Academic literature on the topic 'Kv11.1 channel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kv11.1 channel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kv11.1 channel"

1

Al-Sabi, Ahmed, Oleg Shamotienko, Sorcha Ni Dhochartaigh та ін. "Arrangement of Kv1 α subunits dictates sensitivity to tetraethylammonium". Journal of General Physiology 136, № 3 (2010): 273–82. http://dx.doi.org/10.1085/jgp.200910398.

Full text
Abstract:
Shaker-related Kv1 channels contain four channel-forming α subunits. Subfamily member Kv1.1 often occurs oligomerized with Kv1.2 α subunits in synaptic membranes, and so information was sought on the influence of their positions within tetramers on the channels’ properties. Kv1.1 and 1.2 α genes were tandem linked in various arrangements, followed by expression as single-chain proteins in mammalian cells. As some concatenations reported previously seemed not to reliably position Kv1 subunits in their assemblies, the identity of expressed channels was methodically evaluated. Surface protein, is
APA, Harvard, Vancouver, ISO, and other styles
2

Denisova, Kristina R., Nikita A. Orlov, Sergey A. Yakimov, Mikhail P. Kirpichnikov, Alexey V. Feofanov, and Oksana V. Nekrasova. "Atto488-Agitoxin 2—A Fluorescent Ligand with Increased Selectivity for Kv1.3 Channel Binding Site." Bioengineering 9, no. 7 (2022): 295. http://dx.doi.org/10.3390/bioengineering9070295.

Full text
Abstract:
Fluorescently labeled peptide blockers of ion channels are useful probes in studying the localization and functioning of the channels and in the performance of a search for new channel ligands with bioengineering screening systems. Here, we report on the properties of Atto488-agitoxin 2 (A-AgTx2), a derivative of the Kv1 channel blocker agitoxin 2 (AgTx2), which was N-terminally labeled with Atto 488 fluorophore. The interactions of A-AgTx2 with the outer binding sites of the potassium voltage-gated Kv1.x (x = 1, 3, 6) channels were studied using bioengineered hybrid KcsA–Kv1.x (x = 1, 3, 6) c
APA, Harvard, Vancouver, ISO, and other styles
3

Large, R. J., M. A. Hollywood, G. P. Sergeant, et al. "Ionic currents in intimal cultured synoviocytes from the rabbit." American Journal of Physiology-Cell Physiology 299, no. 5 (2010): C1180—C1194. http://dx.doi.org/10.1152/ajpcell.00028.2010.

Full text
Abstract:
Hyaluronan, a joint lubricant and regulator of synovial fluid content, is secreted by fibroblast-like synoviocytes lining the joint cavity, and secretion is greatly stimulated by Ca2+-dependent protein kinase C. This study aimed to define synoviocyte membrane currents and channels that may influence synoviocyte Ca2+ dynamics. Resting membrane potential ranged from −30 mV to −66 mV (mean −45 ± 8.60 mV, n = 40). Input resistance ranged from 0.54 GΩ to 2.6 GΩ (mean 1.28 ± 0.57 GΩ; ν = 33). Cell capacitance averaged 97.97 ± 5.93 pF. Voltage clamp using Cs+ pipette solution yielded a transient inwa
APA, Harvard, Vancouver, ISO, and other styles
4

D’Adamo, Maria Cristina, Antonella Liantonio, Jean-Francois Rolland, Mauro Pessia, and Paola Imbrici. "Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches." International Journal of Molecular Sciences 21, no. 8 (2020): 2935. http://dx.doi.org/10.3390/ijms21082935.

Full text
Abstract:
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that a
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Xiao-Jian, Jian Wang, Magdalena Juhaszova, Vera A. Golovina, and Lewis J. Rubin. "Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 274, no. 4 (1998): L621—L635. http://dx.doi.org/10.1152/ajplung.1998.274.4.l621.

Full text
Abstract:
K+-channel activity-mediated alteration of the membrane potential and cytoplasmic free Ca2+ concentration ([Ca2+]cyt) is a pivotal mechanism in controlling pulmonary vasomotor tone. By using combined approaches of patch clamp, imaging fluorescent microscopy, and molecular biology, we examined the electrophysiological properties of K+ channels and the role of different K+ currents in regulating [Ca2+]cytand explored the molecular identification of voltage-gated K+(KV)- and Ca2+-activated K+(KCa)-channel genes expressed in pulmonary arterial smooth muscle cells (PASMC). Two kinetically distinct
APA, Harvard, Vancouver, ISO, and other styles
6

Rash, John E., Kimberly G. Vanderpool, Thomas Yasumura, Jordan Hickman, Jonathan T. Beatty, and James I. Nagy. "KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction." Journal of Neurophysiology 115, no. 4 (2016): 1836–59. http://dx.doi.org/10.1152/jn.01077.2015.

Full text
Abstract:
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K+-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compo
APA, Harvard, Vancouver, ISO, and other styles
7

Gladkikh, Irina, Steve Peigneur, Oksana Sintsova, et al. "Kunitz-Type Peptides from the Sea Anemone Heteractis crispa Demonstrate Potassium Channel Blocking and Anti-Inflammatory Activities." Biomedicines 8, no. 11 (2020): 473. http://dx.doi.org/10.3390/biomedicines8110473.

Full text
Abstract:
The Kunitz/BPTI peptide family includes unique representatives demonstrating various biological activities. Electrophysiological screening of peptides HCRG1 and HCRG2 from the sea anemone Heteractis crispa on six Kv1.x channel isoforms and insect Shaker IR channel expressed in Xenopus laevis oocytes revealed their potassium channels blocking activity. HCRG1 and HCRG2 appear to be the first Kunitz-type peptides from sea anemones blocking Kv1.3 with IC50 of 40.7 and 29.7 nM, respectively. In addition, peptides mainly vary in binding affinity to the Kv1.2 channels. It was established that the sin
APA, Harvard, Vancouver, ISO, and other styles
8

Imbrici, Paola, Maria Cristina D'Adamo, Antonella Cusimano та Mauro Pessia. "Episodic ataxia type 1 mutation F184C alters Zn2+-induced modulation of the human K+ channel Kv1.4-Kv1.1/Kvβ1.1". American Journal of Physiology-Cell Physiology 292, № 2 (2007): C778—C787. http://dx.doi.org/10.1152/ajpcell.00259.2006.

Full text
Abstract:
Episodic ataxia type 1 (EA1) is a Shaker-like channelopathy characterized by continuous myokymia and attacks of imbalance with jerking movements of the head, arms, and legs. Although altered expression and gating properties of Kv1.1 channels underlie EA1, several disease-causing mechanisms remain poorly understood. It is likely that Kv1.1, Kv1.4, and Kvβ1.1 subunits form heteromeric channels at hippocampal mossy fiber boutons from which Zn2+ ions are released into the synaptic cleft in a Ca2+-dependent fashion. The sensitivity of this macromolecular channel complex to Zn2+ is unknown. Here, we
APA, Harvard, Vancouver, ISO, and other styles
9

Brock, Mathew W., Chris Mathes, and William F. Gilly. "Selective Open-Channel Block of Shaker (Kv1) Potassium Channels by S-Nitrosodithiothreitol (Sndtt)." Journal of General Physiology 118, no. 1 (2001): 113–34. http://dx.doi.org/10.1085/jgp.118.1.113.

Full text
Abstract:
Large quaternary ammonium (QA) ions block voltage-gated K+ (Kv) channels by binding with a 1:1 stoichiometry in an aqueous cavity that is exposed to the cytoplasm only when channels are open. S-nitrosodithiothreitol (SNDTT; ONSCH2CH(OH)CH(OH)CH2SNO) produces qualitatively similar “open-channel block” in Kv channels despite a radically different structure. SNDTT is small, electrically neutral, and not very hydrophobic. In whole-cell voltage-clamped squid giant fiber lobe neurons, bath-applied SNDTT causes reversible time-dependent block of Kv channels, but not Na+ or Ca2+ channels. Inactivation
APA, Harvard, Vancouver, ISO, and other styles
10

Platoshyn, Oleksandr, Carmelle V. Remillard, Ivana Fantozzi, et al. "Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells." American Journal of Physiology-Lung Cellular and Molecular Physiology 287, no. 1 (2004): L226—L238. http://dx.doi.org/10.1152/ajplung.00438.2003.

Full text
Abstract:
Electrical excitability, which plays an important role in excitation-contraction coupling in the pulmonary vasculature, is regulated by transmembrane ion flux in pulmonary artery smooth muscle cells (PASMC). This study examined the heterogeneous nature of native voltage-dependent K+ channels in human PASMC. Both voltage-gated K+ (KV) currents and Ca2+-activated K+ (KCa) currents were observed and characterized. In cell-attached patches of PASMC bathed in Ca2+-containing solutions, depolarization elicited a wide range of K+ unitary conductances (6–290 pS). When cells were dialyzed with Ca2+-fre
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!