Academic literature on the topic 'La fonction somme des chiffres'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'La fonction somme des chiffres.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "La fonction somme des chiffres"
Mauduit, Christian, and Joël Rivat. "La somme des chiffres des carrés." Acta Mathematica 203, no. 1 (2009): 107–48. http://dx.doi.org/10.1007/s11511-009-0040-0.
Full textde la Bretèche, Régis, Thomas Stoll, and Gérald Tenenbaum. "Somme des chiffres et changement de base." Annales de l'Institut Fourier 69, no. 6 (2019): 2507–18. http://dx.doi.org/10.5802/aif.3300.
Full textFouvry, E., and C. Mauduit. "Méthodes de crible et fonctions sommes des chiffres." Acta Arithmetica 77, no. 4 (1996): 339–51. http://dx.doi.org/10.4064/aa-77-4-339-351.
Full textFouvry, E., and C. Mauduit. "Sur les entiers dont la somme des chiffres est moyenne." Journal of Number Theory 114, no. 1 (September 2005): 135–52. http://dx.doi.org/10.1016/j.jnt.2005.03.007.
Full textBonneuil, Noël. "Cohérence comptable des tableaux de la SGF : Recensements de 1851 à 1906, mouvements de la population de 1801 à 1906." Population Vol. 44, no. 4 (April 1, 1989): 809–38. http://dx.doi.org/10.3917/popu.p1989.44n4-5.0838.
Full textMauduit, Christian, and Joël Rivat. "Sur un problème de Gelfond : la somme des chiffres des nombres premiers." Annals of Mathematics 171, no. 3 (April 25, 2010): 1591–646. http://dx.doi.org/10.4007/annals.2010.171.1591.
Full textFouvry, E. "Une Remarque sur une Formule Sommatoire liée à la Somme des Chiffres." Monatshefte für Mathematik 147, no. 2 (January 18, 2006): 117–35. http://dx.doi.org/10.1007/s00605-005-0341-0.
Full textRuiz, Emilien. "Légitimer par les nombres, à propos d’une autre fonction des outils quantitatifs." Statistique et société 6, no. 1 (2018): 21–25. https://doi.org/10.3406/staso.2018.1060.
Full textRiou, Charles, and Roger Pouget. "Nouvelles propositions pour évaluer la vitesse de débourrement des bourgeons de la vigne et modélisation de la date de débourrement." OENO One 26, no. 2 (June 30, 1992): 63. http://dx.doi.org/10.20870/oeno-one.1992.26.2.1201.
Full textKahane, Jean-Pierre, and Eric Saias. "Sur l’exemple d’Euler d’une fonction complètement multiplicative de somme nulle." L’Enseignement Mathématique 63, no. 1 (March 9, 2018): 155–64. http://dx.doi.org/10.4171/lem/63-1/2-4.
Full textDissertations / Theses on the topic "La fonction somme des chiffres"
Aloui, Karam. "Propriétés arithmétiques et combinatoires de la fonction somme des chiffres." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4083/document.
Full textThe aim of this thesis is the study of some arithmetic and combinatoric properties of the sum of digits function. We start by the study of exponential sums of the form $dissum_{nleq x}expleft(2ipileft(frac{l}{m}S_q(n)+frac{k}{m'}S_q(n+1)+theta nright)right)$ in order to establish a result of equidistribution modulo $1$ in addition to a probabilistic theorem of the kind ErdH{o}s-Kac. Then, we generalize a problem due to Gelfond concerning the distribution in residue classes of the sum of digits function in the case of integers with missing digits. Besides, we give a similar result to that of ErdH{o}s, Mauduit and S'ark"{o}zy on the uniform distribution of integers with missing digits in arithmetic progressions under a constraint on the sum of digits. Finally, a study of the order of magnitude of some arithmetical functions under digital constraints is done as a consequence of the works of Mkaouar and Wannès
Zouari, Hichem. "Les entiers friables sous contraintes digitales." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0255.
Full textThis thesis addresses some questions related to the sum of digits function and friable integers. The first chapter is dedicated to an introduction that gathers the origins of the main topics covered in this thesis, as well as a background and the necessary notations for the rest of the work. The main results obtained during this research will also be presented. The second chapter focuses on the behaviour of the set ({ n leq x : n ext{ is } k ext{-free}, , s_q(Q(n)) equiv a pmod{m} }), where ( a in mathbb{Z} ), ( k ), and ( m ) are natural numbers greater than or equal to 2. The function ( s_q ) represents the sum of digits in base ( q ), ( k )-free integers are those not divisible by the ( k )-th power of a prime number, and ( Q ) is a polynomial of degree greater than or equal to 2. To show our main result, we evaluate exponential sums of the type(sum_{n leq x atop{ n ext{ is } k ext{-free}}} e(alpha s_q(Q(n)))), where ( alpha ) is a real number such that ((q - 1)alpha in mathbb{R} setminus mathbb{Z}). In the end, we establish an equidistribution result modulo 1. The third chapter, we focus on the distribution of the Zeckendorf sum of digits over friable integers in congruence classes. An integer is called ( y )-friable if all its prime factors are less than or equal to ( y ). We use the notation ( P(n) ) to denote the largest prime factor of ( n ), and ( S(x, y) := { n leq x : P(n) leq y } ) to denote the set of ( y )-friable integers less than or equal to ( x ). The main objective of this chapter is to evaluate the set ( { n in S(x, y) : s_varphi(n) equiv a pmod{m} } ), where ( a in mathbb{Z} ) and ( m ) is a natural number greater than or equal to 2. Here, ( s_varphi ) is the sum of digits function in the Fibonacci base. As in the second chapter, to prove the main result, we use exponential sums, and we utilize the property of decomposition of friable integers into intervals for our demonstration to evaluate the exponential sum(sum_{n in S(x, y)} e(vartheta s_varphi(n))), where ( vartheta in mathbb{R} setminus mathbb{Z} ). The fourth chapter deals with the average of sums of certain multiplicative functions over friable integers. In this chapter, our goal is to determine estimates for the following expressions: sigma_s(n) = sum_{d mid n} d^s, varphi(n) = sum_{d mid n} mu(d) n/d, and psi(n) = sum_{d mid n} mu^2(n/d) d, where ( s ) is a non-zero real number, when (n) runs over the set (S(x,y)). The last chapter presents an application of the Turán-Kubilius inequality. It is well known that this inequality deals with additive functions and has also been used to prove the Hardy-Ramanujan theorem for the additive function (omega(n)), which counts the prime divisors of the integer (n). In this chapter, we move into the space of friable integers and focus on the additive function ilde{omega}(n) = sum_{p mid n atop{s_q(p) equiv a pmod{b}}} 1, where ( a in mathbb{Z} ) and ( b geq 2 ) are integers. Firstly, we provide an estimate of ( ilde{omega}(n)) when (n) runs through the set (S(x,y)), we then use the Turán-Kubilius inequality in the space of friable integers established by Tenenbaum and de la Bretèche to present few applications
Sutanto. "Sur la décroissance de la fonction de concentration de la somme de variables aléatoires indépendantes." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12405.
Full textBertrand, Sébastien. "Quand la somme implicite de deux chiffres est plus prégnante que leur traitement individuel : étude des processus mnésiques dans le champ de la cognition numérique." Montpellier 3, 2006. http://www.theses.fr/2006MON30085.
Full textIn line with the works dealing with the organization and the access to knowledge in memory, we have explored how the processing of a stimulus (i. E. , target) would be affected by a stimulus previously processed (i. E. , prime). We used numerical cognition approach to examine the human memory system. A series of eight experiments enabled us to show that the processing of the subjacent properties of a stimulus is more salient than the processing of its surface properties. More precisely, the studies we performed on the processing of additions that were presented in a subliminal way lead us to highlight three main results. First, it appeared that the result of the addition was more easily retrieved compared to the operands. Second, our data indicated that the automatic processing of an addition was observed regardless of the exclusion of the arithmetic operator. Third, our results provided evidence for the fact that the processes engaged when participants were presented with additions were similar to those engaged when presenting with a pair of numbers. Overall, our results allow us to confront different theories of human memory, and to stress that the one that better fits with our data is the episodic approach. To conclude, to better understand the human memory system, we must take into account unconscious processes that occur when presenting with a stimulus
Zimmer, Sébastien. "Mécanismes cryptographiques pour la génération de clefs et l'authentification." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00004271.
Full textShawket, Zaid Esmat. "Propriétés arithmétiques et statistiques des fonctions digitales restreintes." Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22059.
Full textIn this work we study the arithmetic and statistic properties of a new class of digital counting functions called restricted digital functions. We first present the main properties of sequences generated by a substitution or a $q$-automate followed by presenting the famous Thue-Morse sequence and its generalizations, then we compare these notions with the one of the restricted digital function.We then study the exponential sums associated with these restricted digital function and their implementation on the one hand to the study of uniform distribution modulo 1 of these restricted digital functions and on the other, to the study of the statistical properties of the arithmetic sequences defined by restricted digital functions.In the last part of this work we study the geometric representation of these exponential sums in the light of previous works of Dekking and Mendès-France which leads us to announce several open problems
Marchand, Claude. "Étude des fonctions de réponse électromagnétiques et des distributions en moment des protons de grande impulsion dans le noyau d'hélium-3 étudiées par diffusion inélastique d'électrons." Paris 11, 1987. http://www.theses.fr/1987PA112236.
Full textThis thesis presents the study of two aspects of the helium-3 nuclear structure by deep-inelastic electron scattering longitudinal and trans- verse response functions and high proton momentum components. From inclusive (e,e') cross sections measurements at incident energies between 120 and 667 MeV, we have separated the two electromagnetic response functions for momentum transfers 250 ≤ q ≤ 650 MeV/c and energy transfers 0 ≤ ω ≤ 450 MeV, covering the quasi-elastic region and part of the delta (1232) excitation. They are satisfactorily reproduced by recent calculations including final state interactions and meson exchange currents. Contrary to medium and heavy nuclei, the Coulomb sum rule is saturated for q 500 MeV/c. The longitudinal response tails off beyond the quasi-elastic peak, what confirms the transverse character of meson exchange currents and delta excitation in nuclei. The measurement of exclusive (e,e'p) cross sections at 560 MeV incident energy allowed us a "direct" determination of the proton momentum distributions from 300 to 600 MeV/c for both pd and ppn break-up channels. The obtained data are well reproduced by recent wave function calculations and do not indicate excess of high momentum components. The study of the ppn break-up clearly indicates that the high proton momentum components in helium-3 are dominated by two-nucleon processes, mainly medium and short range nucleon-nucleon correlations. Arguments in favour of this thesis are twofold : kinematical displacement of missing energy spectra and dynamical comparison of proton momentum distributions in helium-3 and deuteron
Jaadari, Abdelhafidh. "Systèmes quasi-LPV continus : comment dépasser le cadre du quadratique ?" Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00865634.
Full textHassani, Mehdi. "On the distribution of the values of arithmetical functions." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14164/document.
Full textAbstract
Popoli, Pierre. "Suites automatiques et morphiques de grande complexité le long des sous-suites." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0195.
Full textThe topic of this thesis lies at the interface between mathematics and computer science. A pseudorandom sequence is a sequence generated by a deterministic algorithm that has properties similar to those of a random sequence. We are interested in various complexity measures for these pseudorandom sequences. Automatic and morphic sequences are not random or pseudorandom, but certain subsequences of these sequences, such as polynomial subsequences for instance, are more random than the original sequences. In the first part of the thesis, we establish a lower bound on the maximal order complexity of the Thue-Morse sequence and related sequences along polynomial subsequences. This answers a question of Sun and Winterhof (2019). We then study the problem in the Zeckendorf numeration system. Its sum of digits function is a morphic non-automatic sequence. We establish a lower bound on the maximal order complexity of the Fibonacci-Thue-Morse sequence along unitary polynomials. We calculate the complexity with the help of the Directed Acyclic Word Graph (DAWG). In the second part, we are interested in the binary sum of digits of squares. We take up the work of Hare, Laishram and Stoll (2011) who studied the problem to determine the odd integers whose Hamming weight is the same as the one of their square. We solve the problem in the majority of the remaining cases, and introduce new tools that might be helpful to completely solve the problem. Our methods range from number theory, combinatorics on words to implementations in the area of computer science. In the third part of the thesis, we study the correlations of the Rudin-Shapiro sequence. The correlations of order 2 are well understood for this sequence, the behavior of this sequence is rather random whereas the original sequence is completely deterministic. The correlation of higher orders of this sequence do not show this random behavior. Aloui, Mauduit and Mkaouar (2021) studied the correlation of the Thue-Morse sequence along prime numbers. We provide a result on the correlation of the Rudin-Shapiro sequence along prime numbers
Book chapters on the topic "La fonction somme des chiffres"
VIDAL, Olivier. "Modélisation de l’évolution à long terme de l’énergie de production primaire et du prix des métaux." In L’économie des ressources minérales et le défi de la soutenabilité 1, 119–43. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9024.ch5.
Full textLADMIRAL, Jean-rené. "Traduction et realia interculturels." In A propos des realia, 89–104. Editions des archives contemporaines, 2021. http://dx.doi.org/10.17184/eac.4725.
Full text