Academic literature on the topic 'Laboratory modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Laboratory modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Laboratory modelling"
Bright, Frank. "Laboratory modelling of fluorescein interactions." Contact Lens and Anterior Eye 35 (December 2012): e49. http://dx.doi.org/10.1016/j.clae.2012.10.061.
Full textKopysov, S. P., A. K. Novikov, V. N. Rychkov, Yu A. Sagdeeva, and L. E. Tonkov. "Virtual laboratory for finite element modelling." Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, no. 4 (December 2010): 131–45. http://dx.doi.org/10.20537/vm100415.
Full textRodin, E. Y., and N. J. Taber. "Yeast growth modelling in a laboratory." Mathematical and Computer Modelling 10, no. 1 (1988): 67–73. http://dx.doi.org/10.1016/0895-7177(88)90123-9.
Full textSommeria, J., and H. Didelle. "Laboratory modelling of atmospheric dynamical processes." European Physical Journal Conferences 1 (2009): 101–11. http://dx.doi.org/10.1140/epjconf/e2009-00913-0.
Full textGlukhova, Marina V. "MODELLING OF EXPERIMENTAL TRICHINOSIS OF LABORATORY RODENTS." Vestnik of Ulyanovsk State Agricultural Academy, no. 4(36) (December 4, 2016): 83–85. http://dx.doi.org/10.18286/1816-4501-2016-4-83-85.
Full textKutsenko, Volodymyr, Gennadiy Ivanov, and Oleksandr Prodan. "Modelling of spondylolisthesis in small laboratory animals." ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, no. 4 (March 26, 2011): 63. http://dx.doi.org/10.15674/0030-59872011463-68.
Full textYam, Ke, William D. McCaffrey, Derek B. Ingham, and Alan D. Burns. "CFD modelling of selected laboratory turbidity currents." Journal of Hydraulic Research 49, no. 5 (September 26, 2011): 657–66. http://dx.doi.org/10.1080/00221686.2011.607303.
Full textSaxena, Priyam, Kyle Hoegh, Lev Khazanovich, and Alex Gotlif. "Laboratory and analytical modelling of misaligned dowel." International Journal of Pavement Engineering 13, no. 3 (June 2012): 209–15. http://dx.doi.org/10.1080/10298436.2011.596936.
Full textZhang, Rong, Marcel Zijlema, and Marcel J. F. Stive. "Laboratory validation of SWASH longshore current modelling." Coastal Engineering 142 (December 2018): 95–105. http://dx.doi.org/10.1016/j.coastaleng.2018.10.005.
Full textAshmore, Peter E. "Laboratory modelling of gravel braided stream morphology." Earth Surface Processes and Landforms 7, no. 3 (March 14, 2007): 201–25. http://dx.doi.org/10.1002/esp.3290070301.
Full textDissertations / Theses on the topic "Laboratory modelling"
Okwedadi, A. C. "Laboratory modelling of soil collapsibility." Thesis, Coventry University, 2015. http://curve.coventry.ac.uk/open/items/7a09337f-ac03-494f-bf57-fc320f7c0e7b/1.
Full textSandbach, Steven D. "Mathematical and laboratory modelling of ventilation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506639.
Full textKelley, Douglas H. "Rotating, hydromagnetic laboratory experiment modelling planetary cores." College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9100.
Full textThesis research directed by: Dept. of Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Franklin, James. "Laboratory modelling of breaking internal solitary waves." Thesis, University of Dundee, 2014. https://discovery.dundee.ac.uk/en/studentTheses/bf2741dd-7183-4aa5-817e-f5d533269c95.
Full textBentley, Mark Stephen. "Space weathering on mercury : laboratory studies and modelling." Thesis, Open University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413806.
Full textRevet, Guilhem. "Modelling magnetized accretion columns of young stars in the laboratory." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX046/document.
Full textThe work that is presented here has been performed in the frame of laboratory astrophysics, which consists in studying in the laboratory physical processes occurring in astrophysical objects. The main advantages in doing so are that the processes can be studied in a controlled way and that their full dynamics can be investigated. Here, we have been taking advantage of high-intensity laser facilities to perform our studies.In this manuscript, will be treated issues that include the interaction of a plasma expanding into vacuum with an ambient magnetic field. The presence of a magnetic field in a variety of astrophysical phenomena makes the inclusion of this component in the laboratory of great interest. We have used for our study a split Helmholtz coil, specifically designed in order to work in a laser environment, that allows for reaching a magnetic field strength up to 30 T.The astrophysical objects on which this study is focused are Young Stellar Objects (YSOs). Several steps of the star formation process are here investigated: (i) the generation of very long range, bright jets, (ii) the accretion dynamic involving, in the standard representation, matter falling down on the star in the shape of magnetically confined columns, and (iii) more exotic accretion channels, as the equatorial accretion that implies propagation of plasma perpendicularly to magnetic field lines.More precisely, in a first chapter, the jet formation dynamic will be discussed. A first part is dedicated to the jet formation mechanism in a poloidal magnetic field (aligned with respect to the main plasma expansion axis). A second part is dealing with the distortion of such jet formation via the interaction of the same expanding plasma with a misaligned magnetic field (i.e. presenting an angle with respect to the plasma expansion axis). Finally, a third part details the propagation of the plasma within a perpendicular magnetic field. This last part allows us to investigate exotic channels of matter accretion onto the stars, consisting of equatorial accretion from the disk to the star, through orthogonal magnetic field lines. The second chapter addresses the topic of the standard accretion dynamic via magnetically confined columns of matter, falling down onto the stellar surface. Using the same experimental setup as in the first chapter, the formed jet (in the case of the perfectly aligned magnetic field) is used to mimic the accretion column, and is launched onto a secondary target that acts as the stellar surface. The shock dynamic at the obstacle location is carefully studied and links with astrophysical accretion observations are built. A plasma cocoon, shaped around the impact region via the interaction with the magnetic field, is found to be similar to the one found in astrophysical simulations. This cocoon is an important element as a potential X-ray absorptive medium in order to explain observed discrepancies, between observed UV/Optical and X-ray emissions emitted from accreting stars
Harrison, Mark. "Laboratory and modelling studies of phenols relevant to the atmosphere." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/14010.
Full textFinotello, Alvise. "Tidal Channel Patterns: Field Investigations, Numerical Modelling and Laboratory Experiments." Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3425863.
Full textLe reti di canali meandriformi costituiscono una delle principali componenti dei sistemi mareali, e giocano un ruolo di fondamentale importanza nell’evoluzione eco-morfodinamica di questi ambienti. Tuttavia, solo un numero limitato di studi scientifici ne ha analizzato le configurazioni planimetriche, le caratteristiche morfometriche e l’evoluzione morfodinamica. Inoltre, l’evoluzione morfodinamica e i prodotti sedimentari dei meandri a marea sono spesso stati interpretati sulla base di teorie e modelli sviluppati per i loro omologhi fluviali, nonostante numerose differenze tra le due tipologie siano identificabili a priori. Nell’intento di comprendere più approfonditamente l’evoluzione morfodinamica dei meandri a marea, nel presente lavoro sono stati studiati 5 differenti argomenti: i) tassi di migrazione e dinamiche evolutiove dei meandri a marea; ii) stima e quantificazione delle differenze planimetriche esistenti tra meandri fluviali e tidali; iii) variazioni dell’idrodinamica dei meandri a marea in risposta all’alternanza delle fasi mareali, e influenza di queste variazioni sui prodotti sedimentari propri dei meandri a marea; iv) ruolo della bidirezionalità del flusso, delle asimmetrie mareali e dei tributari laterali; v) stima dell’influenza dell’ampiezza di marea, delle pendenze topografiche del bacino tidale e della configurazione iniziale della linea di costa sulla nascita ed evoluzione morfologica delle reti di canali a marea. Nelle suddette analisi é stato utilizzato un approccio di tipo multidisciplinare, combinando metodologie quali remote-sensing, osservazioni in situ, modellazione numerica ed esperimenti su modelli fisici. Le attività sono state condotte in parallelo con studi sedimentologici, così da fornire un quadro che fosse il più esaustivo possibile. I principali risultati ottenuti evidenziano che: I) se convenientemente normnalizzati con la larghezza del canale, i tassi di migrazione dei meandri a marea sono molto simili a quelli dei loro corrispettivi fluviali, inficiando così il paradigma che vede i meandri tidali come un’entità morfologica essenzialmente stabile; II) le differenze tra meandri tidali e fluvali non sono solo qualitative, e diverse sono le metriche che possono essere utilizzate per quantificare queste differenze; III) le asimmetrie tra le diverse fasi di marea sono significative, e influenzano i patterns deposizionali in modo determinante; IV) gli affluenti laterali possono influenzare fortemente l’evoluzione dei meandri, modificando i meccanismi locali di distrubuzione dei flussi e dei sedimenti; V) le reti di canali a marea evolvono in modo diverso in risposta a differenti ampiezze di marea, pendenze del bacino tidale e cambiamenti del livello relativo del medio mare, mentre la configurazione iniziale della linea di costa non sembra avere effetti significativi sull’evoluzione della rete stessa.
Migdalska, Anna Marta. "Modelling human genetic disorders in mice." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610341.
Full textNarasimhan, Balaji. "Electrokinetic barriers to contaminant transport, numerical modelling and laboratory-scale experimentation." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0003/MQ45103.pdf.
Full textBooks on the topic "Laboratory modelling"
Birgelis, Vitas. Mathematical modelling of a laboratory ball mill. Sudbury, Ont: Laurentian University, School of Engineering, 1986.
Find full text1938-, Rattray C., and Clark Robert G. 1944-, eds. The Unified computation laboratory: Modelling, specifications, and tools. Oxford: Clarendon Press, 1992.
Find full text1943-, Eberwein Wolf-Dieter, ed. Transformation processes in Eastern Europe: Perspectives from the modelling laboratory. Frankfurt am Main: P. Lang, 1992.
Find full textFerrari, Alessio, and Lyesse Laloui, eds. Advances in Laboratory Testing and Modelling of Soils and Shales (ATMSS). Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52773-4.
Full textHope, Christopher Keith. Biological removal of manganese from groundwater: Laboratory modelling using Leptothrix discophora. Birmingham: University of Birmingham, 1998.
Find full textRichter, O. Environmental fate modelling of pesticides: From the laboratory to the field scale. Weinheim: VCH, 1996.
Find full textSchetzen, Martin. Discrete systems laboratory using MATLAB. Australia: Brooks/Cole, 2000.
Find full textNordic Workshop on Integrated Energy and Environmental Modelling (1990 Forsøgsanlıg Risø). Nordic Workshop on Integrated Energy and Environmental Modelling, held at Risø National Laboratory, 15-16 February 1990. København: Nordisk Ministeråd, 1990.
Find full textWorkshop on Mesoscale Modelling, Turbulence and Diffusion (1987 Risø National Laboratory). Proceedings of Workshop on Mesoscale Modelling, Turbulence, and Diffusion at Risø National Laboratory, Denmark, 12-15 May 1987. Edited by Pearce R. P. 1924- and Atmospheric Sciences Laboratory (U.S.). [Roskilde, Denmark: Risø National Laboratory, 1987.
Find full textG, Seybold Paul, and Cheng Chao-Kun, eds. Cellular automata modeling of chemical systems: A textbook and laboratory manual. Dordrecht: Springer, 2005.
Find full textBook chapters on the topic "Laboratory modelling"
Sazhok, Mykola. "Speech Modelling Virtual Laboratory." In Speech Processing, Recognition and Artificial Neural Networks, 229–32. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0845-0_12.
Full textBanning, Edward B. "Probability, Modelling, and Statistical Inference." In The Archaeologist's Laboratory, 129–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47992-3_8.
Full textPallavicini, R. "Stellar Flares: Observations and Modelling." In The Sun: A Laboratory for Astrophysics, 509–33. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2765-3_26.
Full textShen, Baotang, Xizhen Sun, and Baoliang Zhang. "Laboratory Studies of 2D and 3D Rock Fracture Propagation." In Modelling Rock Fracturing Processes, 25–60. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35525-8_3.
Full textZhuang, Li, Sunggyu Jung, Melvin Diaz, and Kwang Yeom Kim. "Laboratory Investigations on the Hydraulic Fracturing of Granite Cores." In Modelling Rock Fracturing Processes, 61–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35525-8_4.
Full textYin, Zhen-Yu, Pierre-Yves Hicher, and Yin-Fu Jin. "Introduction of Laboratory Tests for Soils." In Practice of Constitutive Modelling for Saturated Soils, 61–81. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6307-2_3.
Full textLane-Serff, G. F., P. F. Linden, D. J. Parker, and D. A. Smeed. "Laboratory Modelling of Natural Ventilation Via Chimneys." In Architecture and Urban Space, 505–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-0778-7_75.
Full textGalland, Olivier, Eoghan Holohan, Benjamin van Wyk de Vries, and Steffi Burchardt. "Laboratory Modelling of Volcano Plumbing Systems: A Review." In Physical Geology of Shallow Magmatic Systems, 147–214. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-14084-1_9.
Full textChernov, Vladimir, and Alexander Ezersky. "Laboratory Modelling and Acoustic Diagnostics of Hydrodynamical Processes." In Nonlinear Waves and Pattern Dynamics, 221–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78193-8_13.
Full textGalland, Olivier, Eoghan Holohan, Benjamin van Wyk de Vries, and Steffi Burchardt. "Laboratory Modelling of Volcano Plumbing Systems: A Review." In Physical Geology of Shallow Magmatic Systems, 147–214. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/11157_2015_9.
Full textConference papers on the topic "Laboratory modelling"
Honc, Daniel, and Frantisek Dusek. "Novel Multivariable Laboratory Plant." In 26th Conference on Modelling and Simulation. ECMS, 2012. http://dx.doi.org/10.7148/2012-0468-0473.
Full textRen, Shuo, and Frederic D. McKenzie. "Collaborative Virtual Environment For Engineering Laboratory." In 29th Conference on Modelling and Simulation. ECMS, 2015. http://dx.doi.org/10.7148/2015-0157.
Full textJayaratne, Ravindra, Edgar Mendoza, Rodolfo Silva, and Francisco Gutiérrez. "Laboratory Modelling of Scour on Seawalls." In Coastal Structures and Solutions to Coastal Disasters Joint Conference 2015. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480304.084.
Full textChalupa, Petr, Martin Maly, and Jakub Novak. "Nonlinear Simulink Model Of Magnetic Levitation Laboratory Plant." In 30th Conference on Modelling and Simulation. ECMS, 2016. http://dx.doi.org/10.7148/2016-0293.
Full text"Characterising mineral slurry dewatering through laboratory centrifugation." In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand, 2013. http://dx.doi.org/10.36334/modsim.2013.a11.berres.
Full textChalupa, Petr, Jakub Novak, and Martin Maly. "Modelling And Model Predictive Control Of Magnetic Levitation Laboratory Plant." In 31st Conference on Modelling and Simulation. ECMS, 2017. http://dx.doi.org/10.7148/2017-0367.
Full text"Applying Conformance Checking on Virtual Laboratory Experiments." In the 21st International Conference on Modelling and Applied Simulation. CAL-TEK srl, 2022. http://dx.doi.org/10.46354/i3m.2022.mas.002.
Full text"Combined ERT and GPR for Laboratory Modelling Experiment." In The Second Eurasian RISK-2020 Conference and Symposium. AIJR Publisher, 2020. http://dx.doi.org/10.21467/abstracts.93.66.
Full textUpadhyay, Vineet K., Yogang Singh, and V. G. Idichandy. "Modelling and control of an underwater laboratory glider." In 2015 IEEE Underwater Technology (UT). IEEE, 2015. http://dx.doi.org/10.1109/ut.2015.7108311.
Full textBedrikovetsky, P. G., R. P. Lopes, F. F. Rosario, M. C. Bezerra, and E. A. Lima. "Oilfield Scaling - Part I: Mathematical and Laboratory Modelling." In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 2003. http://dx.doi.org/10.2118/81127-ms.
Full textReports on the topic "Laboratory modelling"
Munhuweyi, Ngonidzashe Portia, Zita Ekeocha, Stephen Robert Byrn, and Kari L. Clase. Resource Modelling for the QC Laboratory at XYZ Pharmaceuticals in Southern Africa. Purdue University, November 2021. http://dx.doi.org/10.5703/1288284317431.
Full textComolli, A. G., E. S. Johanson, L. K. Lee, G. A. Popper, and T. O. Smith. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process: Laboratory scale studies modelling and technical assessment. Final report, [October 1, 1988--June 30, 1993]. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10132028.
Full textShamonia, Volodymyr H., Olena V. Semenikhina, Volodymyr V. Proshkin, Olha V. Lebid, Serhii Ya Kharchenko, and Oksana S. Lytvyn. Using the Proteus virtual environment to train future IT professionals. [б. в.], February 2020. http://dx.doi.org/10.31812/123456789/3760.
Full textWaganet, R. J., John Duxbury, Uri Mingelgrin, John Hutson, and Zev Gerstl. Consequences of Nonequilibrium Pesticide Fate Processes on Probability of Leaching from Agricultural Lands. United States Department of Agriculture, January 1994. http://dx.doi.org/10.32747/1994.7568769.bard.
Full textSpencer, Khalil J., Jung Ho Rim, Donivan R. Porterfield, Robert Clifford Roback, Hakim Boukhalfa, and Floyd E. Stanley. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1188192.
Full text