, Edward T. Mobile marketing: Consumer perspectives. New York: Direct Marketing Association, 2008.
Find full textAssociation, United States LST, ed. Large slow target: A history of the LST. Toledo, Ohio: U.S. LST Association, 1986.
Find full textBen, Salter, ed. Mobile marketing: Achieving competitive advantage through wireless technology. Amsterdam: Elsevier BH, 2006.
Find full textKuznecov, Sergey, and Konstantin Rogozin. All of physics on your palm. Interactive reference. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/501810.
Full textNew Mobile Report Gundam Wing "Blind Target". Gakken, 1999.
Find full textMichael, Alex, and Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Find full textMichael, Alex, and Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Find full textMichael, Alex, and Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Find full textMichael, Alex, and Ben Salter. Mobile Marketing. Taylor & Francis Group, 2006.
Find full textBook chapters on the topic "Landing on a mobile target"
Voos, Holger. "Nonlinear Landing Control for Quadrotor UAVs." In Autonome Mobile Systeme 2009, 113–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10284-4_15.
Full textYang, Shuang-Hua. "Mobile Target Localization and Tracking." In Signals and Communication Technology, 217–34. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5505-8_10.
Full textRibeiro, Rita A., Tiago C. Pais, and Luis F. Simões. "Benefits of Full-Reinforcement Operators for Spacecraft Target Landing." In Preferences and Decisions, 353–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15976-3_21.
Full textShareef, Mahmud Akhter, Yogesh K. Dwivedi, and Vinod Kumar. "Target Marketing and Development of the Communication Channel." In Mobile Marketing Channel, 103–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31287-3_6.
Full textGupta, Ashima, Chao Gui, and Prasant Mohapatra. "Mobile Target Tracking Using Sensor Networks." In Mobile, Wireless, and Sensor Networks, 173–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471755591.ch7.
Full textYang, Qing, Lu Su, Quanlong Li, and Xiaofei Xu. "Cooperative Target Localization Method for Heterogeneous Sensor Networks." In Networking and Mobile Computing, 13–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11534310_4.
Full textBazán, Eric, Petr Dokládal, and Eva Dokládalová. "Unsupervised Perception Model for UAVs Landing Target Detection and Recognition." In Advanced Concepts for Intelligent Vision Systems, 233–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01449-0_20.
Full textEngels, Florian. "Target Shape Estimation Using an Automotive Radar." In Smart Mobile In-Vehicle Systems, 271–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9120-0_16.
Full textShi, Jinyu, and Weijia Jia. "Real-Time Target Tracking Through Mobile Crowdsensing." In Lecture Notes in Computer Science, 3–18. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68786-5_1.
Full textCao, Junhong, Tao Jiang, Jianzhong Shang, Yuze Xu, and Zirong Luo. "Design of Humanoid Intelligent Mobile Target Robots." In Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021), 955–64. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9492-9_94.
Full textConference papers on the topic "Landing on a mobile target"
Beul, Marius, Sebastian Houben, Matthias Nieuwenhuisen, and Sven Behnke. "Fast autonomous landing on a moving target at MBZIRC." In 2017 European Conference on Mobile Robots (ECMR). IEEE, 2017. http://dx.doi.org/10.1109/ecmr.2017.8098669.
Full textTatoglu, Akin, Cheng Chun Yin, Brianna Cervello, Antonio Corrado, Bernard Balko, and Kiwon Sohn. "Aerial Vehicle Rapid 3D Map Generation for Safe Landing Area Detection." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95849.
Full textUdomkesmalee, S., Ching-Fang Lin, A. Politopoulos, Guohui Hu, and T. Huntsberger. "Autonomous Target Tracking for Asteroid Landing." In 4th International Conference on Control and Automation. Final Program and Book of Abstracts. IEEE, 2003. http://dx.doi.org/10.1109/icca.2003.1595036.
Full textLiu, Ming, and Zhongzheng Liu. "Mobile Aircraft Landing Stair Scheduling." In 2019 International Conference on Industrial Engineering and Systems Management (IESM). IEEE, 2019. http://dx.doi.org/10.1109/iesm45758.2019.8948217.
Full textSaripalli, Srikanth, and Gaurav S. Sukhatme. "Landing a Helicopter on a Moving Target." In 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/robot.2007.363620.
Full textMohr, J., P. Hengst, and W. McKay. "Design Change Management, Mobile Landing Platform." In Maritime Project Management 2016. RINA, 2016. http://dx.doi.org/10.3940/rina.mpm.2016.02.
Full textKumar, Darmesh, Jai Raj, Krishna Raghuwaiya, and Jito Vanualailai. "Autonomous UAV Landing on Mobile Platforms." In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, 2021. http://dx.doi.org/10.1109/csde53843.2021.9718368.
Full textXu, Lingyun, and Haibo Luo. "Towards autonomous tracking and landing on moving target." In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016. http://dx.doi.org/10.1109/rcar.2016.7784101.
Full textJung, Wooyoung, Youngjoo Kim, and Hyochoong Bang. "Target state estimation for vision-based landing on a moving ground target." In 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2016. http://dx.doi.org/10.1109/icuas.2016.7502552.
Full textK. Dalamagkidis. "A Mobile Landing Platform for Miniature Vertical Take-Off and Landing Vehicles." In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.236965.
Full textReports on the topic "Landing on a mobile target"
Verma, S. K. Mobile Microwave Landing System (MMLS) User Interface. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada237470.
Full textSchulz, Matthew. Target Modeling for Ground Mobile Branch (GMB). Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada558425.
Full textMuelaner, Jody Emlyn. Decarbonized Power Options for Non-road Mobile Machinery. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, January 2023. http://dx.doi.org/10.4271/epr2023002.
Full textbin Ahsan, Wahid, Imran Hossain, Habibur Rahman, Nasir Uddin, Kazi Harunur Rashid, Shahariar Ratul, Zannatul Ferdous, Fariha Islam, and Abu MD Ehsan. Global Mobile App Accessibility: A Comparative Study of WCAG Compliance Across 12 Countries. Userhub, April 2024. http://dx.doi.org/10.58947/mxrc-rzkh.
Full textSarofim, Samer. Developing an Effective Targeted Mobile Application to Enhance Transportation Safety and Use of Active Transportation Modes in Fresno County: The Role of Application Design & Content. Mineta Transportation Institute, July 2021. http://dx.doi.org/10.31979/mti.2021.2013.
Full textQian, Yuping, Yangjun Zhang, and WEILIN ZHUGE. Key Technology Challenges of Electric Ducted Fan Propulsion Systems for eVTOL. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, November 2023. http://dx.doi.org/10.4271/epr2023027.
Full textChotelal, Shreshta, Marla Dukharan, Jeetendra Khadan, and Melissa Marchand. Financial Inclusion and FinTech in Suriname. Inter-American Development Bank, February 2022. http://dx.doi.org/10.18235/0003988.
Full textThomas, Douglas, and Mellon Michael. Sublimation of terrestrial permafrost and the implications for ice-loss processes on Mars. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41244.
Full textWaisner, Scott, Victor Medina, Charles Ellison, Jose Mattei-Sosa, John Brasher, Jacob Lalley, and Christopher Griggs. Design, construction, and testing of the PFAS Effluent Treatment System (PETS), a mobile ion exchange–based system for the treatment of per-, poly-fluorinated alkyl substances (PFAS) contaminated water. Engineer Research and Development Center (U.S.), March 2022. http://dx.doi.org/10.21079/11681/43823.
Full textRoberts, Tony, Judy Gitahi, Patrick Allam, Lawrence Oboh, Oyewole Oladapo, Gifty Appiah-Adjei, Amira Galal, et al. Mapping the Supply of Surveillance Technologies to Africa: Case Studies from Nigeria, Ghana, Morocco, Malawi, and Zambia. Institute of Development Studies, September 2023. http://dx.doi.org/10.19088/ids.2023.027.
Full text