Journal articles on the topic 'L-H transition'

To see the other types of publications on this topic, follow the link: L-H transition.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'L-H transition.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tsui, K. H., and C. E. Navia. "Tokamak L/H mode transition." Physics of Plasmas 19, no. 1 (January 2012): 012505. http://dx.doi.org/10.1063/1.3671975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Liang, Guosheng Xu, Lingming Shao, Wei Gao, Yifeng Wang, Yanmin Duan, Shouxin Wang, et al. "Comparison of dynamical features between the fast H-L and the H-I-L transition for EAST RF-heated plasmas." Physica Scripta 97, no. 1 (January 1, 2022): 015601. http://dx.doi.org/10.1088/1402-4896/ac4635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract In this paper, a comparison of dynamical features between the fast H-L and the H-I-L transition, which can be identified by the intermediate phase, or ‘I-phase’, has been made for radio-frequency (RF) heated deuterium plasmas in EAST. The fast H-L transition is characterized by a rapid release of stored energy during the transition transient, while the H-I-L transition exhibits a ‘soft’ H-mode termination. One important distinction between the transitions has been observed by dedicated probe measurements slightly inside the separatrix, with respect to the radial gradient of the floating potential, which corresponds to the E × B flow and/or the electron temperature gradient. The potential gradient inside the separatrix oscillates and persists during the stationary I-phase, and shows a larger amplitude than that before the fast H-L transition. The reduction of the gradient leads to the final transition to the L-mode for both the fast H-L and the H-I-L transition. These findings indicate that the mean E × B flow shear and/or edge electron temperature gradient play a critical role underlying the H-L transition physics. In addition, the back transition in EAST is found to be sensitive to magnetic configuration, where the vertical configuration, i.e., inner strike-point located at vertical target, favours access to the H-I-L transition, while the horizontal shape facilitates achievement of the fast H-L transition. The divertor recycling level normalized to electron density is higher before the fast H-L transition, as compared to that before the I-phase, which strongly suggest that the density of the recycled neutrals is an important ingredient in determining the back transition behaviour.
3

Toda, Shinichiro, Sanae-I. Itoh, Masatoshi Yagi, Kimitaka Itoh, and Atsushi Fukuyama. "Probabilistic Nature in L/H Transition." Journal of the Physical Society of Japan 68, no. 11 (November 15, 1999): 3520–27. http://dx.doi.org/10.1143/jpsj.68.3520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rozhansky, V., M. Tendler, and S. Voskoboinikov. "Dynamics of the L - H transition." Plasma Physics and Controlled Fusion 38, no. 8 (August 1, 1996): 1327–30. http://dx.doi.org/10.1088/0741-3335/38/8/031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shaing, K. C., C. T. Hsu, and P. J. Christenson. "L-H transition in tokamaks and stellarators." Plasma Physics and Controlled Fusion 36, no. 7A (July 1, 1994): A75—A80. http://dx.doi.org/10.1088/0741-3335/36/7a/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fukuda, T. "`Hidden' variables affecting the L-H transition." Plasma Physics and Controlled Fusion 40, no. 5 (May 1, 1998): 543–55. http://dx.doi.org/10.1088/0741-3335/40/5/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Estrada, T., E. Ascasíbar, T. Happel, C. Hidalgo, E. Blanco, R. Jiménez-Gómez, M. Liniers, D. López-Bruna, F. L. Tabarés, and D. Tafalla. "L-H Transition Experiments in TJ-II." Contributions to Plasma Physics 50, no. 6-7 (July 23, 2010): 501–6. http://dx.doi.org/10.1002/ctpp.200900024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schorlepp, Timo, Pavel Sasorov, and Baruch Meerson. "Short-time large deviations of the spatially averaged height of a Kardar–Parisi–Zhang interface on a ring." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 12 (December 1, 2023): 123202. http://dx.doi.org/10.1088/1742-5468/ad0a94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Using the optimal fluctuation method, we evaluate the short-time probability distribution P ( H ˉ , L , t = T ) of the spatially averaged height H ˉ = ( 1 / L ) ∫ 0 L h ( x , t = T ) d x of a one-dimensional interface h ( x , t ) governed by the Kardar–Parisi–Zhang equation ∂ t h = ν ∂ x 2 h + λ 2 ∂ x h 2 + D ξ x , t on a ring of length L. The process starts from a flat interface, h ( x , t = 0 ) = 0 . Both at λ H ˉ < 0 and at sufficiently small positive λ H ˉ the optimal (that is, the least-action) path h ( x , t ) of the interface, conditioned on H ˉ , is uniform in space, and the distribution P ( H ˉ , L , T ) is Gaussian. However, at sufficiently large λ H ˉ > 0 the spatially uniform solution becomes sub-optimal and gives way to non-uniform optimal paths. We study these, and the resulting non-Gaussian distribution P ( H ˉ , L , T ) , analytically and numerically. The loss of optimality of the uniform solution occurs via a dynamical phase transition of either first or second order, depending on the rescaled system size ℓ = L / ν T , at a critical value H ˉ = H ˉ c ( ℓ ) . At large but finite ℓ the transition is of first order. Remarkably, it becomes an ‘accidental’ second-order transition in the limit of ℓ → ∞ , where a large-deviation behavior − ln P ( H ¯ , L , T ) ≃ ( L / T ) f ( H ¯ ) (in the units λ = ν = D = 1 ) is observed. At small ℓ the transition is of second order, while at ℓ = O ( 1 ) transitions of both types occur.
9

Shaing, K. C., and P. J. Christenson. "Ion collisionality and L–H transition in tokamaks." Physics of Fluids B: Plasma Physics 5, no. 3 (March 1993): 666–68. http://dx.doi.org/10.1063/1.860511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, H., M. F. M. De Bock, N. J. Conway, S. J. Freethy, K. Gibson, J. Hiratsuka, A. Kirk, et al. "L–H transition and pedestal studies on MAST." Nuclear Fusion 51, no. 11 (October 24, 2011): 113011. http://dx.doi.org/10.1088/0029-5515/51/11/113011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Berionni, V., P. Morel, and Ö. D. Gürcan. "Multi-shell transport model for L-H transition." Physics of Plasmas 24, no. 12 (December 2017): 122310. http://dx.doi.org/10.1063/1.4998569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

XU, Guosheng, and Xingquan WU. "Understanding L–H transition in tokamak fusion plasmas." Plasma Science and Technology 19, no. 3 (February 21, 2017): 033001. http://dx.doi.org/10.1088/2058-6272/19/3/033001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fuji, Y., K. Itoh, A. Fukuyama, and S. I. Itoh. "Transport Modeling of L/H Transition in Tokamaks." Fusion Technology 27, no. 3T (April 1995): 485–88. http://dx.doi.org/10.13182/fst95-a11947134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Itoh, S.-I., K. Itoh, and S. Toda. "Statistical theory of L H transition in tokamaks*." Plasma Physics and Controlled Fusion 45, no. 5 (April 25, 2003): 823–40. http://dx.doi.org/10.1088/0741-3335/45/5/322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Rogers, B. N., J. F. Drake, and A. Zeiler. "Tokamak edge turbulence and the L-H transition." Czechoslovak Journal of Physics 48, S2 (February 1998): 50. http://dx.doi.org/10.1007/s10582-998-0020-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Tavallaei, Narguess, Mohammad Ramezanpour, and Behrooz Olfatian Gillan. "Structural transition between $L^{p}(G)$ and $L^{p}(G/H)$." Banach Journal of Mathematical Analysis 9, no. 3 (2015): 194–205. http://dx.doi.org/10.15352/bjma/09-3-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Moyer, R. A., T. L. Rhodes, C. L. Rettig, E. J. Doyle, K. H. Burrell, J. Cuthbertson, R. J. Groebner, et al. "Study of the phase transition dynamics of the L to H transition." Plasma Physics and Controlled Fusion 41, no. 2 (January 1, 1999): 243–49. http://dx.doi.org/10.1088/0741-3335/41/2/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hughes, J. W., A. E. Hubbard, D. A. Mossessian, B. LaBombard, T. M. Biewer, R. S. Granetz, M. Greenwald, et al. "H-Mode Pedestal and L-H Transition Studies on Alcator C-Mod." Fusion Science and Technology 51, no. 3 (April 2007): 317–41. http://dx.doi.org/10.13182/fst07-a1425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Miki, K., P. H. Diamond, Ö. D. Gürcan, G. R. Tynan, T. Estrada, L. Schmitz, and G. S. Xu. "Spatio-temporal evolution of the L → I → H transition." Physics of Plasmas 19, no. 9 (September 2012): 092306. http://dx.doi.org/10.1063/1.4753931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Stoltzfus-Dueck, T. "Parallel electron force balance and the L-H transition." Physics of Plasmas 23, no. 5 (May 2016): 054505. http://dx.doi.org/10.1063/1.4951015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Carlstrom, T. N., K. H. Burrell, R. J. Groebner, A. W. Leonard, T. H. Osborne, and D. M. Thomas. "Comparison of L-H transition measurements with physics models." Nuclear Fusion 39, no. 11Y (November 1999): 1941–47. http://dx.doi.org/10.1088/0029-5515/39/11y/338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bourdelle, C., C. F. Maggi, L. Chôné, P. Beyer, J. Citrin, N. Fedorczak, X. Garbet, et al. "L to H mode transition: on the role ofZeff." Nuclear Fusion 54, no. 2 (January 21, 2014): 022001. http://dx.doi.org/10.1088/0029-5515/54/2/022001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Miki, K., P. H. Diamond, L. Schmitz, D. C. McDonald, T. Estrada, Ö. D. Gürcan, and G. R. Tynan. "Spatio-temporal evolution of the H → L back transition." Physics of Plasmas 20, no. 6 (June 2013): 062304. http://dx.doi.org/10.1063/1.4812555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Janeschitz, G., G. W. Pacher, Yu Igitkhanov, H. D. Pacher, S. D. Pinches, O. Pogutse, and M. Sugihara. "L–H transition in tokamak plasmas: 1.5-D simulations." Journal of Nuclear Materials 266-269 (March 1999): 843–49. http://dx.doi.org/10.1016/s0022-3115(98)00615-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bourdelle, C. "Staged approach towards physics-based L-H transition models." Nuclear Fusion 60, no. 10 (September 8, 2020): 102002. http://dx.doi.org/10.1088/1741-4326/ab9e15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fukuyama, A., Y. Fuji, S.-I. Itoh, M. Yagi, and K. Itoh. "Transport modelling of L - H transition and barrier formation." Plasma Physics and Controlled Fusion 38, no. 8 (August 1, 1996): 1319–22. http://dx.doi.org/10.1088/0741-3335/38/8/029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Toda, S., S.-I. Itoh, M. Yagi, A. Fukuyama, and K. Itoh. "Double hysteresis in L/H transition and compound dithers." Plasma Physics and Controlled Fusion 38, no. 8 (August 1, 1996): 1337–41. http://dx.doi.org/10.1088/0741-3335/38/8/033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Connor, J. W., and H. R. Wilson. "A review of theories of the L-H transition." Plasma Physics and Controlled Fusion 42, no. 1 (December 23, 1999): R1—R74. http://dx.doi.org/10.1088/0741-3335/42/1/201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Itoh, Sanae-Inoue, and Kimitaka Itoh. "Change of Transport at L- and H-Mode Transition." Journal of the Physical Society of Japan 59, no. 11 (November 15, 1990): 3815–18. http://dx.doi.org/10.1143/jpsj.59.3815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hirsch, M. "Overview of L-H Transition Experiments in Helical Devices." Contributions to Plasma Physics 50, no. 6-7 (July 23, 2010): 487–92. http://dx.doi.org/10.1002/ctpp.200900029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Eun-Jin, and Abhiram Anand Thiruthummal. "Stochastic Dynamics of Fusion Low-to-High Confinement Mode (L-H) Transition: Correlation and Causal Analyses Using Information Geometry." Entropy 26, no. 1 (December 22, 2023): 17. http://dx.doi.org/10.3390/e26010017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We investigate the stochastic dynamics of the prey–predator model of the Low-to-High confinement mode (L-H) transition in magnetically confined fusion plasmas. By considering stochastic noise in the turbulence and zonal flows as well as constant and time-varying input power Q, we perform multiple stochastic simulations of over a million trajectories using GPU computing. Due to stochastic noise, some trajectories undergo the L-H transition while others do not, leading to a mixture of H-mode and dithering at a given time and/or input power. One of the consequences of this is that H-mode characteristics appear at a smaller input power Q<Qc (where Qc is the critical value for the L-H transition in the deterministic system) as a secondary peak of a probability density function (PDF) while dithering characteristics persists beyond the power threshold for Q>Qc as a second peak. The coexisting H-mode and dithering near Q=Qc leads to a prominent bimodal PDF with a gradual L-H transition rather than a sudden transition at Q=Qc and uncertainty in the input power. Also, a time-dependent input power leads to increased variability (dispersion) in stochastic trajectories and a more prominent bimodal PDF. We provide an interpretation of the results using information geometry to elucidate self-regulation between zonal flows, turbulence, and information causality rate to unravel causal relations involved in the L-H transition.
32

WU, Xingquan, Guosheng XU, Baonian WAN, Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN, Ran CHEN, Ning YAN, and Linming SHAO. "A new model of the L–H transition and H-mode power threshold." Plasma Science and Technology 20, no. 9 (July 6, 2018): 094003. http://dx.doi.org/10.1088/2058-6272/aabb9e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Peng, Guosheng Xu, Huiqian Wang, Min Jiang, Liang Wang, Wei Zhang, Shaocheng Liu, Ning Yan, and Siye Ding. "Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST." Plasma Science and Technology 15, no. 7 (July 2013): 619–22. http://dx.doi.org/10.1088/1009-0630/15/7/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zweben, S. J., A. Diallo, M. Lampert, T. Stoltzfus-Dueck, and S. Banerjee. "Edge turbulence velocity preceding the L-H transition in NSTX." Physics of Plasmas 28, no. 3 (March 2021): 032304. http://dx.doi.org/10.1063/5.0039153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Solano, E. R., G. Birkenmeier, E. Delabie, C. Silva, J. C. Hillesheim, A. Boboc, I. S. Carvalho, et al. "L–H transition threshold studies in helium plasmas at JET." Nuclear Fusion 61, no. 12 (October 22, 2021): 124001. http://dx.doi.org/10.1088/1741-4326/ac2b76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Shao, L. M., G. S. Xu, R. Chen, L. Chen, G. Birkenmeier, Y. M. Duan, W. Gao, et al. "Small amplitude oscillations before the L-H transition in EAST." Plasma Physics and Controlled Fusion 60, no. 3 (February 5, 2018): 035012. http://dx.doi.org/10.1088/1361-6587/aaa57a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Toi, K., F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara, et al. "L-H Transition and Edge Transport Barrier Formation on LHD." Fusion Science and Technology 58, no. 1 (August 2010): 61–69. http://dx.doi.org/10.13182/fst10-a10794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Strauss, H. R. "Drift stabilization of tearing modes and the L–H transition." Physics of Fluids B: Plasma Physics 4, no. 4 (April 1992): 934–37. http://dx.doi.org/10.1063/1.860109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Zhongtian, and G. Le Clair. "A model for the L-H mode transition in Tokamaks." Nuclear Fusion 32, no. 11 (November 1992): 2036–39. http://dx.doi.org/10.1088/0029-5515/32/11/i16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cordey, J. G., D. G. Muir, V. V. Parail, G. Vayakis, S. Ali-Arshad, D. V. Bartlett, D. J. Campbell, et al. "Evolution of transport through the L-H transition in JET." Nuclear Fusion 35, no. 5 (May 1995): 505–20. http://dx.doi.org/10.1088/0029-5515/35/5/i02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fundamenski, W., F. Militello, D. Moulton, and D. C. McDonald. "A new model of the L–H transition in tokamaks." Nuclear Fusion 52, no. 6 (April 24, 2012): 062003. http://dx.doi.org/10.1088/0029-5515/52/6/062003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Xu, G. S., H. Q. Wang, M. Xu, B. N. Wan, H. Y. Guo, P. H. Diamond, G. R. Tynan, et al. "Dynamics of L–H transition and I-phase in EAST." Nuclear Fusion 54, no. 10 (September 16, 2014): 103002. http://dx.doi.org/10.1088/0029-5515/54/10/103002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Andrew, Y., N. C. Hawkes, M. G. O'Mullane, R. Sartori, M. N. A. Beurskens, I. Coffey, E. Joffrin, et al. "Edge ion parameters at the L–H transition on JET." Plasma Physics and Controlled Fusion 46, no. 2 (December 23, 2003): 337–47. http://dx.doi.org/10.1088/0741-3335/46/2/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gervasini, G., E. Lazzaro, and E. Minardi. "Neoclassical transport and poloidal rotation at the L-H transition." Physica Scripta 52, no. 4 (October 1, 1995): 417–20. http://dx.doi.org/10.1088/0031-8949/52/4/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

KUIROUKIDIS, Ap, and G. N. THROUMOULOPOULOS. "Nonlinear translational symmetric equilibria relevant to the L–H transition." Journal of Plasma Physics 79, no. 3 (November 12, 2012): 257–65. http://dx.doi.org/10.1017/s0022377812000918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractNonlinear z-independent solutions to a generalized Grad–Shafranov equation (GSE) with up to quartic flux terms in the free functions and incompressible plasma flow non-parallel to the magnetic field are constructed quasi-analytically. Through an ansatz, the GSE is transformed to a set of three ordinary differential equations and a constraint for three functions of the coordinate x, in Cartesian coordinates (x,y), which then are solved numerically. Equilibrium configurations for certain values of the integration constants are displayed. Examination of their characteristics in connection with the impact of nonlinearity and sheared flow indicates that these equilibria are consistent with the L–H transition phenomenology. For flows parallel to the magnetic field, one equilibrium corresponding to the H state is potentially stable in the sense that a sufficient condition for linear stability is satisfied in an appreciable part of the plasma while another solution corresponding to the L state does not satisfy the condition. The results indicate that the sheared flow in conjunction with the equilibrium nonlinearity plays a stabilizing role.
46

Moyer, R. A., R. D. Lehmer, T. E. Evans, R. W. Conn, and L. Schmitz. "Nonlinear analysis of turbulence across the L to H transition." Plasma Physics and Controlled Fusion 38, no. 8 (August 1, 1996): 1273–78. http://dx.doi.org/10.1088/0741-3335/38/8/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Scott, B. "Warm-ion drift Alfvén turbulence and the L-H transition." Plasma Physics and Controlled Fusion 40, no. 5 (May 1, 1998): 823–26. http://dx.doi.org/10.1088/0741-3335/40/5/050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kiviniemi, T. P., J. A. Heikkinen, A. G. Peeters, T. Kurki-Suonio, and S. K. Sipilä. "Critical assessment of ion loss mechanisms for L-H transition." Plasma Physics and Controlled Fusion 42, no. 5A (May 1, 2000): A185—A190. http://dx.doi.org/10.1088/0741-3335/42/5a/320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Askinazi, L. G., A. A. Belokurov, V. V. Bulanin, A. D. Gurchenko, E. Z. Gusakov, T. P. Kiviniemi, S. V. Lebedev, et al. "Physics of GAM-initiated L–H transition in a tokamak." Plasma Physics and Controlled Fusion 59, no. 1 (November 2, 2016): 014037. http://dx.doi.org/10.1088/0741-3335/59/1/014037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

González, S., J. Vega, A. Murari, A. Pereira, S. Dormido-Canto, and J. M. Ramírez. "H/L transition time estimation in JET using conformal predictors." Fusion Engineering and Design 87, no. 12 (December 2012): 2084–86. http://dx.doi.org/10.1016/j.fusengdes.2012.02.126.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography