Academic literature on the topic 'Lab on a chip'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lab on a chip.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lab on a chip"

1

Holding, Cathy. "Lab on a chip." Genome Biology 4 (2004): spotlight—20040316–01. http://dx.doi.org/10.1186/gb-spotlight-20040316-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drese, Klaus S. "„Lab on a Chip“." Der Internist 60, no. 4 (November 30, 2018): 339–44. http://dx.doi.org/10.1007/s00108-018-0526-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Daw, Rosamund, and Joshua Finkelstein. "Lab on a chip." Nature 442, no. 7101 (July 2006): 367. http://dx.doi.org/10.1038/442367a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drese, Klaus S. "„Lab on a Chip“." Wiener klinisches Magazin 22, no. 4 (April 9, 2019): 172–77. http://dx.doi.org/10.1007/s00740-019-0286-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Friedrich, M. J. "Lab-on-a-Chip." JAMA 306, no. 11 (September 21, 2011): 1191. http://dx.doi.org/10.1001/jama.2011.1308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohammed, Mazher Iqbal. "A lab-on-a-chip that takes the chip out of the lab." Nature 605, no. 7910 (May 18, 2022): 429–30. http://dx.doi.org/10.1038/d41586-022-01299-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laurell, Thomas, and Jörg P. Kutter. "Lab on a Chip: Scandinavia." Lab on a Chip 12, no. 22 (2012): 4601. http://dx.doi.org/10.1039/c2lc90114e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Graham, Eleanor A. M. "Lab-on-a-Chip Technology." Forensic Science, Medicine, and Pathology 1, no. 3 (2005): 221–24. http://dx.doi.org/10.1385/fsmp:1:3:221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Herrmann, Sigrun, and Winfried Vonau. "Online-Analyse mit Lab-on-Chip-Systemen (Online Analysis with Lab-on-Chip Systems)." tm - Technisches Messen 71, no. 11-2004 (November 2004): 613–18. http://dx.doi.org/10.1524/teme.71.11.613.51380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Miner, Gary. "Sensicore's Lab-on-Chip Water Profiler Automates Lab Functions." Journal - American Water Works Association 98, no. 7 (July 2006): 46–48. http://dx.doi.org/10.1002/j.1551-8833.2006.tb07705.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lab on a chip"

1

Moldenhauer, Lennart Jakob [Verfasser]. "Dispersion Engineered Photonic Biosensor: From a Chip-for-the-Lab to a Lab-on-Chip / Lennart Jakob Moldenhauer." München : Verlag Dr. Hut, 2019. http://d-nb.info/1186453850/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drysdale, James Alexander. "Development of lab-on-a-chip technology." Thesis, Bangor University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Black, James Aaron. "Compound droplets for lab-on-a-chip." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54947.

Full text
Abstract:
The development of a novel method of droplet levitation to be employed in lab-on-a-chip (LOC) applications relies upon the mechanism of thermocapillary convection (due to the temperature dependence of surface tension) to drive a layer of lubricating gas between droplet and substrate. The fact that most droplets of interest in LOC applications are aqueous in nature, coupled with the fact that success in effecting thermocapillary transport in aqueous solutions has been limited, has led to the development of a technique for the controlled encapsulation of water droplets within a shell of inert silicone oil. These droplets can then be transported, virtually frictionlessly, resulting in ease of transport due to the lack of friction as well as improvements in sample cross-contamination prevention for multiple-use chips. Previous reports suggest that levitation of spherical O(nL)-volume droplets requires squeezing to increase the apparent contact area over which the pressure in the lubricating layer can act allowing sufficient opposition to gravity. This research explores thermocapillary levitation and translation of O(nL)-volume single-phase oil droplets; generation, capture, levitation, and translation of O(nL)-volume oil-encapsulated water droplets to demonstrate the benefits and applicability to LOC operations.
APA, Harvard, Vancouver, ISO, and other styles
4

Lattanzio, Silvia Maria. "LAB on CHIP: capacitive stimulation of cells." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3424660.

Full text
Abstract:
The main target of the LAB on CHIP phD project, funded by Fondazione Cariparo, was to develop a device to allow the handy production of CHO cell clones in order to built recombinant proteins for therapeutic targets. In particular, a major aim is to reduce time and costs associated with clones manufacturing. Cultivated mammalian cells have become the dominant system for the production of recombinant proteins for clinical applications, because of their capacity for proper protein folding, assembly and post-translational modification. The quality and efficacy of a protein can be superior when expressed in mammalian cells versus other hosts such as bacteria, plants and yeast. Today more than 60 % of all recombinant protein pharmaceuticals are produced in mammalian cells. Expression vectors for recombinant cell line generation generally use a strong viral or cellular promoter/enhancer to drive the expression of the recombinant gene. But non-viral gene transfer remains the preferred approach to generate stable cell lines for manufacturing purposes: calcium phosphate transfection, electroporation, lipofection. Transfection is a complex process, and in order to be successful all steps involved must work efficiently. The device developed is based on the physical phenomenon called electroporation, that is the formation of temporary pores in the plasmatic membrane upon application of electric fields. As the biological world is intrinsically variable, common approaches for improving electrotransfection rely on time consuming empirical attempts. It is therefore important to develop new methods enabling a fine control of all critical parameters involved to identify causes of failure and to improve efficiency. On-chip electroporation through capacitive currents can be such a method. To directly assess the formation of pores in the cell membrane, we performed patch-clamp experiments during on-chip electroporation. Thus, most promising protocols were selected and assessed for their electrotransfection efficiency. Moreover, patch clamp experiments allowed to study the dynamics of pores formation and resealing. Regarding the develop of the device, the biocompatibility of titanium dioxide, selected as dielectric material, was tested. The inertness against cellular environment and the state of cell culture were considered. Cell cultures showed healthy state and normal development, good adhesion and normal replication time. No chemical reactions that can damage the culture were observed. The chemical inertness was considered in the reverse direction too. Metabolic products of cell culture did not lead to chemical corrosion of the dielectric surface. So, the patch-clamp on-chip electroporation recordings allowed to select the promising protocol that was tested on CHO cultures. The prototype proposed demonstrated electrotransfection through capacitive coupling between cell and chip. The electroporation efficiency obtained is around 30%. Moreover, the selectivity of the device was demonstrated, and its applicability both in electrotransfection and electroporation for staining application. Collateral results were obtained concerning the formation of pore on attached and free membrane and the possibility of study pore dynamics
Scopo principale del progetto di Dottorato "LAB on CHIP" finanziato dalla Fondazione Cariparo è stato lo sviluppo di un dispositivo che agevoli la creazione di cloni di cellule CHO per la produzione di proteine a scopo terapeutico. In particolare il fine ultimo è quello di ridurne tempi e costi associati alla produzione. Le cellule di mammifero in coltura sono ormai il sistema più diffuso per la produzione di proteine per applicazioni cliniche. La qualità e l'efficacia di una proteina possono essere superiore se essa è espressa in cellule di mammifero rispetto ad altri organismi, quali batteri, piante e lieviti. Ad oggi più del 60 % di tutte le proteine ricombinanti per applicazioni farmaceutiche è prodotto in cellule di mammifero. Vettori di espressione per la creazione di linee cellulari stabili da DNA ricombinante utilizzano vettori virali per indurre l'espressione del gene. Ma la transfezione senza l'ausilio di virus rimane l' approccio prediletto per la generazione di linee stabili per questi scopi. La transfezione è un processo complesso e, affinchè avvenga con successo, tutti i sottoprocessi coinvolti devono svolgersi efficientemente. Il dispositivo proposto si basa sul fenomeno fisico chiamato elettroporazione, che non è altro che la formazione di pori temporanei nella membrana plasmatica a seguito dell'applicazione di opportuni campi elettrici. I comuni approcci utilizzati per migliorare la transfezione tramite elettroporazione richiedono tempi lunghi e possono essere inefficaci. E' importante poter sviluppare metodi nuovi che permettano un controllo di tutti i parametri critici coinvolti in modo da poterne identificare le cause in caso di fallimento e dunque migliorare l'efficienza. L'elettroporazione su chip utilizzzando correnti capacitive può essere un valido approccio. Per poter rilevare la formazione di pori, sono stati fatti esperimenti di patch-clamp su chip durante l'elettroporazione. In tal modo sono stati selezionati i protocolli più promettenti. Per quanto riguarda lo sviluppo del dispositivo, ne è stata verificata la biocompatibilità. Si è valutato lo stato delle colture cellulari che hanno mostrato normali sviluppo, adesione e tempo di replicazione. Non sono state rilevate reazioni chimiche tra il mezzo di coltura e il diossido di titanio. Non si sono inoltre rilevati problemi di corrosione o danneggiamento dell'ossido a causa di prodotti metabolici della cellula. Gli esperimenti di patch-clamp hanno permesso di selezionare un protocollo che è stato poi testato sulle cellule in coltura. Il prototipo sviluppato ha dimostrato l'elettroporazione di cellule CHO in coltura, ottenendo un'efficienza media del 30 %. E' stata inoltre dimostrata la selettività di tale dispositivo e la sua applicabilità sia per la transfezione che per l'introduzione nella cellula di marcatori. Risultati "collaterali" ottenuti riguardano la dimostrazione della formazione di pori temporanei sia sulla membrana adesa che su quella libera e la possibilità di studiare la dinamica dei pori
APA, Harvard, Vancouver, ISO, and other styles
5

Kilpijärvi, J. (Joni). "LTCC packaging for Lab-on-a-chip application." Master's thesis, University of Oulu, 2015. http://jultika.oulu.fi/Record/nbnfioulu-201511052107.

Full text
Abstract:
LTCC -pakkaus Lab-on-a-chip -sovellukseen. Tiivistelmä. Tässä työssä suunniteltiin, valmistettiin ja testattiin uusi pakkaustekniikka ”Lab-on-a-chip” (LOC) -sovellukseen. Pakkaus tehtiin pii-mikrosirulle, jolla voidaan mitata solujen kiinnittymistä sirun pintaan solujen elinkelpoisuuden indikaattorina. Luotettavuustestaukset tehtiin daisy-chain -resistanssimittauksilla solunkasvatusolosuhteissa. Lisäksi työssä selvitettiin LTCC- ja ”Lab-on-a-chip” -teknologioiden perusteet teoreettiselta pohjalta. Mikrosirun pakkauksessa käytettiin joustavaa LTCC-teknologiaa. Sähköisiin kontakteihin ja niiden suojauksiin käytettiin sekä johtavia että eristäviä epoksi-liimoja. LOC-sovelluksiin on tärkeää kehittää uusia pakkausmenetelmiä jotta näiden laitteiden kaikki ominaisuudet saadaan toimimaan luotettavasti. Pakkaus testattiin samoissa olosuhteissa missä sitä tullaan käyttämään ja pakkaus kesti kaikki nämä haasteet. Lisäksi esitetty valmistusprosessi on sellainen, että sitä voidaan käyttää myös muihin ”Lab-on-a-chip” -sovelluksiin.Abstract. This work presents design, manufacturing and testing of new packaging method for Lab-on-a-chip (LOC) application. Packaging was made for silicon microchip which can measure cell adhesion on chips surface as indication of cell viability. Reliability testing was done with daisy-chain resistance measurement in real conditions. Moreover basic theory of LTCC and Lab-on-a-chip technology is presented. Resilient LTCC technology was used for packaging material and conductive/insulating epoxies were applied for electrical contacts and barriers against the environment. It is fundamentally important to develop new packaging methods for LOC applications, so all the properties can be utilized reliably. Packaging was tested under the cell growth conditions and the package showed to withstand all these challenges. Moreover the presented packaging method is possible to use also in other Lab-on-a-chip applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Fratzl, Mario. "Applications des micro-aimants aux Lab-on-Chip." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT123.

Full text
Abstract:
Les fonctions magnétiques sont aujourd'hui omniprésentes dans les systèmes Lab-on-Chip. Une découverte surprenante est que tandis que la recherche Lab-on-Chip se concentre sur la miniaturisation, les fonctions magnétiques sur puce sont généralement assurées par des aimants centimétriques. Comparés à ces aimants centimétriques, les champs générés par les micro-aimants bénéficient de lois d'échelle conduisant à des gradients de champ considérablement amplifiés et donc à des forces magnétiques proportionnellement accrues. Le but de cette thèse était de démontrer le potentiel des Lab-on-Chips à base de micro-aimants. Les micro-aimants haute performance ont été intégrés avec succès dans les matériaux Lab-on-Chip les plus pertinents, y compris le polymère, le silicium et le papier. Nous avons étudié des fonctions sur puce basées sur l'interaction de structures mécaniques et de micro-aimants actionnés par des gradients magnétiques, des forces et des couples. Enfin, nous avons simulé, fabriqué et testé une variété de nouvelles puces couvrant un large champ d'applications telles que les études cellulaires-mécaniques, la magnétophorèse, la manipulation de fluides sur puce et le diagnostic auprès du patient. Nous concluons que les micro-aimants intégrés présentent un grand potentiel pour les applications de laboratoire sur puce et devraient être plus largement exploités
Magnetic functions are nowadays ubiquitous in Lab-on-Chip systems. A surprising finding is that while Lab-on-Chip research focalizes on miniaturization, on-chip magnetic functions are usually driven by centimetric magnets. Compared to those centimetric magnets, fields generated by micro-magnets benefit from scaling laws leading to dramatically increased field gradients and thus proportionally improved magnetic forces. The aim of this thesis was to demonstrate the potential of micro-magnet based Lab-on-Chips. High-performance micro-magnets were successfully integrated in the most relevant Lab-on-Chip materials including polymer, silicon and paper. We studied on-chip functions based on the interaction of mechanic structures and micro-magnets actuated by magnetic gradients, forces and torque. Finally, we simulated, fabricated and tested a variety of new chips covering a large field of applications such as cell-mechanics studies, magnetophoresis, on-chip fluid handling and Point-of-Care diagnostics. We conclude that integrated micro-magnets show great potential for lab-on-chip applications and should be more widely exploited
APA, Harvard, Vancouver, ISO, and other styles
7

HONG, CHIEN-CHONG. "ON-CHIP PASSIVE FLUIDIC MICROMIXER AND PRESSURE GENERATOR FOR DISPOSABLE LAB-ON-A-CHIPS." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1100898243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hong, Chien-Chong. "On-chip passive fluidic micromixer and pressure generator for disposable Lab-on-a Chips." Cincinnati, Ohio : University of Cincinnati, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1100898243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Woide, Daniela. "Modular submicroliter lab-on-a-chip in forensic sciences." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-119425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Benmouhoub, Chafia. "Lab-on-chip opto-électronique sur Niobate de Lithium." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2068.

Full text
Abstract:
Les travaux de cette thèse s’inscrivent dans un projet de développement d’un Lab-On-Chip destiné à la biodétection. Les plateformes conçues sont basées sur des circuits optiques intégrés sur niobate de lithium. La particularité de ces circuits est qu’ils intègrent le phénomène d’interférence à la fonction de guidage des ondes lumineuses.La fonction d’interférométrie est assurée grâce à une cavité Fabry-Pérot intégrée à un guide d’onde rectiligne et à une structure Mach-Zehnder. Lorsque la surface des supports de ces circuits est bio-fonctionnalisée, ces microsystèmes deviennent sensibles à des molécules cibles. Cette sensibilité se traduit par une variation de l’indice effectifde l’onde en propagation par couplage évanescent modifiant ainsi les conditions de résonance du résonateur Fabry-Pérot. Le vrai challenge de ce travail réside essentiellement dans la bio-fonctionnalisation du niobate de lithium.A notre connaissance, ce matériau favori en optique guidée grâce à ses propriétés physiques exceptionnelles n’a été que rarement sujet à des modifications chimiques de surface. L’implantation réussie de groupements fonctionnels amines à la surface de ce matériau a permis de générer un lien covalent entre ce support et les groupements fonctionnels des molécules sondes. En raison de la grande affinité entre l’avidine et la biotine, ce couple a servi de modèle pour la mise au point de ces bio-capteurs. Un suivi en temps réel des interactions à la surface était rendu possible par une expérimentation sur l’un des bio-capteurs
The work of this thesis is part of a project of a Lab-On-Chip development intended for biosensing. The de-signed platforms are based on integrated optical circuits on lithium niobate. The peculiarity of these circuits isthat they incorporate the phenomenon of interference with the function of guiding light waves. The interferometricfunction is provided by a Fabry-Perot cavity embedded in a straight waveguide and a Mach-Zehnder structure.When the surface of these circuits substrates is biofunctionalized, these microsystems become sensitive to targetmolecules. This sensitivity results in a variation of the effective index of the propagation wave by evanescent cou-pling and modifying the resonance conditions of the Fabry-Perot resonator. The real challenge of this work liesin the biofunctionalization of lithium niobate. To our knowledge, this guided optics favorite material thanks toits exceptional physical properties has been hitherto rarely subject to chemical surface modifications. Successfulimplementation of amino functions on the surface of this material has generating a covalent bond between thissubstrate and the functional groups of the probe molecules. Due to the high affinity between avidin and biotin, thiscouple served as a model for the development of biosensors. A real-time monitoring of surface interactions wasmade possible by experimentation on one of biosensors
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lab on a chip"

1

Lab on a chip technology. Norfolk, UK: Caister Academic Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ghafar-Zadeh, Ebrahim, and Mohamad Sawan. CMOS Capacitive Sensors for Lab-on-Chip Applications. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3727-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Inc, Technical Insights, ed. Lab-on-a-chip: A revolution in instrumentation. Fort Lee, NJ: Technical Insights, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oliver, Geschke, Klank Henning, and Tellemann Pieter, eds. Microsystem engineering of lab-on-a-chip devices. Weinheim: Wiley-VCH, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Integrated CMOS Polymerase Chain Reaction Lab-on-chip. [New York, N.Y.?]: [publisher not identified], 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oliver, Geschke, Klank Henning, and Telleman Pieter, eds. Microsystem engineering of lab-on-a-chip devices. 2nd ed. Weinheim: Wiley-VCH, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wael, Badawy, ed. Lab-on-a-chip: Techniques, circuits, and biomedical applications. Boston: Artech House, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

John Wiley & Sons. Technical Insights., ed. Lab-on-a-chip: The revolution in portable instrumentation. 3rd ed. New York: J. Wiley, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

John Wiley & Sons. Technical Insights., ed. Lab-on-a-chip: The revolution in portable instrumentation. 2nd ed. Englewood, NJ: Wiley, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Castillo-León, Jaime, and Winnie E. Svendsen, eds. Lab-on-a-Chip Devices and Micro-Total Analysis Systems. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08687-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lab on a chip"

1

Vergara-Irigaray, Nuria, Michèle Riesen, Gianluca Piazza, Lawrence F. Bronk, Wouter H. P. Driessen, Julianna K. Edwards, Wadih Arap, et al. "Lab-on-a-Chip." In Encyclopedia of Nanotechnology, 1181. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puget, P. "Lab on a Chip." In Nanoscience, 999–1016. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-88633-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Birch, Hayley. "Lab-on-a-chip." In 50 Schlüsselideen Chemie, 104–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48510-1_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Köhler, Michael. "PCR Lab-on-Chip Devices." In Encyclopedia of Microfluidics and Nanofluidics, 2684–92. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yoon, Jeong-Yeol. "Lab-on-a-Chip Biosensors." In Introduction to Biosensors, 257–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27413-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Köhler, Michael. "PCR Lab-on-Chip Devices." In Encyclopedia of Microfluidics and Nanofluidics, 1–11. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1193-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vergara-Irigaray, Nuria, Michèle Riesen, Gianluca Piazza, Lawrence F. Bronk, Wouter H. P. Driessen, Julianna K. Edwards, Wadih Arap, et al. "Lab-on-a-Chip (LOC)." In Encyclopedia of Nanotechnology, 1181. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yoon, Jeong-Yeol. "Lab-on-a-Chip Biosensors." In Introduction to Biosensors, 225–56. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-6022-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, Stuart. "AC Dielectrophoresis Lab-on-Chip Devices." In Encyclopedia of Microfluidics and Nanofluidics, 1–10. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sterling, James D., and Ali Nadim. "Droplet-Based Lab-on-Chip Devices." In Encyclopedia of Microfluidics and Nanofluidics, 635–41. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_357.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lab on a chip"

1

Fouillet, Y., D. Jary, A. G. Brachet, J. Berthier, R. Blervaque, L. Davous, J. M. Roux, J. L. Achard, and C. Peponnet. "EWOD Digital Microfluidics for Lab on a Chip." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96020.

Full text
Abstract:
This paper presents a brief overview of Electro Wetting On Dielectric (EWOD) microdroplet actuation technology fluidic behaviour. EWOD specifics are compared with other digital microfluidics actuation modes. In particular ease of integration with complex protocols is emphasized. After reviewing the electro-wetting principle and various Electro-Hydro-Dynamic (EHD) phenomena; we compare various EWOD configurations for Lab on a Chip. Two fluid functionalities will be detailed: on-chip droplet dispensing, and mixing. We cover chip architecture and the benefits of organizing these chips as fludic microprocessors. Finally, real time PCR (Polymerase Chain Reaction) within a 64 nl droplet is described as an illustration of a biological application using EWOD.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Dongqing. "Electrokinetic Microfluidics and Biomedical Lab-on-a-Chip Devices." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58305.

Full text
Abstract:
Lab-on-a-chip devices are miniaturized bio-medical laboratories on a small glass/plastic plate. These lab chips can duplicate the specialized functions of their room-sized counterparts such as clinical diagnoses and tests. The key microfluidic functions required in various lab-on-a-chip devices include pumping and mixing liquids, controlling bio-reactions, dispensing samples and reagents, and separating molecules and cells/particles. Using electrokinetic microfluidics to realize these functions can make the devices fully automatic, independent of external support (e.g., tubing, valves and pump), and truly portable. Understanding, modeling and controlling of various electrokinetic microfluidic phenomena and the electrokinetic microfluidic processes are essential to systematic design and operation control of the lab-on-a-chip systems. This presentation will explain the principles of these electrokinetic microfluidic processes and how they are used in lab-on-a-chip devices. Some lab-on-a-chip devices such as real-time PCR chip, immunoassay chip and flow cytometer chip developed in Dr. Li’s lab will be introduced.
APA, Harvard, Vancouver, ISO, and other styles
3

Craston, D. H. "The lab on a chip." In IEE Colloquium on Microsensors in Medicine. IEE, 1997. http://dx.doi.org/10.1049/ic:19971060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Andersson, Helene, and Albert van den Berg. "From lab-on-a-chip to lab-in-a-cell." In MOEMS-MEMS Micro & Nanofabrication, edited by Ian Papautsky and Isabelle Chartier. SPIE, 2005. http://dx.doi.org/10.1117/12.601553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Miccio, L., P. Memmolo, F. Merola, V. Bianco, M. Paturzo, S. Fusco, P. A. Netti, and P. Ferraro. "Lab on Chip 3D Holographic Imaging." In Imaging Systems and Applications. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/isa.2014.itu3c.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soe, Aung K., Michael Fielding, and Saeid Nahavandi. "Lab-on-a-chip turns soft." In ASONAM '13: Advances in Social Networks Analysis and Mining 2013. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2492517.2500230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

BARLOCCHI, G., P. CORONA, U. MASTROMATTEO, and F. F. VILLA. "SILICON MICROMACHINING FOR LAB ON CHIP." In Proceedings of the 5th Italian Conference — Extended to Mediterranean Countries. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792013_0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aina, R., G. Barlocchi, M. Cattaneo, P. Corona, A. Fischetti, M. Marchi, U. Mastromatteo, et al. "LAB-ON-CHIP INTEGRATED GENETIC ANALYSIS." In Proceedings of the 11th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793393_0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Advances in Lab-on-Chip Technologies." In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2019. http://dx.doi.org/10.1109/iwasi.2019.8791361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chandrasekaran, Arvind, and Muthukumaran Packirisamy. "Integrated optical microfluidic lab-on-a-chip." In Photonics North 2008, edited by Réal Vallée, Michel Piché, Peter Mascher, Pavel Cheben, Daniel Côté, Sophie LaRochelle, Henry P. Schriemer, Jacques Albert, and Tsuneyuki Ozaki. SPIE, 2008. http://dx.doi.org/10.1117/12.807550.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lab on a chip"

1

Pekas, Nikola Slobodan. Magnetic Tools for Lab-on-a-chip Technologies. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/892722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

DE BOER, MAARTEN P., NORMAN F. SMITH, MICHAEL B. SINCLAIR, MICHAEL S. BAKER, and FERNANDO BITSIE. Microdiagnostic Lab on a Chip - LDRD Final Report. Office of Scientific and Technical Information (OSTI), March 2002. http://dx.doi.org/10.2172/793223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weinberg, Irving. Semi-automated lab-on-a-chip for dispensing GA-68 radiotracers. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1122933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Love, L. J. A Magnetocaloric Pump for Lab-On-Chip Technology: Phase I Report. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/885708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Love, LJL. A Magnetocaloric Pump for Lab-On-A-Chip Technology: Phase I Report. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/885684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gertsch, Jana C., Imee G. Arcibal, Charles S. Henry, and Donald M. Cropek. Lab-on-a-Chip Sensor for Monitoring Perchlorate in Ground and Surface Water. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada559180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rainina, Evguenia I. Micro-fluidic (Lab-on the- Chip) PCR Array Cartridge for Biological Screening in a Hand Held Device: FInal Report for CRADA no 264. PNNL-T2-258-RU with CombiMatrix Corp. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1008257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, John G., and Arthus J. Stewart. SERDP SEED Project (CS-1161) Final Report: Feasibility Study: Lab-on-a-chip and In Situ Bioassay Techniques for Rapid Resolution of Ion Signatures for Disturbances of Biological Significance in Streams. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada385396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horowitz, Mark, Don Stark, Zain Asgar, Omid Azizi, Rehan Hameed, Wajahat Qadeer, Ofer Shacham, and Megan Wachs. Chip Generators Study. Fort Belvoir, VA: Defense Technical Information Center, December 2008. http://dx.doi.org/10.21236/ada505937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

VIANCO, PAUL T., and STEVEN N. BURCHETT. Solder Joint Reliability Predictions for Leadless Chip Resistors, Chip Capacitors, and Ferrite Chip Inductors Using the SRS Software. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/783992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography