To see the other types of publications on this topic, follow the link: Laboratory testing.

Dissertations / Theses on the topic 'Laboratory testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Laboratory testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Stokes, Michael Jeffrey. "Laboratory statnamic testing." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gudmarsson, Anders. "Laboratory Seismic Testing of Asphalt Concrete." Licentiate thesis, KTH, Väg- och banteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104236.

Full text
Abstract:
Nondestructive laboratory seismic testing to characterize the complex modulus and Poisson’s ratio of asphalt concrete is presented in this thesis. These material properties are directly related to pavement quality and the dynamic Young’s modulus is used in thickness design of pavements. Existing standard laboratory methods to measure the complex modulus are expensive, time consuming, not truly nondestructive and cannot be directly linked to nondestructive field measurements. This link is important to enable future quality control and quality assurance of pavements based on the dynamic modulus.Therefore, there is a need for a more detailed and accurate laboratory test method that is faster, more economic and can increase the understanding and knowledge of the behavior of asphalt concrete. Furthermore, it should be able to be linked to nondestructive field measurements for improved quality control and quality assurance of pavements. Seismic testing can be performed by using ultrasonic measurements, where the speed of sound propagating through a material with known dimensions is measured. Seismic testing can also be used to measure the resonance frequencies of an object. Due to any excitation, a solid resonates when the frequency of the applied force matches the natural frequencies of the object. In this thesis, resonance frequency measurements have been performed at several different temperatures by applying a load impulse to a specimen while measuring its dynamic response. The measured resonance frequencies and the measured frequency response functions have been used to evaluate the complex modulus and Poisson’s ratio of asphalt concrete specimens. Master curves describing the complex modulus as a function of temperature and loading frequency have been determined through these measurements.The proposed seismic method includes measurements that are significantly faster, easier to perform, less expensive and more repeatable than the conventional test methods. However, the material properties are characterized at a higher frequency range compared to the standard laboratory methods, and for lower strain levels (~10-7) compared to the strain levels caused by the traffic in the pavement materials. Importantly, the laboratory seismic test method can be linked together with nondestructive field measurements of pavements due to that the material is subjected to approximately the same loading frequency and strain level in both the field and laboratory measurements. This allows for a future nondestructive quality control and quality assurance of new and old pavement constructions.

QC 20121120

APA, Harvard, Vancouver, ISO, and other styles
3

Schabort, Elske Jeanne. "The reliability of laboratory performance testing." Master's thesis, University of Cape Town, 1997. http://hdl.handle.net/11427/26671.

Full text
Abstract:
The reproducibility of a measurement in a laboratory test impacts on the power of that test to detect the small, but significant changes in an athlete's performance when determining the influence of a new training or nutritional intervention. Until recently, however, sport scientists have not been concerned with establishing the reliability of many of their testing protocols. Therefore, the purpose of this thesis was to examine the reliability of several laboratory tests of performance and to determine those factors which may impact on the reproducibility of those tests. Possible factors that could contribute to the reliability of a performance test include the type of exercise protocol employed (continuous, intermittent), the equipment on which the subject performs the test, the intensity and duration of the testing protocol, the subject's state of fitness and whether he is familiar with the testing conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Troost, Jan J. "Factors influencing laboratory vibratory compaction." Master's thesis, University of Cape Town, 1987. http://hdl.handle.net/11427/17651.

Full text
Abstract:
Includes bibliography.
The thesis consists of a literature review and a limited experimental investigation in a soils laboratory. The objective of the literature review is to determine what standard laboratory test methods based on vibration exist for the control of compaction, to what soil types these tests are applicable and what the factors are which affect laboratory vibratory compaction. The study revealed that extensive research has been carried out in the USA and Europe, where standard laboratory compaction tests exist for the determination of the maximum dry density of cohesionless, free-draining soil. The US methods are based on the use of a vibratory table, while the European practice is based on the use of a vibratory tamper. No standard tests appear to exist for soil exhibiting cohesion, though limited research has been carried out in the USA into the behaviour of such soils under laboratory vibratory compaction. The factors; frequency, amplitude, mould size and shape surcharge intensity and manner of application, soil type, time of vibration, number of layers and moisture content are all reported to have an effect on the maximum dry density achievable. It has been recognised that significant interaction occurs between the factors affecting vibratory compaction, but the extent of the interaction appears to be only partly understood. The objective of the limited experimental program was to determine whether a specific graded crushed stone could be compacted to Modified AASHTO maximum dry density with a laboratory vibratory compaction technique using a vibratory table, and how this could best be achieved. The effects on dry density of changing the frequency, the time of vibration, mould size, surcharge pressure, grading and moisture content were investigated. It is concluded that the graded crushed stone in question can be compacted to Mod. AASHTO maximum dry density but that before reliable reproducible results can be achieved with this type of test further work is necessary. Such research should be aimed at investigating the interaction effect between the amplitude of vibration, the soil type and the type and intensity of the applied surcharge pressure.
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Chi-chung, and 陳智聰. "Quality management issues facing a testing laboratory." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31268493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Chi-chung. "Quality management issues facing a testing laboratory /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19876695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jha, Ranjani Kumar. "Field and laboratory testing of calcareous sand /." Title page, abstract and table of contents only, 1994. http://web4.library.adelaide.edu.au/theses/09ENS/09ensj59.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

VAVASSORI, Paolo. "CitLab, a laboratory for combinatorial interaction testing." Doctoral thesis, Università degli studi di Bergamo, 2016. http://hdl.handle.net/10446/63650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harrington, John Francis. "Comparison of alternative laboratory dowel bar testing procedures." [Ames, Iowa : Iowa State University], 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rehman, Shafiq-ur. "Laboratory testing of envelope materials for pipe drains." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23419.

Full text
Abstract:
Soils which were known to have caused sedimentation problems in drain pipes were used in the investigations. Different envelope combinations such as soil-fabric, soil-gravel and soil-sand-fabric were evaluated. Nine 100 mm diameter, 250 mm high permeameters were used to determine the functioning of envelope materials and to improve the criteria for testing of envelope materials. To obtain a clear indication of success/failure of an envelope, a wide range of hydraulic gradients and different thicknesses of soils and envelopes were used. The most effective thicknesses were, 5 cm of soil with fabrics and 2.5 cm of soil plus 7.5 cm of gravel for gravel envelopes.
All the fabrics were successful in retaining the soil particles. No clogging was observed and higher flow rates were measured in fabrics having 2 to 3 mm thicknesses with openings O$ sb{95}$ finer than 100 $ mu$m.
SCS criteria (1988) with the following modifications: $ rm D sb{100}0.3$ mm for gravel; and $ rm D sb{100}<9.5$ mm for crushed rock mixed with sand are suggested. The performance of envelopes meeting these criteria were successful.
The laboratory tests show that the use of a fabric with river sand as an envelope has a very good potential for successful field operation. There was no laboratory evidence to reject the functioning of this concept.
APA, Harvard, Vancouver, ISO, and other styles
11

Gharpuray, Archana M. "GPIB interface for testing and controlling laboratory projects." Thesis, Kansas State University, 1986. http://hdl.handle.net/2097/9914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tognon, Andrew R. "Laboratory testing of geosynthetics used in landfill barrier systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0007/MQ42106.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shipway, Philip Howard. "Erosive wear of brittle materials and its laboratory simulation." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ho, Chun-wah. "An overview of environmental laboratory testing services in Hong Kong /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Duguay, Martin R. A. "Comparison of on-ice versus laboratory tests of skating speed and power." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61291.

Full text
Abstract:
The purpose of this study was to establish the reliability and validity of the Power Master isokinetic ergometer in measuring skating power for 34 hockey players (14 professional, 11 recreational, and 9 female university players). Comparisons between two on-ice tests and four laboratory tests of skating speed and power, and prediction of sprint skating speed were also examined for 19 hockey players (10 recreational and 9 female university players). The Power Master displayed internal consistency reliability, construct validity, and criterion related validity. Significant correlations occurred between the on-ice tests and the laboratory test (r =.55 to r =.95), and the Power Master was a significant variable in predicting sprint skating speed. It was concluded that the Power Master is a reliable and valid machine for the measurement of skating power in hockey players.
APA, Harvard, Vancouver, ISO, and other styles
16

Ho, Chun-wah, and 何振華. "An overview of environmental laboratory testing services in Hong Kong." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31253738.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Penishkevich, Ya I. "Laboratory testing of retinal pigment epithelium dysfuction in diabetic retinopathy." Thesis, БДМУ, 2022. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/19663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Quist, Cameron M. "Assessment and Expansion of Laboratory-Based Testing of Biomass Cookstoves." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9160.

Full text
Abstract:
Biomass cookstoves are a significant source of various pollutants, such as CO2, CO, and particulate matter (PM). To mitigate the issues surrounding cookstoves, significant research has been undertaken on improved cookstoves (ICS). This research can be performed in a laboratory setting, in the field, or a combination of both. This work concentrates on the purely laboratory testing. Laboratory testing has both advantages and disadvantages when compared to field testing (e.g. decreased cost and increased consistency). However, field applications are variable, environments can be significantly different (for example wind and ambient temperature can be very different in the field vs. a controlled lab environment) and the personal preferences of the users of the cookstove can also be difficult to predict when only using laboratory testing. It is typically preferable to narrow down the possible cookstove choices by using laboratory results before heading to the field. This work concentrated on assessing the limitations of laboratory testing of cookstoves as presently constituted, as well as finding new ways to improve and expand upon the testing methodologies. Sources of error during testing was considered, leading to recommendations on how to adjust testing to decrease that error. Of note, it was found that higher thermal efficiencies led to increased propagated errors, which complicates the comparison of this efficiency among cookstoves. Additionally, a method for estimating the transient thermal efficiency was developed. Further, the effects of changing some of the key testing parameters were explored and the results showed that the overall thermal efficiency was minimally affected by parameter variations within the WBT or ISO 19867-1 guidelines. Finally, two methods were explored and compared for finding kinetic parameters associated with transforming food from the uncooked state to the cooked state. It was found that physical testing was more effective for samples that started in a harder physical state, whereas DSC testing was more effective with samples that had lower water content. This analysis was done with the intention of using transformation kinetics in future applications of cookstove models so that researchers could gain additional insights into which stoves may be best for their target market.
APA, Harvard, Vancouver, ISO, and other styles
19

Wineland, Vernon William. "Laboratory and field testing and evaluation of precast bridge elements." [Ames, Iowa : Iowa State University], 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Morotti, Roberto. "DEVELOPMENT OF A VIRTUAL TESTING LABORATORY FOR LOWER LIMB PROSTHESIS." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423573.

Full text
Abstract:
The introduction of computer-aided tools into the product development process allows improving the quality of the product, evaluating different variants of the same product in a faster way and reducing time and costs. They can play a meaningful role also in designing custom-fit products (especially, those characterized by a tight interaction with the human body), increasing the comfort and improving people’s quality of life. This thesis concerns a specific custom-fit product, the lower limb prosthesis. It is part of a research project that aims at developing a new design platform centred on the digital model of the patient and his/her characteristics. The platform, named Prosthesis Virtual Laboratory (PVL), is being developed by the V&K Research Group (University of Bergamo) and integrates ICT tools and product-process knowledge. It provides two environments: one for prosthesis design (named Prosthesis Modelling Lab), both transfemoral and transtibial, and one for the prosthesis testing (named Virtual Testing Lab). The main objective has been to embed within the Virtual Testing Environment numerical simulation tools to analyse the interaction between the socket and the residual limb under different loading conditions, allowing the prosthetist to automatically run the simulation and optimize socket shape. Simulation tools, such as Finite Element Analysis (FEA), permit to predict the pressures at the interface socket-residual limb, evaluate the comfort of socket and validate the socket design before manufacturing phase. However, the diffusion of simulation tools in orthopaedic laboratories is strongly limited by the high level of competence required to use them. Furthermore, the implementation of the simulation model is time consuming and requires expensive resources, both humans and technological, especially onerous for small orthopaedic labs. To effectively employ the numerical analysis in prosthesis design, the simulation process has been automated and embedded within the virtual design platform. Therefore, in such a context, the specific scientific objectives have been to: • Critically analyse the state of the art with regard to methods and tools to evaluate socket-residual limb interaction. • Identify the key issues to automate the simulation activities. • Define a set of simulation rules and the Finite Element Analysis model. • Implement and integrate within the new design platform the automatic simulation procedure. • Test the integrated design platform with a case study. • Identify future development trends. Research activities have been organized into four main activities as follows. The first activity consisted in an extensive analysis of the last two decades State of the Art on numerical models adopted to study residual lower-limb and prosthetic socket interaction. Starting from literature, the key issues of the simulation process (e.g., geometric models reconstruction, materials characterization, simulation steps, and boundary conditions), the methodologies and procedures have been identified. Particular attention has been also paid to the parameters commonly adopted to evaluate socket comfort. This phase played a fundamental role since it constituted the basis for the implementation of the embedded simulation procedure. It also permitted to highlight that current finite element models are stand-alone and not integrated with prosthetic CAD or Digital Human Modelling (DHM) systems. In the second activity the tools and methods necessary to develop the embedded simulation module have been selected. By using these tools, it was possible to identify the simulation rules and the best practice procedures, which are fundamental to implement an automatic simulation module. Initially, the modelling tools have been considered since they provide the geometric models for the numerical analysis of the socket-residuum interaction and for the virtual gait analysis of the patient’s avatar. Then, particular attention has been paid on the choice of the FE solver, that has been made according to the results of preliminary FE models. They were implemented using two different solvers: Abaqus (commercial) and CalculiX (open-source). The latter has been experimented to verify the possibility to develop a design platform totally independent from commercial tools. However, according to the results, Abaqus has been chosen because it allows managing adequately simulation problems characterized by large deformations and difficult contact conditions, its results are comparable with those found in literature, and its scripting code does not require specific customization. The last considered tool was the Digital Human Modelling system (LifeMOD) since it permits to enhance the accuracy of the numerical analysis. By performing the gait simulation of the patient’s avatar, it provides the directions and the magnitude of forces and moments that act on the socket. The third activity consisted in defining the architecture of the simulation module, implementing the module and the interfaces with the socket CAD tool (namely Socket Modelling Assistant-SMA) to get the geometric models of the involved parts (socket and residual limb) and with the DHM system to acquire forces acting on the socket during patient’s walking. The simulation module has been implemented using the Python language and the integrated environment works as follows. Once the prosthetist has created the 3D socket model, SMA acquires the input for the analysis (e.g., residual limb length, patient’s weight, friction coefficient, material properties), and produces the files required to generate the FE model. Abaqus automatically generates the FE model without any human intervention, solves the analysis and generates the output file containing the pressure values. Results are imported in SMA and visualized with a colour map. SMA evaluates pressure distribution and highlights the areas that should be modified. Geometry modifications are needed in the areas where pressure exceeds the maximum value and are carried out automatically by the system or by the prosthetist using the virtual tools available in SMA. Then, the system re-executes the simulation. Through this iterative process of adjustments, the socket shape is modified and optimized in order to eliminate undercuts, minimize weight and, especially, distribute loads in the appropriate way so that they can be tolerated for the longest period of time. The fourth and last activity concerned the test and validation of the simulation module integrated within the new design platform, by considering a transfemoral patient. The new virtual process and the key issues of the simulation procedure have been tested starting from the patient’s data acquisition to the release of the socket using also data coming from the gait simulation with the DHM system. The geometric model of the residual limb has been reconstructed from MRI images and the socket has been modelled using SMA. Through an iterative process, the socket shape has been optimized until the pressure distribution on the residuum was consistent. Preliminary activity concerning the FE model validation has been performed comparing the pressure distribution experimentally acquired with pressure transducers over the residuum with the simulation results. To accomplish this task, the geometric model of the real socket has been acquired using reverse engineering techniques. Two numerical simulations have been implemented, they differ for the residuum geometric models adopted: from MRI and from 3D scanning. Preliminary results have been considered positive but improvements are necessary. As an example, some geometric inconsistencies, occurred during the acquisition of the geometric model of the residual limb, have reduced the accuracy of the final results. To complete the evaluation of the simulation model, a new residuum geometric model is needed and a refinement of the material model characterization is desirable. To conclude, the simulation module embedded within Virtual Testing Laboratory has improved the prosthesis development process with the goal of assessing and validating the socket shape under different load conditions (static or dynamic) before the manufacturing phase. The testing phase of the new procedure has demonstrated the feasibility of the virtual approach for lower limb prosthesis design. The tests carried out permitted to highlight necessary improvements and future developments, such as the definition of a protocol to acquire the residual limb through MRI and 3D scan, refinement of the FE model (e.g., non-linear viscoelastic behaviour for soft tissues, friction coefficients), parallel computing to improve simulation performances, open-source solvers to implement a design platform totally independent from commercial systems, and a massive test campaign involving transtibial and transfemoral patients to fully validate the FE model and the design platform.
L’introduzione di strumenti informatizzati nel processo di sviluppo del prodotto permette di migliorarne la qualità, nonché di valutare diverse varianti del prodotto stesso in modo più veloce, riducendo in tal modo il tempo ed i costi relativi alla progettazione. Per queste motivazioni, tali strumenti possono giocare un ruolo rilevante anche nella realizzazione di prodotti personalizzati (specialmente quelli caratterizzati da una stretta interazione con il corpo umano), aumentandone il comfort e migliorando la qualità di vita delle persone. Il presente lavoro di tesi si concentra nello specifico sull’applicazione di tali strumenti informatizzati nella creazione di protesi per arti inferiori, inserendosi in un progetto di ricerca che ha come obiettivo quello di sviluppare una nuova piattaforma di progettazione centrata sul modello digitale del paziente e sulle sue caratteristiche. La piattaforma, chiamata Prosthesis Virtual Laboratory (PVL), è stata sviluppata dal gruppo di ricerca V&K dell’Università degli Studi di Bergamo nell’ottica di integrare gli strumenti informatici con la conoscenza del prodotto e del processo. La piattaforma è strutturata in modo da offrire due ambienti di lavoro: uno dedicato alla progettazione della protesi (chiamato Prosthesis Modelling Lab), sia transfemorale che transtibiale, e l’altro destinato alla fase di verifica della stessa (chiamato Virtual Testing Lab). L’obiettivo principale del lavoro di tesi è stato quello di integrare, all’interno dell’ambiente virtuale di verifica, gli strumenti di simulazione numerica che consentono di analizzare l’interazione tra l’invaso e l’arto residuo sotto diverse condizioni di carico, permettendo al tecnico protesico di effettuare la simulazione in automatico e di ottimizzare la forma dell’invaso. Gli strumenti di simulazione, come l’analisi agli elementi finiti (FEA), permettono di predire la pressione all’interfaccia tra invaso e moncone, di valutare il comfort dell’invaso e di validare la progettazione dello stesso prima della fase di manifattura. Tuttavia, la diffusione degli strumenti di simulazione nei laboratori ortopedici è fortemente limitata dall’elevato livello di competenze richieste per ottenere risultati significativi. Inoltre, l’implementazione di un modello di simulazione numerica richiede tempo e costose risorse, sia umane che tecnologiche, particolarmente onerose per i piccoli laboratori ortopedici. Affinché l’analisi numerica sia utilizzata nella progettazione delle protesi, è necessario che il processo di simulazione sia automatico ed integrato all’interno di una piattaforma virtuale di progettazione. In questo contesto, gli obiettivi scientifici specifici sono stati: • Analizzare criticamente lo stato dell'arte riguardante i metodi e gli strumenti per valutare l'interazione tra invaso ed arto residuo. • Identificare le questioni chiave per automatizzare le attività di simulazione. • Definire un insieme di regole di simulazione ed il modello per l’analisi ad elementi finiti. • Implementare ed integrare nella nuova piattaforma di progettazione la procedura di simulazione automatica. • Verificare la piattaforma di progettazione integrata con un caso studio. • Identificare le tendenze di sviluppo futuro. Le attività di ricerca sono state organizzate in quattro attività principali, come di seguito presentato nello specifico. La prima attività è consistita in un'analisi approfondita dello stato dell’arte negli ultimi due decenni relativamente ai modelli numerici adottati per studiare l’interazione tra invaso ed arto residuo. Partendo dalla letteratura, sono stati individuati i temi chiave del processo di simulazione (ad esempio la ricostruzione dei modelli geometrici, la caratterizzazione dei materiali, le fasi di simulazione e le condizioni al contorno), nonché le metodologie e le procedure di simulazione. Particolare attenzione è stata posta anche ai parametri comunemente adottati per valutare il comfort dell’invaso. Questa fase ha giocato un ruolo fondamentale in quanto costituisce la base per l’implementazione della procedura di simulazione integrata. Ha permesso altresì di evidenziare come gli attuali modelli agli elementi finiti siano indipendenti e non integrati con i sistemi CAD per protesi o di Digital Human Modelling (DHM). La seconda attività ha avuto come focus la selezione degli strumenti e dei metodi necessari allo sviluppo del modulo di simulazione, per mezzo dei quali è stato possibile identificare le regole di simulazione e le procedure di buona prassi, fondamentali per l’implementazione di un modulo di simulazione automatica. Inizialmente, gli strumenti di modellazione sono stati presi in considerazione in quanto forniscono i modelli geometrici sia per l’analisi numerica dell’interazione tra invaso ed arto residuo che per l’analisi della camminata virtuale dell’avatar del paziente. In seguito, particolare attenzione è stata posta sulla scelta del solutore a elementi finiti, che è stata fatta in accordo con i risultati ottenuti dai modelli preliminari implementati utilizzando due diversi solutori: Abaqus (commerciale) e CalculiX (open-souce). Quest’ultimo è stato impiegato per verificare la possibilità di sviluppare una piattaforma di progettazione totalmente indipendente dagli strumenti commerciali. Tuttavia, in base ai risultati ottenuti, la scelta si è indirizzata verso Abaqus, in quanto permette di gestire in modo adeguato i problemi di simulazione caratterizzati da grandi deformazioni e da difficili condizioni di contatto. L’utilizzo di questo solutore consente di ottenere risultati paragonabili a quelli presenti in letteratura ed inoltre il suo codice di script non richiede specifiche personalizzazioni. L’ultimo strumento utilizzato è stato il sistema DHM (Digital Human Modelling ) che permette di aumentare la precisione dell’analisi numerica. Attraverso l’analisi della camminata virtuale dell’avatar del paziente, questo strumento è in grado di fornire le direzioni e le intensità delle forze e delle coppie che agiscono sull’invaso. La terza attività ha riguardato la definizione dell’architettura del modulo di simulazione, l’implementazione del modulo stesso e del suo interfacciamento prima con lo strumento CAD per l’invaso (chiamato Socket Modelling Assistant - SMA), allo scopo di ottenere i modelli geometrici delle parti coinvolte (invaso ed arto residuo), ed in seguito con il sistema DHM, per acquisire le forze che agiscono sull’invaso durante la deambulazione del paziente. Il modulo di simulazione è stato implementato utilizzando il linguaggio Python e l’ambiente integrato prevede diverse fasi di sviluppo, come di seguito approfondito. Una volta che il tecnico protesico ha creato il modello 3D dell’invaso, lo SMA acquisisce gli input per l’analisi (come la lunghezza dell’arto residuo, il peso del paziente, il coefficiente di attrito, le proprietà dei materiali) e rilascia i file richiesti per generare il modello agli elementi finiti. Abaqus genera automaticamente il modello di simulazione senza che vi sia alcun intervento umano, risolve l’analisi e genera il file di output contenente i valori di pressione. I risultati sono importati nello SMA e visualizzati con una mappa di colore. La modifica della geometria dell’invaso, necessaria nelle aree in cui la pressione eccede i valori massimi, è eseguita in automatico dal sistema o dal tecnico protesico tramite gli strumenti virtuali presenti nello SMA. Il sistema, quindi, riesegue la simulazione. Attraverso questo processo iterativo di rettifica, la forma dell’invaso è modificata ed ottimizzata al fine di eliminare i sottosquadri, minimizzare il peso e soprattutto distribuire i carichi in modo appropriato, così che siano tollerabili per lunghi periodi di tempo. La quarta ed ultima attività ha riguardato la sperimentazione e la validazione del modulo di simulazione integrato all’interno della nuova piattaforma di progettazione considerando un paziente transfemorale. Il nuovo processo virtuale e le questioni chiave della procedura di simulazione sono state testate partendo dall’acquisizione dei dati del paziente fino al rilascio dell’invaso definitivo, utilizzando anche i dati provenenti dalla simulazione della camminata con il sistema DHM. Il modello geometrico dell’arto residuo è stato ricostruito partendo dalle immagini MRI e l’invaso è stato modellato utilizzando lo SMA. Attraverso un processo iterativo, la forma dell’invaso è stata ottimizzata fino ad avere una distribuzione appropriata della pressione sul moncone. L’attività preliminare riguardante la validazione del modello agli elementi finiti è stata eseguita comparando la distribuzione delle pressioni acquisite sperimentalmente sul moncone con i risultati della simulazione. Per realizzare questo compito, il modello geometrico dell’invaso reale è stato acquisito utilizzando tecniche di reverse engineering. Sono state implementate due diverse simulazioni numeriche che differiscono per il modello geometrico del moncone adottato: attraverso MRI nel primo caso, da scansione 3D nel secondo. I risultati preliminari possono considerarsi positivi ma ulteriori sviluppi sono necessari. Ad esempio, alcune incongruenze geometriche che si sono verificate durante l’acquisizione del modello geometrico hanno ridotto la precisione dei risultati finali. Per completare la valutazione del modello di simulazione è quindi necessario utilizzare un nuovo modello geometrico del moncone e sarebbe anche auspicabile raffinare il modello di caratterizzazione del materiale. Concludendo, il modulo di simulazione integrato all’interno del Virtual Testing Laboratory – VTL ha permesso di migliorare il processo di sviluppo della protesi con l’obiettivo di valutare e validare la forma dell’invaso sotto diverse condizioni di carico (statiche o dinamiche), prima della fase di manifattura. La fase di test del nuovo processo ha inoltre dimostrato la fattibilità del nuovo approccio virtuale per la progettazione delle protesi per arti inferiori. I test effettuati hanno indicato quali miglioramenti siano necessari ed i possibili sviluppi futuri, tra cui: la definizione di un protocollo di acquisizione dell’arto residuo attraverso MRI o scansione 3D, il calcolo parallelo per migliorare le prestazioni della simulazione, l’utilizzo di solutori open-source per implementare una piattaforma di progettazione totalmente indipendente dai sistemi commerciali, la realizzazione di una massiccia campagna sperimentale che coinvolga pazienti transtibiali e transfemorali al fine di convalidare pienamente il modello FE e la piattaforma di progettazione.
APA, Harvard, Vancouver, ISO, and other styles
21

Edwards, Jonathan Paul. "Laboratory characterisation of pavement foundation materials." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/3067.

Full text
Abstract:
Pavement foundations for major roads in the UK were historically designed on an empirical basis, related to a single design chart, restricting the incorporation of superior performing materials or materials for which the empirical data sets were not available. The adoption of performance based specifications was promoted as they are perceived to 'open up' the use of alternative materials (including 'local' sources of primary materials) or techniques, and allow for the incorporation of superior performance into the overall pavement design. Parallel developments to the performance based design of pavement foundations (allowing for superior performance) and in situ testing required the support of laboratory based performance tests. These laboratory based tests were required to determine material performance parameters (elastic modulus and resistance to permanent deformation) for both unbound and hydraulically bound pavement foundation materials. A review of the available laboratory apparatus indicated that they were either; unrealistic (and hence unable to provide the required material performance parameters), or overly complex and more suited to fundamental research. Therefore, the requirement for developmental research work was identified. The research reported herein details the development, manufacture and initial evaluation of simplified laboratory apparatus (the Springbox for unbound materials and static stiffness test for hydraulically bound mixtures) designed to produce the performance parameters of elastic modulus and relative resistance to permanent deformation for pavement foundation materials. The equipment and test procedure evaluation was undertaken across a range of materials, giving initial guidance on likely in situ performance. The innovative laboratory apparatus and materials guidance (including the potential to use recycled and secondary aggregates) was incorporated into key Highways Agency specification and guidance documents, which in turn influence construction practice outside of motorways and major trunk roads. This research concludes by outlining a number of recommendations for continued development and evaluation, including feeding back data sets from long term in situ performance testing for subsequent refinement of assumptions.
APA, Harvard, Vancouver, ISO, and other styles
22

Seward, Balaji B. "Small engine emissions testing laboratory development and emissions sampling system verification." Morgantown, W. Va. : [West Virginia University Libraries], 2010. http://hdl.handle.net/10450/11024.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2010.
Title from document title page. Document formatted into pages; contains xvi, 110 p. : ill. Includes abstract. Includes bibliographical references (p. 108-110).
APA, Harvard, Vancouver, ISO, and other styles
23

Villeneuve, Joey. "Laboratory Testing for Adfreeze Bond of Sand on Model Steel Piles." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37323.

Full text
Abstract:
This study explored the available adfreeze data published in literature and the techniques used to obtain it. Two methods were selected and modified to complete series of adfreeze bond test. A model pile pull-out method consisting of pulling a pile out a large specimen of soil was the first method used. The second method was modified from an interface shearing apparatus developed by Dr. Fakharian and Dr. Evgin at the University of Ottawa in 1996 and allowed preparing, freezing and testing the specimen in place. The material and soil tested for this study were provided by EXP Services Inc. The model pile, a galvanized HSS 114.3 x 8.6 section, is commonly used to install solar panels. Soil was taken from a future solar farm site in proximity to Cornwall, Ontario. The study had for objective to develop a low cost adfreeze laboratory testing method. Limitations of the technics and apparatus used were observed. While the results of a model pile pull-out test compared to previous data publish by Parameswaran (1978), the interface shear series of test presented more limitations. The interface shearing method has been previously study by Ladanyi and Thériault (1990). Issues with the interface shear method due to the water content of the soil as well as the range of normal stress applied to the specimen both during testing and freezing. The data obtained was inconclusive and the method will be studied in future research program. This studied approach the adfreeze testing with new improvement. The main contribution of this study is the data obtained by measuring and observing adfreeze of ice poor sand with varying water content. The measurements allowed to study the effect that increasing water content has on the interface bond strength. The modifications made to interface shear apparatus are also major new contribution provided by this research. The apparatus was converted in a small freezer chamber using insulation panel and vortex tubes. Which was used to freeze the specimen in the testing chamber and testing adfreeze in place without handling the shear box arrangement.
APA, Harvard, Vancouver, ISO, and other styles
24

Jacobson, Jesse Richard. "Factors Affecting Strength Gain and Development of a Laboratory Testing Procedure." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32298.

Full text
Abstract:
Lime-cement columns were constructed to improve soft ground at the I-95/Route 1 Interchange in Alexandria, Virginia. As part of the test embankment program, two different commercial laboratories performed laboratory tests on treated soil, and they produced strikingly different unconfined compression test results. Further, both sets of results are different from test results for similar soils available in the published literature. This situation created uncertainties and a conservative design philosophy, accompanied by increased construction costs compared to typical lime-cement column projects. The goals of this research project were to assess factors that influence strength gain of lime-cement-soil mixtures and to develop a detailed laboratory test procedure that produces consistent results. Key findings from the research are that a laboratory test procedure that produces consistent results has been developed, drying and subsequent restoration of soil moisture prior to treatment can decrease the strength of the mixture, the mixture strength decreases as the ratio of soil water content to cement content increases for 100 percent cement-soil mixtures, the addition of lime can increase the mixture strength for some soils and decrease the strength for others, and presenting the test results in the form of contour plots of unconfined compressive strength can be very useful.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
25

Cambier, Severine. "ATMOSPHERIC CORROSION OF COATED STEEL; RELATIONSHIP BETWEEN LABORATORY AND FIELD TESTING." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388763285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kruger, Dawid. "Gas phase heterogeneous catalyst performance testing in laboratory fixed-bed reactors." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/31115.

Full text
Abstract:
Activity, selectivity and stability are invariably among the key factors of the performance of a catalyst. In the development of catalysts these properties are often screened for a range of materials and formulations. Interpretation of these key performance indicators are prone to various confounding effects. Here, performance testing of solid, porous catalysts for gas phase reactions in tubular fixed bed reactors is considered. Transport limitations and particularly internal mass transfer limitations are often cited in this case. Many have given general discussions and guides for effective catalyst performance testing, reviewed or put forward theoretical descriptions for transport phenomena and have measured and correlated associated transport coefficients. Some quantitative requirements and the relative importance of different effects have been found to remain unclear. Here, some of these aspects are addressed by the development of 3 catalyst testing criteria. Specifically, an upper limit is derived for the chemical conversion in a firstorder reaction such that differential rate conditions are established, a lower limit on the chemical conversion is applied to limit the loss of precision in conversion measurements, and an expression is derived to limit the effect of pressure drop across a catalyst bed on the observed rate of a first-order reaction. The prevalence and sensitivity of these and other transport limitation criteria were investigated theoretically in the context of the low-temperature (LT) water-gas shift (WGS) reaction over a Cu/ZnO/Al2O3 catalyst in a laboratory scale performance test. Factorial combination of some commonly manipulated experimental parameters (reactant feed rate, temperature, catalyst particle size, catalyst loading, dilution fraction and reactor tube size) was employed in this regard. The upper conversion limit, the internal mass transfer criterion and the radial heat transfer criterion were found to be particularly severe. So too, to a lesser extent, were the axial dispersion and pressure drop criteria, and the lower conversion limit. The sensitivity analysis indicated optima in the varied experimental parameters and yielded insights into effective control of different effects by selection of process conditions. Application of the set of criteria in an experimental performance test was demonstrated using a proprietary medium-temperature (MT), WGS catalyst under reaction at temperatures of 275 °C, 300 °C and 375 °C, 1 atm total pressure, dry feed composition of 10% CO, 10% CO2, 70% H2, 10% N2, steam-to-dry gas ratio of 0.5 and 158 h-1 weight hourly space velocity (WHSV). The catalyst was found to have near total selectivity towards the WGS reaction with activities of 12.2 ± 1.1, 17.1 ± 0.5 and 24.9 ± 1.5 µmol/s.gcat at 275 °C, 300 °C and 375 °C respectively. This corresponds to an activation energy of 39 ± 2 kJ/mol; a value within range of what is reported in literature for similar catalysts. This experiment also served to compare experimental and predicted internal mass transfer limitations by testing catalyst particles of different mean sizes. This catalyst as well as a CuO/ZnO/Al2O3 catalyst precursor was characterised in respect of their pore size distributions (N2 physisorption and mercury intrusion porosimetry (MIP)), particle size distributions (by photo- and microscopic analysis), bulk and particle densities and product gas compositions (by gas chromatography) to enable evaluation of the various criteria employed. Evaluation of the various criteria indicated that, theoretically, the considered confounding effects had a negligible effect on the measured catalytic activities for the catalyst sample with the smallest mean particle size, while the larger particles experienced only internal mass transfer limitations. Different models considered for effective diffusivities all under-predicted values when compared to the effective diffusivities inferred from the reaction-diffusion experiments. Predictions ranged to within factors of 3 – 20 of the experimental values, depending on whether pore size distribution data were derived from MIP or physisorption data. Here, the lack of characterisation of the macro-porosity by N2 physisorption resulted in more severe under-estimations of the effective diffusivities than the equivalent estimations made with MIP data. The best prediction was made by the ‘parallel-path pore’ model by Johnson & Stewart (1965) using MIP data. Predictions of internal mass transfer limitations varied in a similar manner. It is noted that the simplifications of the highly complex porous catalyst by these model combinations introduce large sources of error in the prediction of internal mass transfer limitations.
APA, Harvard, Vancouver, ISO, and other styles
27

Jarnerud, Tova. "Construction and initial testing of a LABORATORY SCALE ELECTRIC ARC FURNACE." Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215013.

Full text
Abstract:
This work aims to describe the designing and construction of a 10 kg laboratory scale Electric Arc Furnace equipped with a system for measurement of electrical parameters. The EAF is used in a research project where the aim is to develop a new online measurement system for an optimized steel production with respect to a low energy consumption and resource efficiency. The laboratory scale is the first step in the project and will be followed by pilot testing and industrial testing, if the results are successful. In order to calculate how much energy that is fed into the system, the power and voltage were measured. To simplify the system at this initial stage with regard to energy and heat losses, the system is limited to treating pre-melted metal. This report provides some theoretical background for not only EAF´s, but also induction furnaces. This is due to that an induction furnace is used to melt the steel before the laboratory scale EAF is used. This report will give some advice based on the experience gained in this study. Furthermore, list important things to consider while working with this kind of equipment. Also, a system that manages to scale voltage and current signals to more easy handled magnitude is presented. The overall conclusion is that it was possible to construct an experimental setup, which can be used to perform on-line measurements from an electric arc furnace operated with steel and slag.
Det här arbetet beskriver designen och konstruktionen av en ljusbågsugn i labbskala, för 10 kg stål, som är utrustad med ett mätsystem för elektriska parametrar. Den här ljusbågsugnen används i ett forskningsprojekt som ska utveckla ett nytt uppkopplat mätsystem för optimerad stålproduktion med avseende på energi- och resurseffektivitet. Experiment i labbskala är det första steget i det här projektet, som efterföljs av tester i pilotskala och sedan industriell skala, om resultaten är bra. För att kunna räkna ut hur mycket energi som matas in i systemet så mättes ström och spänning. För att förenkla systemet i ett initialt skede med avseende på energi- och värmeförluster så begränsas systemet till att behandla redan smält metall. Den här rapporten tillhandahåller teoretisk bakgrund om inte bara ljusbågsugnar, utan även induktionsugnar eftersom att en induktionsugn används för att smälta stålet innan den labbskaliga ljusbågsugnen används. Den här rapporten ger råd av erfarenhet från den här studien. Vidare listas viktiga saker att ta hänsyn till när man jobbar med sådan här utrustning. Ett system som skalar upp och ner signalstyrka vid ström- och spänningsmätningar till mer hanterbara storlekar presenteras. Den övergripande slutsatsen är att det var möjligt att konstruera en försöksutrustning som kan användas till mätningar i ett uppkopplat system i en ljusbågsugn som körs med stål och slagg.
APA, Harvard, Vancouver, ISO, and other styles
28

Zamasari, Amin. "Investigating and testing controlled cooling water usage in the instrumentation laboratory." Thesis, Zamasari, Amin (2015) Investigating and testing controlled cooling water usage in the instrumentation laboratory. Honours thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/29912/.

Full text
Abstract:
The main goal of this thesis document is to facilitate the investigation of cooling water usage in Instrument and Control Facility laboratory. This thesis report illustrates the main idea on how the investigation of cooling water usage was conducted. The problem arising from the Instrument Control Engineering, ICE lab is pointed out in this study, and it is expected that this study could solve the problem, hence benefit the School of Engineering and Energy. In this document the usage of cooling water will be investigated and examined as possible cold water is supplied to the testing equipment such as the heat exchanger. In this thesis, the control methodology that was applied to investigate the best solution to control the process was described and new arrangement to setup the stand-alone refrigerator in ICE lab was conducted and outlined in this report. The tasks on this thesis has been sorted out and divided into seven sections to ensure that it flows accordingly towards favourable outcome. This thesis objective is broken down into three categories, which are Instrument investigation, commissioning the cold water from refrigerator with target operating temperature at ≈15⁰C ± 2⁰C, and development and implementation of control loop. In instrument investigation phase, the literature review on most of the equipment has been conducted. The focus was more on operating the refrigerator to produce cold water to the process investigation unit. Following the second phase, the aim was to conduct and design the layout of the process structure. Starting from the hardware arrangement followed by the software development. The last objective is implementation and commissioning the process investigation upon the testing module instrument. Despite that, the designing and tuning controller of the process was discussed in this final objective. Hence, the result or response from the process variable has been analysed and compared for the best performance criteria. The further direction of this thesis was explained at the end of the document. The new program of the controller has been developed using Laboratory Virtual Instrumentation Engineering Workbench, LabView programming. The outcome from the control programming shows that the offset occurred and this program requires further modification in order to ensure that the program is more reliable and useful to apply the advanced control scheme. Overall, this thesis objective was achieved, whereby the new cooling usage could be used with limitation cold water supply. Thus, it will open a future work to be done on the hardware setup to supply completed cooling water usage in the Instrument and Control Facility laboratory.
APA, Harvard, Vancouver, ISO, and other styles
29

Weidinger, David M. "Laboratory analysis of small strain moduli in compacted silts." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Weidinger_09007dcc8055189a.pdf.

Full text
Abstract:
Thesis (M.S.)--Missouri University of Science and Technology, 2008.
Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed October 20, 2008) Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
30

Gamble, Fraser William. "A laboratory test of anaerobic endurance for ice hockey players /." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Steinert, Bryan Christopher. "Field and Laboratory Evaluation of the Portable Falling Weight Deflectometer." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/SteinertBC2005.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hayden, Audra H. "Correlation between field and laboratory testing for a full-scale stormwater pond." Tallahassee, Florida : Florida State University, 2010. http://etd.lib.fsu.edu/theses/available/etd-12062009-083125.

Full text
Abstract:
Thesis (M.S.)--Florida State University, 2010.
Advisor: Kamal Tawfiq, Florida State University, College of Engineering, Dept. of Civil and Environmental Engineering. Title and description from dissertation home page (viewed on July 14, 2010). Document formatted into pages; contains x, 99 pages. Includes bibliographical references (p. 96-98).
APA, Harvard, Vancouver, ISO, and other styles
33

Bøhn, Olav Dybvik. "Ice abrasion of concrete, background theory and testing at the NTNU laboratory." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for konstruksjonsteknikk, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19095.

Full text
Abstract:
Ice abrasion has been reviewed. Concrete and ice and their most important properties in accordance to ice abrasion have been studied. Concrete strength and contact pressure between ice and concrete is found to be important factors. Former studies of ice abrasion differ in their conclusions of which parameters they include in their ice abrasion models. The different parameters are; ice contact pressure, ice sliding speed, temperature, concrete strength, size of aggregate, total sliding distance. Different models include one or more of these parameters. Some of the previous experiments has come to different conclusions, possible reasons for these differences has been discussed.A detailed description of the NTNU Ice Abrasion Laboratory is given. The abrasion test apparatus is based on the sliding contact abrasion test principle. A concrete specimen is mounted and an ice cylinder is slid on top of the concrete with applied pressure. Pressure, speed and temperature are all fully controllable to create different test scenarios. A custom made National Instruments LabView program is used to control, monitor and log the activities in the abrasion laboratory.Ice abrasion testing has been done at the NTNU Ice Abrasion Laboratory, investigating a possible difference in abrasion rate for identical concrete with unlike initial treatment. A total of four concretes sample were tested. All four of them were saturated after this saturation period 2 of them was abrasion tested directly and 2 of them were dried, resaturated and then abrasion tested. Abrasion results were distorted by cracking of the concrete samples. No conclusive data on the abrasion rate were obtained. Two possible reasons for cracking of the concrete samples were found. The concrete samples have not been stored in best possible way before testing, which may have caused them to weaken. Secondly the ice abrasion machine has a weakness somewhere under the concrete sample. Either the concrete bedding its bearings or the load sensors yields during testing allowing the concrete to tilt up and down as the ice moves back and forth. Tilting of the concrete sample creates a bigger strain for the concrete at the turning point of ice cylinder. Measurers to remove this problem are discussed.
APA, Harvard, Vancouver, ISO, and other styles
34

Johnson, Wesley Byron. "Design and Testing of a Laboratory Ultrasonic Data Acquisition System for Tomography." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/30938.

Full text
Abstract:
Geophysical tomography allows for the measurement of stress-induced density changes inside of a rock mass or sample by non-invasive means. Tomography is a non-destructive testing method by which sensors are placed around a sample and energy is introduced into the sample at one sensor while the other sensors receive the energy. This process is repeated around the sample to obtain the desired resolution. The received information is converted by a mathematical transform to obtain a tomogram. This tomogram shows a pixelated distribution of the density within the sample. Each pixel represents an average value at that point. The project discussed in this paper takes the principle of ultrasonic tomography and applies it to geomechanics. A new instrumentation system was designed to allow rapid data collection through varying sample geometries and rock types with a low initial investment. The system is composed of sensors, an ultrasonic pulser, a source switchbox, and analog to digital converters; it is tied together using a LabVIEW virtual instrument. LabVIEW is a graphical development environment for creating test, measurement, and other control applications. Using LabVIEW, virtual instruments (VIs) are created to control or measure a process. In this application LabVIEW was used to create a virtual instrument that was automated to collect the data required to construct a tomogram. Experiments were conducted to calibrate and validate the system for ultrasonic velocity determination and stress redistribution tomography. Calibration was conducted using polymethylmethacrylate (PMMA or Plexiglas) plates. Uniaxial loads were placed on limestone and sandstone samples. The stress-induced density contrasts were then imaged using the acquisition system. The resolution and accuracy of the system is described. The acquisition system presented is a low-cost solution to laboratory geophysical tomography. The ultimate goal of the project is to further the ability to non-invasively image relative stress redistribution in a rock mass, thereby improving the engineerâ s ability to predict failure.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
35

Amini, Kamran. "Laboratory Testing of High Performance Repair Materials for Pavements and Bridge Decks." Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1432732576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rengarajan, Muralidharan. "Laboratory testing of shotcrete with fibres of steel, basalt or synthetic materials." Thesis, KTH, Betongbyggnad, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287310.

Full text
Abstract:
Shotcrete or sprayed concrete has become an inevitable material for stabilising and supporting hard rock tunnels. To prevent rock block fallouts in the excavated tunnel, shotcrete is pneumatically projected under high pressure on the rock surface. This method has proven to reduce the construction time drastically, and the addition of fibres in the shotcrete material results in Fibre Reinforced Shotcrete (FRS). The fibres increased the strength of the parent matrix and made the reinforcement bar (mesh) placing procedure with its heavy labour work unnecessary. Even though FRS have been in use for many years, to design FRS lining there are currently no complete, widely used guidelines. Traditionally, the most frequently used testing was a traditional beam testing method which helps to determine the FRS mechanical properties. Previous studies prove that the result from beams often show a high scatter in the results. Another proposed standard testing method is the Round Determinate Panel method to determine the energy absorption capacity. This method has the potential to be a reliable test procedure with a repeatable and predictable crack pattern.In this project, an experimental investigation was carried out to understand the behaviour of macro fibres of steel, basalt and synthetic materials in FRS. The specimens were sprayed in situ and cast in laboratory, of which the in situ samples were assigned to different curing conditions. The test standard ASTM C-1550 was used to design the round panels and SS-EN 14488-3 for the beams. Each type of FRS specimen’s compressive strength was tested, evaluated and compared. The single fibre pullout strength was tested to determine the bond strength between shotcrete and fibres.The calculated results showed the coefficient of variation (COV) of energy absorption capacity from panels varied within 3 % – 13 % and the residual strength of beams within 12 % – 35 %. Irrespective of testing method, the Dramix 3D steel fibre and Minibars basalt fibre for the tested cases showed the lowest dispersion of result. Minibars showed a significant increase in compressive strength compared to the other fibres. Single fibre pullout testing concluded that the steel fibre had superior load capacity at the first crack. Minibars showed a strength close to that of steel fibres and a failure mode similar to that with synthetic fibres.
APA, Harvard, Vancouver, ISO, and other styles
37

Gonzalez, Alvaro Andres. "An experimental study of the deformational and performance characteristics of foamed bitumen stabilised pavements." Thesis, University of Canterbury. Civil and Natural Resources Engineering, 2009. http://hdl.handle.net/10092/3285.

Full text
Abstract:
The research presented in this thesis studies the effects of foamed bitumen on the deformational behaviour and performance of pavement materials. The research was conducted in the laboratory and the field, using specific New Zealand materials. The aggregate used is a blend of a coarse aggregate imported from the Auckland region with a crushed dust from the Canterbury region. The bitumen selected for the study is an 80/100 bitumen grade, and the active filler was a Portland Cement, both commonly used for foamed bitumen stabilization in New Zealand. In the laboratory, samples of mixes with different foamed bitumen content were tested under various loading and stress conditions to investigate the effects of foamed bitumen on the deformational behaviour of the mix. The tests performed were: Indirect Tensile Strength (ITS), Indirect Tensile Resilient Modulus (ITM), Repeat Load Triaxial compression (RLT) and Monotonic Load Triaxial compression (MLT). Preliminary ITS and RLT tests conducted on mixes with 1% and 0% cement, at different foamed bitumen contents, indicated that mixes without cement performed poorly compared to the mixes with 1% cement. Therefore, the rest of the laboratory study was on mixes with 1% cement. ITS tests were conducted on 150 mm specimens prepared with 0% 1%, 2%, 3% and 4% bitumen content, with a common 1% cement. Results indicated that foamed bitumen increases the ITS values of the mix, up to an estimated optimum of 2.8% bitumen content. Similar trends were obtained with ITM tests, in which a diametrical load pulse was applied on 150 mm specimens, showing an estimated resilient modulus peak near to 2.8% bitumen content. RLT specimens were prepared at 0%, 2% and 4% bitumen content, at two compaction efforts, creating specimens at low and high bulk density. Permanent deformation RLT tests involved the application of seven stages of 50,000 load cycles each (4 Hz), with increasing deviator stress (from 75 kPa in the first stage, up to 525 kPa in the seventh stage) and at constant confining pressure of 50 kPa. Results of RLT permanent deformation tests indicated that the increase in the foamed bitumen content resulted in an increase in the permanent deformation of the material. MLT tests were conducted on specimens at 0%, 2% and 4% bitumen contents, at two compaction efforts, creating specimens of low and high bulk density, at confining pressures ranging from 50 kPa to 300 kPa, with a deformation rate of 2.1% per minute. Results indicated that the effect of foamed bitumen was a reduction of the peak vertical stress, or a reduction in the peak strength. The peak stresses obtained in MLT tests were plotted in stress diagrams, and the failure was approximated as linear function of the confining stress. The fundamental shear parameters (angle of internal friction and apparent cohesion) were estimated, and results indicated that foamed bitumen has no apparent effect in cohesion but does reduce the angle of internal friction. The reduction of the angle of internal friction explains the general trends observed in the laboratory, that on one hand the compressive strength decreases with increasing bitumen content, but on the other hand, the tensile strength increases up to an optimum. A full-scale experiment was carried out using an accelerated testing of foamed bitumen pavements at the Canterbury Accelerated Pavement Testing Indoor Facility (CAPTIF). In the full-scale experiments, the same materials that were tested in the laboratory (aggregates, bitumen, cement) were used to construct six different pavement sections, each with different contents of bitumen and cement. Three were constructed using foamed bitumen contents of 1.2%, 1.4% and 2.8% respectively, plus a common active filler content of 1.0% cement. Two more pavements were constructed adding cement only (1.0%), and foamed bitumen only (2.2%). In addition, one control section with the untreated unbound material was tested. Strains were collected using a 3D Emu soil strain system installed in each pavement section. The curing time between construction and pavement loading was approximately three months. The pavement response, such as surface deformation (rutting), surface deflections and strains were periodically recorded during the execution of the test. The strains were collected at different depths by using an array of Emu strain gauges. Deflections were recorded using both a Falling Weight Deflectometer (FWD) and CAPTIF Beam deflectometer, which is a modified Benkelmann beam. A total number of approximately 5.6 million equivalent standard axles were applied on the pavement sections. The rutting measured in the sections stabilised with foamed bitumen and cement was the lowest, showing that the addition of foamed bitumen significantly improved the performance of materials with 1% cement. The sections stabilised with cement only, foamed bitumen only, and the control untreated section showed large amounts of rutting and heaving by the end of the test. Deflection measurements showed that the effect of foamed bitumen content is a reduction of pavement deflections, with the lowest deflection measured in the section stabilised with 2.8% bitumen and 1% cement. The elastic pavement strains showed that foamed bitumen reduced the tensile strains in the basecourse but did not have a significant effect on vertical compressive strains. During the construction of pavements, material samples were taken for ITS and RLT testing. Results indicated that the highest ITS was measured in the section with 2.8% foamed bitumen content and 1% cement, and the ITS in the section without cement and foamed bitumen only was about 4-5 times lower than the ITS measured in specimens with cement. RLT specimens without cement performed poorly in comparison with the specimens with 1% cement. The specimens with 1% cement showed higher permanent deformation with increase in the foamed bitumen content, supporting the results from the previous laboratory study. To interpret and relate the results observed in the laboratory and the field, stress path analysis was used, in which the stress ratio of the foamed bitumen layers was calculated at different depths. The analysis showed that foamed bitumen content decreases the maximum stress ratio, hence reducing the proximity to failure and relative damage of the layer. Three-dimensional and two-dimensional finite element modelling of the CAPTIF pavements, were used to further investigate the stress and strain fields induced by the loading and to explain the pavement performance observed in the full-scale experiment.
APA, Harvard, Vancouver, ISO, and other styles
38

Cobb, Bryan Richard. "Laboratory and Field Studies in Sports-Related Brain Injury." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/73208.

Full text
Abstract:
The studies presented in this dissertation investigated biomechanical factors associated with sports-related brain injuries on the field and in the laboratory. In the first study, head impact exposure in youth football was observed using a helmet mounted accelerometer system to measure head kinematics. The results suggest that restriction on contact in practice at the youth level can translate into reduced head impact exposure over the course of a season. A second study investigated the effect of measurement error in the head impact kinematic data collected by the helmet mounted system have on subsequent analyses. The objective of this study was to characterize the propagation of random measurement error through data analyses by quantifying descriptive statistic uncertainties and biases for biomechanical datasets with random measurement error. For distribution analyses, uncertainties tend to decrease as sample sizes grow such that for a typical player, the uncertainties would be around 5% for peak linear acceleration and 10% for peak angular (rotational) acceleration. The third and fourth studies looked at comparisons between two headforms commonly used in athletic helmet testing, the Hybrid III and NOCSAE headforms. One study compared the headform shape, particularly looking at regions that are likely to affect helmet fit. Major differences were found at the nape of the neck and in the check/jaw regions that may contribute to difficulty with fitting a helmet to the Hybrid III headform. For the final study, the impact responses of the two headforms were compared. Both headforms were mounted on a Hybrid III neck and impacted at various magnitudes and locations that are representative of impacts observed on the football field. Some condition-specific differences in kinematic parameters were found between the two headforms though they tended to be small. Both headforms showed reasonable repeatability.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
39

Goudie, K. "Experimental study of the gross deformation of tubular beams." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Denham, Martha H. "The Use of Laboratory Testing to Understand the Behavior of Collapsible Soil Upon Wetting." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4664.

Full text
Abstract:
In developing a constitutive model that could predict the settlement due to the collapse, several goals needed to be met. These were to gain an understanding of the collapse phenomenon, knowing the soil properties at the natural water content and how they change after collapse, and develop and test the new model. It was felt that laboratory testing could be of use. The types of test conducted included use of the Oedometer, Pressuremeter, and Triaxial tests. The material that was used for the testing was a "generic" soil manufactured out of diatomite. In all of the tests the soil was tested dry and saturated in order to establish state limits of the soil. Next, the soil was loaded dry then inundated which initiated the collapse of the soil. The stress and strains were continually recorded. From the testing it was concluded that there is a stress-strain region where after collapse the soil looses considerable strength. With increasing stress and strain the soil eventually becomes stronger. From the triaxial tests, the stress-strain data from this "region of collapse" was used in a constitutive model. Stress paths from the Oedometer and Pressuremeter tests were then successfully applied to the model. The constitutive model used was an elasto plastic model. The elastic and plastic strain components were provided using functions for yielding, hardening, plastic potential, and failure as proposed by Paul Lade in his work on cohesionless, frictional materials. Results from the conventional triaxial shear tests and isotropic compression tests were used to derive the values of the functions for the model. The end result was three dimensional surfaces for failure, yielding, plastic work and plastic potential for the dry and saturated soil in the zone of collapse.
APA, Harvard, Vancouver, ISO, and other styles
41

Kusnanik, Nining Widyah, and n/a. "A comparison of field and laboratory testing of sports specific fitness for female field hockey players." University of Canberra. Applied Science, 2001. http://erl.canberra.edu.au./public/adt-AUC20050517.142313.

Full text
Abstract:
There are many methods to measure the physical fitness of athletes, including tests that can be applied in the field or in the laboratory. Much of the recent research with regard to fitness of team sport players has been undertaken using laboratory testing to measure aerobic power, anaerobic power and capacity, strength and flexibility. Field tests are an alternative method to measure the fitness of players without the expense, time and expertise required for the laboratory testing, especially in developing countries. The purpose of this study is to establish procedures for the application of contemporary sports science practice for Indonesian female field hockey players, including determination of the precision of field tests of the physical and performance characteristics of field hockey players in Indonesia; determination of the physical and performance characteristics of Indonesian female field hockey players; identification of the performance demands and distance covered during competitive field hockey at the national level in Indonesia; comparison of the physical and performance characteristics of national level female field hockey players in Indonesia with those of club level players in Australia; and determination of the relationships between field and laboratory tests of physiological performance capacity for field hockey. Due to conversion problems, five paragraphs have been omitted. For full abstract, see 01front.pdf. In conclusion, the present study found that the Indonesian female field hockey players (at the national level) were comparable to the Australian female field hockey players (at the club level) in some physical and performance test results. However, they were also different on other physical and performance characteristic measurements, with the Indonesian players generally have lower values, for other performance measurements.
APA, Harvard, Vancouver, ISO, and other styles
42

Zou, Daihu. "Numerical analysis of rock failure and laboratory study of the related acoustic emission." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29226.

Full text
Abstract:
Sudden rock failure in the form of rockbursting has long been a problem in underground mines. The basic mechanism of this phenomenon is still unresolved. This thesis describes the research work on this problem conducted by the doctoral candidate Daihua Zou in the Department of Mining and Mineral Process Engineering at The University of British Columbia, under the supervision of Professor Hamish D.S. Miller. This research project was undertaken in order to investigate the process of violent rock failure and was achieved by examining various aspects of the rock failure mechanism. The assumption that acoustic emission can be used as a reliable means of predicting rock failure was investigated, as well as the possibility that violent rock failure could occur in any mine rock. As part of the research, a rock failure mechanism was postulated. A process analogous to shearing is postulated to be important at the post-failure stage. The stick-slip phenomenon has been analyzed using a numerical model under a variety of conditions. The conditions which could give rise to possible violent rock failure were determined. At the same time, acoustic emissions were tested from rock specimens under different loading conditions. The experimental results obtained show a correlation with field measurements made in a mine. In order to verify the testing results from limited experiments, a numerical acoustic model was developed, which is unique in that it is entirely based on the stick-slip process not on any acoustic theory. This model allows rock tests and their associated acoustic emission to be realistically simulated. With this model, acoustic emissions were simulated under various loading conditions for different kinds of rocks. The case of a hard or a soft intercalation was also modelled.
Applied Science, Faculty of
Mining Engineering, Keevil Institute of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
43

Nogrady, R. J. "The Effect of Increased Quizzing on Retention of Material by Histology Laboratory Students." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1544720966398878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gao, Shanshan, and 高珊珊. "Coring process monitoring for strength of grout, concrete and rock in laboratory testing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45530361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barna, Linda Kathern. "A third international survey to study clinical laboratory testing for the lupus anticoagulant." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/958796.

Full text
Abstract:
Lupus anticoagulants (LA) are immunoglobulins (IgG, IgM, IgA or a mixture) that interfere with in vitro phospholipids (PL) dependent coagulation tests. Variable test results among LA positive individuals are due to the heterogeneous nature of the antibodies and differences in reagent/instrument systems. A laboratory’s ability to differentiate LA from other coagulation abnormalities and to accurately establish PL dependence is determined by the sensitivity and responsiveness of screening assays and specificity of confirmatory tests. The Third International Survey on Lupus Anticoagulants (ISLA-3) was organized to assess current protocols for LA testing and determine the sensitivity and specificity of confirmatory tests. A written survey and samples for evaluation were sent to 41 participants from five continents. A majority of laboratories performed 2 screening tests and all performed mixing studies if a screening test was abnormal. Confirmatory tests were done if mixing studies suggested the presence of an inhibitor. New confirmatory assays proved to be more specific than methods previously in place.Ball State UniversityMuncie, IN 47306
Center for Medical Education
APA, Harvard, Vancouver, ISO, and other styles
46

Shahan, Michael R. "Development and verification of a laboratory for the emissions testing of locomotive engines." Morgantown, W. Va. : [West Virginia University Libraries], 2008. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5975.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2008.
Title from document title page. Document formatted into pages; contains xi, 118 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 102-103).
APA, Harvard, Vancouver, ISO, and other styles
47

Eriksson, Fredrik. "Assessment of static performance of LKAB´s welded mesh : Laboratory testing and analysis." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77249.

Full text
Abstract:
Surface support is an areal support, which is installed on rock excavation surface to prevent bulking of rock mass and retain loose rock fragments. Welded wire mesh is one type of surface support. Literature study indicates that there is a wide range of testing methods on mesh. Different setups regarding mesh configuration, installation, and load applying system are used to evaluate its load-bearing, deformation, and energy absorption capacities. Loads are applied in different ways to simulate both static and dynamic loading conditions. However, there is not any standardized testing method.   Common configuration of a welded mesh sheet in LKAB´s underground mines has the dimension of 2.3 m × 2.5 m and is made of 5.5 mm (in diameter) wires welded with a square grid pattern of 75 mm × 75 mm spacing. It is installed with a square bolt pattern with a bolt spacing of 1.0 m × 1.0 m particularly in seismically active areas. Comprehensive field damage investigations at LKAB’s Kiirunavaara mine have shown localized failure of mesh, i.e., the mesh was cut or torn by rock blocks as a result of a seismic event. This is especially common along the mesh overlap where mesh sheets are joined together. However, the performance of welded mesh used at the LKAB’s mines and its performance along mesh overlap is not well understood.   Laboratory tests of LKAB´s welded wire mesh were conducted at the Mining and Civil Engineering Lab at Luleå University of Technology. A test frame was built to test the mesh under static conditions after literature review. Mesh sheets with reduced dimension of 1.2 m x 1.2 m were mounted at the corner by four bolts on the frame and tested with different loading conditions in test series AA. In test series AB/AD, two mesh sheets with overlap were tested and the load was applied at the overlap between two bolts. For the base case in series AA, a rupture load of 41.4 kN was registered at a displacement of 0.44 m using the loading plate with the size of 0.07 m2 when the load was applied at the center of the whole mesh sheet. The highest rupture load, 60.7 kN at 0.26 m displacement, was reached when the size of the loading plate was increased from 0.07 m2 to 0.5 m2. Load-carrying capacity (by using rupture load) obtained for test series AA was in the range of 32.4 - 60.7 kN with a displacement range of 0.26 - 0.44 m, considering varied loading plate material and size of the loading plate. In test series AB/AD where focus was placed on the overlap, the load-carrying capacity was in the range of 28.9 – 47.5 kN at a displacement range of 0.19 – 0.22 m. A single mesh tested with this loading configuration gave the lowest rupture load, 28.9 kN at a displacement of 0.19 m. The load-carrying capacity of two mesh sheets with three grids overlap was increased to 47.5 kN at a displacement of 0.22 m. Stiffness of the tested mesh also increased with an overlap. There is nearly no difference in load-carrying capacity when the loading mode has changed from pulling to pushing. Reducing the number of grids at the overlap to one grid decreased the load-carrying capacity of the mesh significantly, and the overlap seemed to become open quickly as the load was applied on it.   Two failure modes were observed for the mesh tests: tensile failure of the wires and failure at the heat affected zone (HAZ). Failure at HAZ is caused by weakening of the wires at the welding points. In test series AA, failure at the HAZ was observed in all tests near a faceplate. In test series AB/AD, both tensile failure and failure at HAZ were observed. They were observed close to either a faceplate or the loading plate.   To conclude test series AA, there is a problem with the redistribution of load and failure always occurs at the welding points close to faceplates. Roof mesh with wider wires at the face plates and high energy absorbent mesh have shown good results regarding handling these described problems, therefore these could be tested with LKAB´s bolting pattern and mesh configurations. In test series AB/AD, the observed problem is that the load concentrates on the closest bolts, therefore the load should be redistributed to bolts next to the loaded area. Seismic mesh, straps and improved bolting pattern can help with that, and they could be tested to evaluate them further.
Yt-förstärkning är ett element som installeras mellan andra bergförstärkningar. Yt-förstärkning är konstruerade och installerade för att hålla tillbaka och minska bergutfall mellan dessa andra förstärknings installationer. En litteraturstudie har visat att det finns en mängd olika sätt att testa yt-förstärkningar. Olika testuppställningar förekommer, där olika specifikationer utav yt-förstärkningar är varierade. Inspännings metod, last på bultar samt olika sätt att inducera last har en stor spridning. Detta gäller för både statiska- och dynamiska lastförhållanden.   En vanlig typ utav yt-support är svetsat stålnät med en wire tjocklek på 8gagues. Dessa är ihop svetsade till ett rutnät med 4 in × 4 in mellan wirarna. Dessa är installerade i olika gruvor med antingen ett diamant- eller kvadratiskt bultmönster, förekommande avstånd mellan är 1,2 m till 1,5 m mellan bultarna. Nät som används utav LKAB har en wire-diameter på 5,5 mm och ett avstånd på 75 mm × 75 mm i deras svetsade stålrutnät. Näten hos LKAB är installerade med ett kvadratiskt rutmönster med bultaståndet 1,0 x 1,0 m och 3 rutors överlapp. Dessa är oftast installerade i områden där spänningarna är höga och seismisk aktivitet är sannolik. En skadekartläggning orsakad av seismisk aktivitet genomfördes i LKAB´s undergjordsgruva Kiirunavaara. Där framkom det att de installerade näten antingen slits sönder av stenblock eller att överlappen ger med sig.   En utvärdering utav LKAB´s nät har gjorts genom att testa dem i laborationsmiljö på Luleå Tekniska universitet. En test-ram byggdes, denna bultades fast i golvet för att vara styv. Mindre nätbitar om 1.2 x 1.2 m blev installerade i riggen och en last applicerade mellan fyra bultar in testserie AA. I test seria AB/AD påfördes lasten mellan två bultar, här undersöktes överlappats inverkan på nät-konfigurationen. I grund testet i serie AA uppnåddes en last om 41.4 kN och en deformering på 0.44 m innan första brottet noterades. Högst brottlast noterade när lastpåföringsplattans area ökade från 0.07 m2 till 0.5 m2, dvs 61.7 kN med endast en förskjutning på 0.26 m. Brottgränsområdet för testserie AA är mellan 32.4 kN – 61.7 kN där deformation är mellan 0.26 m -0.44 m, inom dessa områden varierades också lastpåföringsplattans material och lasten på bultarna som håller fast nätet. För testserie AB/AD är samma område 28.9 kN – 47.5 kN med deformationerna 0.19 m – 0.22 m. Grund testet med ett nät där lasten appliceras mellan två bultar har lägst brottområde, 28.9 kN vid 0.19 m. När lasten istället appliceras på ett överlapp ökar brottslasten till 47.5 kN vid en deformation om 0.22 m, styvheten i konstruktionen ökar också. Det är inte noterad någon större förändring om överlappen belastas med en dragande eller tryckande teknik. När mängden rutor reduceras till endast en ruta, observerades tendensen till separation av näten vid påföring utav last.   Genom hela testuppställningen har två brottorsaker noterats, drag brott i vajer och brott i närhet utav uppvärmda områden, svetsar. I testserie AA har endast den senare brottorsaken noterats, dessa förekommer uteslutande i närhet till bultbrickorna. För testserie AB/AD är båda brottorsakerna är noterade. De förekom både vid bultbrickorna och vid lastpåföringsplattan.   Testserie AA har problem med att fördela lasten efter ett första brott har uppsåt samt att svetsarna i nätet är den svagaste länken. High energy mesh och Roof mesh har påvisat goda egenskaper att lösa dessa två problem enligt tidigare genomförda tester. Någon utav dessa kan modifieras och testas med LKAB´s installationsmönster. För testserie AB/AD är de möjligt att härleda brott i överlappet till för hög lastkoncentration i de närmsta bultarna. En lastfördelning till närliggande bultar ses som en lösning, både seismiska nät och straps har dessa egenskaper. Dessa kan med fördel också testas installationsmönster för att utvärdera och förstå den komplexa installationen som uppstår.
APA, Harvard, Vancouver, ISO, and other styles
48

Alba, Jorge Luis. "Laboratory determination of resilient modulus of granular materials for flexible pavement design." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/21274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Khodja, Karim. "Laboratory investigations for the assessment of the mechanical behaviour of Teesside rocksalt." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

John, Catharine M. "Evaluation of point of care testing versus central laboratory testing in the critical care environment of a district general hospital." Thesis, City University London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography