Journal articles on the topic 'Lactams'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lactams.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Lu, Qiyao Wang, Hui Zhang, Minjun Yang, Mazhar I. Khan, and Xiaohui Zhou. "Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics." Proceedings of the National Academy of Sciences 113, no. 6 (February 1, 2016): 1648–53. http://dx.doi.org/10.1073/pnas.1520300113.
Full textMedina, Marjorie B., Dana J. Poole, and M. Ranae Anderson. "A Screening Method for β-Lactams in Tissues Hydrolyzed with Penicillinase I and Lactamase II." Journal of AOAC INTERNATIONAL 81, no. 5 (September 1, 1998): 963–72. http://dx.doi.org/10.1093/jaoac/81.5.963.
Full textAlves, Américo J. S., Nuno G. Alves, Cátia C. Caratão, Margarida I. M. Esteves, Diana Fontinha, Inês Bártolo, Maria I. L. Soares, et al. "Spiro-Lactams as Novel Antimicrobial Agents." Current Topics in Medicinal Chemistry 20, no. 2 (February 19, 2020): 140–52. http://dx.doi.org/10.2174/1568026619666191105110049.
Full textLi, Xian-Zhi, Li Zhang, Ramakrishnan Srikumar, and Keith Poole. "β-Lactamase Inhibitors Are Substrates for the Multidrug Efflux Pumps of Pseudomonas aeruginosa." Antimicrobial Agents and Chemotherapy 42, no. 2 (February 1, 1998): 399–403. http://dx.doi.org/10.1128/aac.42.2.399.
Full textBrilhante, R. S. N., L. G. A. Valente, M. F. G. Rocha, T. J. P. G. Bandeira, R. A. Cordeiro, R. A. C. Lima, J. J. G. Leite, et al. "Sesquiterpene Farnesol Contributes to Increased Susceptibility to β-Lactams in Strains of Burkholderia pseudomallei." Antimicrobial Agents and Chemotherapy 56, no. 4 (January 30, 2012): 2198–200. http://dx.doi.org/10.1128/aac.05885-11.
Full textJacobs, Lian M. C., Patrick Consol, and Yu Chen. "Drug Discovery in the Field of β-Lactams: An Academic Perspective." Antibiotics 13, no. 1 (January 8, 2024): 59. http://dx.doi.org/10.3390/antibiotics13010059.
Full textSekiguchi, Jun-ichiro, Koji Morita, Tomoe Kitao, Noboru Watanabe, Mitsuhiro Okazaki, Tohru Miyoshi-Akiyama, Masato Kanamori, and Teruo Kirikae. "KHM-1, a Novel Plasmid-Mediated Metallo-β-Lactamase from a Citrobacter freundii Clinical Isolate." Antimicrobial Agents and Chemotherapy 52, no. 11 (September 2, 2008): 4194–97. http://dx.doi.org/10.1128/aac.01337-07.
Full textGlen, Karl A., and Iain L. Lamont. "β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects." Pathogens 10, no. 12 (December 18, 2021): 1638. http://dx.doi.org/10.3390/pathogens10121638.
Full textMukhopadhyay, S., and P. Chakrabarti. "Altered permeability and beta-lactam resistance in a mutant of Mycobacterium smegmatis." Antimicrobial Agents and Chemotherapy 41, no. 8 (August 1997): 1721–24. http://dx.doi.org/10.1128/aac.41.8.1721.
Full textLi, Fu, Li Wan, Tongyang Xiao, Haican Liu, Yi Jiang, Xiuqin Zhao, Ruibai Wang, and Kanglin Wan. "In Vitro Activity of β-Lactams in Combination with β-Lactamase Inhibitors against Mycobacterium tuberculosis Clinical Isolates." BioMed Research International 2018 (July 2, 2018): 1–8. http://dx.doi.org/10.1155/2018/3579832.
Full textYin, Jianhua, Yiyang Sun, Yinting Mao, Miao Jin, and Haichun Gao. "PBP1a/LpoA but Not PBP1b/LpoB Are Involved in Regulation of the Major β-Lactamase GeneblaAin Shewanella oneidensis." Antimicrobial Agents and Chemotherapy 59, no. 6 (March 30, 2015): 3357–64. http://dx.doi.org/10.1128/aac.04669-14.
Full textAsgarali, Azizah, Keith A. Stubbs, Antonio Oliver, David J. Vocadlo, and Brian L. Mark. "Inactivation of the Glycoside Hydrolase NagZ Attenuates Antipseudomonal β-Lactam Resistance in Pseudomonas aeruginosa." Antimicrobial Agents and Chemotherapy 53, no. 6 (March 9, 2009): 2274–82. http://dx.doi.org/10.1128/aac.01617-08.
Full textSayed, Alaa R. M., Nirav R. Shah, Kari B. Basso, Manasi Kamat, Yuanyuan Jiao, Bartolome Moya, Dhruvitkumar S. Sutaria, et al. "First Penicillin-Binding Protein Occupancy Patterns for 15 β-Lactams and β-Lactamase Inhibitors in Mycobacterium abscessus." Antimicrobial Agents and Chemotherapy 65, no. 1 (October 26, 2020): e01956-20. http://dx.doi.org/10.1128/aac.01956-20.
Full textNagira, Yu, Keiko Yamada, Hayato Okade, Nami Senju, Yuko Tsutsumi, Yuji Tabata, and Kazuhiko Kato. "1279. In Vitro Activity of Nacubactam (OP0595) Alone and in Combination with β-Lactams against β-Lactamase-Producing Enterobacterales Isolated in Japan." Open Forum Infectious Diseases 7, Supplement_1 (October 1, 2020): S655. http://dx.doi.org/10.1093/ofid/ofaa439.1462.
Full textYuan, Qinghui, Lin He, and Hengming Ke. "A Potential Substrate Binding Conformation of β-Lactams and Insight into the Broad Spectrum of NDM-1 Activity." Antimicrobial Agents and Chemotherapy 56, no. 10 (July 23, 2012): 5157–63. http://dx.doi.org/10.1128/aac.05896-11.
Full textPapp-Wallace, Krisztina M., Baui Senkfor, Julian Gatta, Weirui Chai, Magdalena A. Taracila, Veerabahu Shanmugasundaram, Seungil Han, et al. "Early Insights into the Interactions of Different β-Lactam Antibiotics and β-Lactamase Inhibitors against Soluble Forms of Acinetobacter baumannii PBP1a and Acinetobacter sp. PBP3." Antimicrobial Agents and Chemotherapy 56, no. 11 (August 20, 2012): 5687–92. http://dx.doi.org/10.1128/aac.01027-12.
Full textGangadharappa, Bhavya, Manjunath Dammalli, and Sharath Rajashekarappa. "β-Lactams and β-Lactamase Inhibitors: Unlocking their potential to address drug resistance." Research Journal of Biotechnology 16, no. 8 (July 25, 2021): 151–58. http://dx.doi.org/10.25303/168rjbt15121.
Full textSrivastava, Nitin. "Key Role of Ionic Liquids in the Cleaner and Greener Synthesis of Lactams." Research Journal of Chemistry and Environment 26, no. 1 (December 25, 2021): 125–30. http://dx.doi.org/10.25303/2601rjce125130.
Full textTarui, Atsushi, Yukiko Karuo, Kazuyuki Sato, Kentaro Kawai, and Masaaki Omote. "Stereoselective Synthesis of Multisubstituted α-fluoro-β-lactams." Current Organic Chemistry 24, no. 18 (November 18, 2020): 2169–80. http://dx.doi.org/10.2174/1385272824666200221114707.
Full textPatel, Twisha S., Vince Marshall, Keith S. Kaye, Aaron Smith, Carol Young, Paul Lephart, and Jason M. Pogue. "1600. Susceptibility of β-Lactam-Resistant Pseudomonas aeruginosa to Other β-Lactams: Is There Truly a Lack of Cross-Resistance?" Open Forum Infectious Diseases 6, Supplement_2 (October 2019): S583—S584. http://dx.doi.org/10.1093/ofid/ofz360.1464.
Full textKadry, Ashraf. "Lacking of efflux mechanism in clinical isolate of Pseudomonas aerupinosa highly resistant to β-Lactams And imimnem." Scientia Pharmaceutica 71, no. 2 (May 4, 2003): 89–100. http://dx.doi.org/10.3797/scipharm.aut-03-10.
Full textTherien, Alex G., Joann L. Huber, Kenneth E. Wilson, Patrick Beaulieu, Alexandre Caron, David Claveau, Kathleen Deschamps, et al. "Broadening the Spectrum of β-Lactam Antibiotics through Inhibition of Signal Peptidase Type I." Antimicrobial Agents and Chemotherapy 56, no. 9 (June 18, 2012): 4662–70. http://dx.doi.org/10.1128/aac.00726-12.
Full textDousa, Khalid M., Barry N. Kreiswirth, Sebastian Kurz, and Robert A. Bonomo. "786. Ceftaroline and Avibactam? Is This a Potential Combination for Mycobacterium abscessus Infection?" Open Forum Infectious Diseases 5, suppl_1 (November 2018): S281. http://dx.doi.org/10.1093/ofid/ofy210.793.
Full textMacDougall, Conan. "Beyond Susceptible and Resistant, Part I: Treatment of Infections Due to Gram-Negative Organisms With Inducible β-Lactamases." Journal of Pediatric Pharmacology and Therapeutics 16, no. 1 (January 1, 2011): 23–30. http://dx.doi.org/10.5863/1551-6776-16.1.23.
Full textNagpal, Reshma, Jitender Bhalla, and Shamsher S. Bari. "A Comprehensive Review on C-3 Functionalization of β-Lactams." Current Organic Synthesis 16, no. 1 (February 4, 2019): 3–16. http://dx.doi.org/10.2174/1570179415666181116103341.
Full textKidwai, M., P. Sapra, and K. R. Shushan. "Synthetic Strategies and Medicinal Properties of β-Lactams." Current Medicinal Chemistry 6, no. 3 (March 1999): 195–215. http://dx.doi.org/10.2174/0929867306666220208205333.
Full textGostev, Vladimir V., O. E. Punchenko, and Sergey V. Sidorenko. "The current view on betalactam resistance in Staphylococcus aureus." Clinical Microbiology and Antimicrobial Chemotherapy 23, no. 4 (2021): 375–87. http://dx.doi.org/10.36488/cmac.2021.4.375-387.
Full textDrawz, Sarah M., and Robert A. Bonomo. "Three Decades of β-Lactamase Inhibitors." Clinical Microbiology Reviews 23, no. 1 (January 2010): 160–201. http://dx.doi.org/10.1128/cmr.00037-09.
Full textTsang, Wing Y., Naveed Ahmed, Karl Hemming, and Michael I. Page. "Competitive endo- and exo-cyclic CN fission in the hydrolysis of N-aroyl β-lactams." Canadian Journal of Chemistry 83, no. 9 (September 1, 2005): 1432–39. http://dx.doi.org/10.1139/v05-153.
Full textMuñoz-Muñoz, Lara, José A. Aínsa, and Santiago Ramón-García. "Repurposing β-Lactams for the Treatment of Mycobacterium kansasii Infections: An In Vitro Study." Antibiotics 12, no. 2 (February 5, 2023): 335. http://dx.doi.org/10.3390/antibiotics12020335.
Full textHussan, Jagir R., Stuart G. Irwin, Brya Mathews, Simon Swift, Dustin L. Williams, and Jillian Cornish. "Optimal dose of lactoferrin reduces the resilience of in vitro Staphylococcus aureus colonies." PLOS ONE 17, no. 8 (August 12, 2022): e0273088. http://dx.doi.org/10.1371/journal.pone.0273088.
Full textZhang, Song, Xinyu Liao, Tian Ding, and Juhee Ahn. "Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria." Antibiotics 13, no. 3 (March 15, 2024): 260. http://dx.doi.org/10.3390/antibiotics13030260.
Full textTajada, P., J. L. Gomez-Graces, J. I. Alós, D. Balas, and R. Cogollos. "Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli to 12 beta-lactam agents and combinations with beta-lactamase inhibitors." Antimicrobial Agents and Chemotherapy 40, no. 8 (August 1996): 1924–25. http://dx.doi.org/10.1128/aac.40.8.1924.
Full textKimura, Soichiro, Masaji Ishiguro, Yoshikazu Ishii, Jimena Alba, and Keizo Yamaguchi. "Role of a Mutation at Position 167 of CTX-M-19 in Ceftazidime Hydrolysis." Antimicrobial Agents and Chemotherapy 48, no. 5 (May 2004): 1454–60. http://dx.doi.org/10.1128/aac.48.5.1454-1460.2004.
Full textTribuddharat, Chanwit, Richard A. Moore, Patricia Baker, and Donald E. Woods. "Burkholderia pseudomallei Class A β-Lactamase Mutations That Confer Selective Resistance against Ceftazidime or Clavulanic Acid Inhibition." Antimicrobial Agents and Chemotherapy 47, no. 7 (July 2003): 2082–87. http://dx.doi.org/10.1128/aac.47.7.2082-2087.2003.
Full textFisher, Jed F., and Shahriar Mobashery. "β-Lactams from the Ocean." Marine Drugs 21, no. 2 (January 25, 2023): 86. http://dx.doi.org/10.3390/md21020086.
Full textStover, Kayla R., Katie E. Barber, and Jamie L. Wagner. "Allergic Reactions and Cross-Reactivity Potential with Beta-Lactamase Inhibitors." Pharmacy 7, no. 3 (June 28, 2019): 77. http://dx.doi.org/10.3390/pharmacy7030077.
Full textValtonen, Satu J., Jussi S. Kurittu, and Matti T. Karp. "A Luminescent Escherichia coli Biosensor for the High Throughput Detection of β-Lactams." Journal of Biomolecular Screening 7, no. 2 (April 2002): 127–34. http://dx.doi.org/10.1177/108705710200700205.
Full textMasuda, Nobuhisa, Naomasa Gotoh, Chie Ishii, Eiko Sakagawa, Satoshi Ohya, and Takeshi Nishino. "Interplay between Chromosomal β-Lactamase and the MexAB-OprM Efflux System in Intrinsic Resistance to β-Lactams inPseudomonas aeruginosa." Antimicrobial Agents and Chemotherapy 43, no. 2 (February 1, 1999): 400–402. http://dx.doi.org/10.1128/aac.43.2.400.
Full textHamerníková, Michaela, Jaroslav Havlíček, Romana Bláhová, Helena Pospíšilová, Hana Votavová, and Karel Kefurt. "6-Amino-2,6-dideoxy- or -2,3,6-trideoxyhexono-1,6-lactams: Synthesis and Conformation." Collection of Czechoslovak Chemical Communications 69, no. 4 (2004): 867–84. http://dx.doi.org/10.1135/cccc20040867.
Full textHark-Khan, Raida, and William A. Moats. "Identification and Measurement of β-Lactam Antibiotic Residues in Milk: Integration of Screening Kits with Liquid Chromatography." Journal of AOAC INTERNATIONAL 78, no. 4 (July 1, 1995): 978–86. http://dx.doi.org/10.1093/jaoac/78.4.978.
Full textLagacé-Wiens, P. R. S., F. Tailor, P. Simner, M. DeCorby, J. A. Karlowsky, A. Walkty, D. J. Hoban, and G. G. Zhanel. "Activity of NXL104 in Combination with β-Lactams against Genetically Characterized Escherichia coli and Klebsiella pneumoniae Isolates Producing Class A Extended-Spectrum β-Lactamases and Class C β-Lactamases." Antimicrobial Agents and Chemotherapy 55, no. 5 (February 28, 2011): 2434–37. http://dx.doi.org/10.1128/aac.01722-10.
Full textBryan, L. E., A. J. Godfrey, and T. Schollardt. "Virulence of Pseudomonas aeruginosa strains with mechanisms of microbial persistence for β-lactam and aminoglycoside antibiotics in a mouse infection model." Canadian Journal of Microbiology 31, no. 4 (April 1, 1985): 377–80. http://dx.doi.org/10.1139/m85-072.
Full textTebano, Gianpiero, Giulia la Martire, Luigi Raumer, Monica Cricca, Davide Melandri, Federico Pea, and Francesco Cristini. "Which Are the Best Regimens of Broad-Spectrum Beta-Lactam Antibiotics in Burn Patients? A Systematic Review of Evidence from Pharmacology Studies." Antibiotics 12, no. 12 (December 14, 2023): 1737. http://dx.doi.org/10.3390/antibiotics12121737.
Full textStory-Roller, Elizabeth, and Gyanu Lamichhane. "803. Overcoming β-Lactam Resistance in Mycobacterium abscessus." Open Forum Infectious Diseases 5, suppl_1 (November 2018): S288. http://dx.doi.org/10.1093/ofid/ofy210.810.
Full textKrey, Steven C., Jeff Waise, and Lee P. Skrupky. "Confronting the Challenge of Beta-Lactam Allergies: A Quasi-Experimental Study Assessing Impact of Pharmacy-Led Interventions." Journal of Pharmacy Practice 32, no. 2 (November 21, 2017): 139–46. http://dx.doi.org/10.1177/0897190017743154.
Full textSkoglund, Erik, Henrietta Abodakpi, Rafael Rios, Lorena Diaz, Elsa De La Cadena, An Q. Dinh, Javier Ardila, et al. "In Vivo Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa Arising by AmpC- and Non-AmpC-Mediated Pathways." Case Reports in Infectious Diseases 2018 (December 23, 2018): 1–4. http://dx.doi.org/10.1155/2018/9095203.
Full textIsoda, Motoyuki, Kazuyuki Sato, Yurika Kunugi, Satsuki Tokonishi, Atsushi Tarui, Masaaki Omote, Hideki Minami, and Akira Ando. "Rh-Catalyzed reductive Mannich-type reaction and its application towards the synthesis of (±)-ezetimibe." Beilstein Journal of Organic Chemistry 12 (July 27, 2016): 1608–15. http://dx.doi.org/10.3762/bjoc.12.157.
Full textSun, Shuhai, Zhuang Li, Zhixing Ren, and Yu Li. "Multi-Dimensional Elimination of β-Lactams in the Rural Wetland: Molecule Design and Screening for More Antibacterial and Degradable Substitutes." Molecules 27, no. 23 (December 2, 2022): 8434. http://dx.doi.org/10.3390/molecules27238434.
Full textBarba, Victor, Cecilia Hernández, Susana Rojas-Lima, Norberto Farfán, and Rosa Santillan. "Preparation of N-aryl-substituted spiro-β-lactams via Staudinger cycloaddition." Canadian Journal of Chemistry 77, no. 12 (December 5, 1999): 2025–32. http://dx.doi.org/10.1139/v99-212.
Full text