Academic literature on the topic 'Kuramoto-Sivashinsky equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kuramoto-Sivashinsky equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kuramoto-Sivashinsky equation"
Li, Jin. "Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation." AIMS Mathematics 8, no. 7 (2023): 16494–510. http://dx.doi.org/10.3934/math.2023843.
Full textGao, Peng. "Irreducibility of Kuramoto-Sivashinsky equation driven by degenerate noise." ESAIM: Control, Optimisation and Calculus of Variations 28 (2022): 20. http://dx.doi.org/10.1051/cocv/2022014.
Full textXIE, YUANXI, SHUHUA ZHU, and KALIN SU. "SOLVING THE KdV-BURGERS-KURAMOTO EQUATION BY A COMBINATION METHOD." International Journal of Modern Physics B 23, no. 08 (March 30, 2009): 2101–6. http://dx.doi.org/10.1142/s0217979209052017.
Full textMohammed, Wael W., A. M. Albalahi, S. Albadrani, E. S. Aly, R. Sidaoui, and A. E. Matouk. "The Analytical Solutions of the Stochastic Fractional Kuramoto–Sivashinsky Equation by Using the Riccati Equation Method." Mathematical Problems in Engineering 2022 (May 11, 2022): 1–8. http://dx.doi.org/10.1155/2022/5083784.
Full textMohammed, Wael W., Meshari Alesemi, Sahar Albosaily, Naveed Iqbal, and M. El-Morshedy. "The Exact Solutions of Stochastic Fractional-Space Kuramoto-Sivashinsky Equation by Using (G′G)-Expansion Method." Mathematics 9, no. 21 (October 26, 2021): 2712. http://dx.doi.org/10.3390/math9212712.
Full textAlbosaily, Sahar, Wael W. Mohammed, Ali Rezaiguia, Mahmoud El-Morshedy, and Elsayed M. Elsayed. "The influence of the noise on the exact solutions of a Kuramoto-Sivashinsky equation." Open Mathematics 20, no. 1 (January 1, 2022): 108–16. http://dx.doi.org/10.1515/math-2022-0012.
Full textEDSON, RUSSELL A., J. E. BUNDER, TRENT W. MATTNER, and A. J. ROBERTS. "LYAPUNOV EXPONENTS OF THE KURAMOTO–SIVASHINSKY PDE." ANZIAM Journal 61, no. 3 (July 2019): 270–85. http://dx.doi.org/10.1017/s1446181119000105.
Full textEdson, Russell A., Judith E. Bunder, Trent W. Mattner, and Anthony J. Roberts. "Lyapunov exponents of the Kuramoto--Sivashinsky PDE." ANZIAM Journal 61 (September 8, 2019): 270–85. http://dx.doi.org/10.21914/anziamj.v61i0.13939.
Full textTilley, B. S., S. H. Davis, and S. G. Bankoff. "Nonlinear long-wave stability of superposed fluids in an inclined channel." Journal of Fluid Mechanics 277 (October 25, 1994): 55–83. http://dx.doi.org/10.1017/s0022112094002685.
Full textAmali Paul Rose, Gregory, Murugan Suvinthra, and Krishnan Balachandran. "Large deviations for stochastic Kuramoto–Sivashinsky equation with multiplicative noise." Nonlinear Analysis: Modelling and Control 26, no. 4 (July 1, 2021): 642–60. http://dx.doi.org/10.15388/namc.2021.26.24178.
Full textDissertations / Theses on the topic "Kuramoto-Sivashinsky equation"
Lu, Fei, Kevin K. Lin, and Alexandre J. Chorin. "Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation." ELSEVIER SCI LTD, 2017. http://hdl.handle.net/10150/622792.
Full textKent, Philip. "Bifurcations of the travelling-wave solutions of the Kuramoto-Sivashinsky equation." Thesis, Imperial College London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515563.
Full textFalcon, Michael Andrew. "Approximation of the attractor and the inertial manifold of the Kuramoto-Sivashinsky equation." Thesis, University of Bath, 1998. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268211.
Full textRoitner, Heinz Helmut. "Applications of the inverse spectral transform to a Korteweg-de Vries equation with a Kuramoto-Sivashinsky-type perturbation." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185572.
Full textRodrigues, Eduardo Vitral Freigedo. "Formação de nanopadrões em superfícies por sputtering iônico: Estudo numérico da equação anisotrópica amortecida de Kuramoto-Sivashinsky." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=9215.
Full textApresenta-se uma abordagemnumérica para ummodelo que descreve a formação de padrões por sputtering iônico na superfície de ummaterial. Esse processo é responsável pela formação de padrões inesperadamente organizados, como ondulações, nanopontos e filas hexagonais de nanoburacos. Uma análise numérica de padrões preexistentes é proposta para investigar a dinâmica na superfície, baseada em ummodelo resumido em uma equação anisotrópica amortecida de Kuramoto-Sivashinsky, em uma superfície bidimensional com condições de contorno periódicas. Apesar de determinística, seu caráter altamente não-linear fornece uma rica gama de resultados, sendo possível descrever acuradamente diferentes padrões. Umesquema semi implícito de diferenças finitas com fatoração no tempo é aplicado na discretização da equação governante. Simulações foram realizadas com coeficientes realísticos relacionados aos parâmetros físicos (anisotropias, orientação do feixe, difusão). A estabilidade do esquema numérico foi analisada por testes de passo de tempo e espaçamento de malha, enquanto a verificação do mesmo foi realizada pelo Método das Soluções Manufaturadas. Ondulações e padrões hexagonais foram obtidos a partir de condições iniciais monomodais para determinados valores do coeficiente de amortecimento, enquanto caos espaço-temporal apareceu para valores inferiores. Os efeitos anisotrópicos na formação de padrões foramestudados, variando o ângulo de incidência.
A numerical approach is presented for amodel describing the pattern formation by ion beam sputtering on a material surface. This process is responsible for the appearance of unexpectedly organized patterns, such as ripples, nanodots, and hexagonal arrays of nanoholes. A numerical analysis of preexisting patterns is proposed to investigate surface dynamics, based on a model resumed in an anisotropic damped Kuramoto-Sivashinsky equation, in a two dimensional surface with periodic boundary conditions. While deterministic, its highly nonlinear character gives a rich range of results, making it possible to describe accurately different patterns. A finite-difference semi-implicit time splitting scheme is employed on the discretization of the governing equation. Simulations were conducted with realistic coefficients related to physical parameters (anisotropies, beam orientation, diffusion). The stability of the numerical scheme is analyzed with time step and grid spacing tests for the pattern evolution, and the Method ofManufactured Solutions has been used to verify the scheme. Ripples and hexagonal patterns were obtained from amonomodal initial condition for certain values of the damping coefficient, while spatiotemporal chaos appeared for lower values. The anisotropy effects on pattern formation were studied, varying the angle of incidence.
MacKenzie, Tony. "Create accurate numerical models of complex spatio-temporal dynamical systems with holistic discretisation." University of Southern Queensland, Faculty of Sciences, 2005. http://eprints.usq.edu.au/archive/00001466/.
Full textBelova, Anna. "Computational dynamics – real and complex." Doctoral thesis, Uppsala universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-332280.
Full textAl, Jamal Rasha. "Bounded Control of the Kuramoto-Sivashinsky equation." Thesis, 2013. http://hdl.handle.net/10012/8014.
Full textGambill, Thomas Naylor. "Application of uncertainty inequalities to bound the radius of the attractor for the Kuramoto-Sivashinsky equation /." 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3250245.
Full textSource: Dissertation Abstracts International, Volume: 68-02, Section: B, page: 1010. Adviser: Jared Bronski. Includes bibliographical references (leaves 122-125) Available on microfilm from Pro Quest Information and Learning.
Roy, Dipankar. "Steady state properties of discrete and continuous models of nonequilibrium phenomena." Thesis, 2020. https://etd.iisc.ac.in/handle/2005/4880.
Full textBooks on the topic "Kuramoto-Sivashinsky equation"
Papageorgiou, Demetrios T. The route to chaos for the Kuramoto-Sivashinsky equation. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Find full textPapageorgiou, Demetrios T. Modulational stability of periodic solutions of the Kuramoto-Sivashinsky equation. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Find full textSmyrlis, Yiorgos S. Computational study of chaotic and ordered solutions of the Kuramoto-Sivashinsky equation. Hampton, Va: Langley Research Center, 1996.
Find full textPapageorgiou, Demetris. The route to chaos for the Kuramoto-Sivashinsky equation. Hampton, Va: NASA Langley Research Center, 1990.
Find full textT, Papageorgiou Demetrios, and Langley Research Center, eds. Predicting chaos for infinite dimensional dynamical systems: The Kuramoto-Sivashinsky equation, a case study. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Find full textT, Papageorgiou Demetrios, Smyrlis Yiorgos S, and Institute for Computer Applications in Science and Engineering., eds. Nonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Find full textNonlinear stability of oscillatory core-annular flow: A generalized Kuramoto-Sivashinsky equation with time periodic coefficients. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1994.
Find full textBook chapters on the topic "Kuramoto-Sivashinsky equation"
Constantin, P., C. Foias, B. Nicolaenko, and R. Teman. "Application: The Kuramoto—Sivashinsky Equation." In Applied Mathematical Sciences, 72–81. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3506-4_16.
Full textManneville, P. "The Kuramoto-Sivashinsky Equation: A Progress Report." In Springer Series in Synergetics, 265–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73861-6_24.
Full textMichelson, Daniel. "Order and Disorder in the Kuramoto-Sivashinsky Equation." In Progress and Supercomputing in Computational Fluid Dynamics, 331–44. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4612-5162-0_17.
Full textAlfaro, C. M., R. D. Benguria, and M. C. Depassier. "The Role Of Dispersion In The Generalized Kuramoto Sivashinsky Equation." In Instabilities and Nonequilibrium Structures IV, 281–87. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1906-1_27.
Full textPapageorgiou, Demetrios T., George C. Papanicolaou, and Yiorgos S. Smyrlis. "Modulational stability of periodic solutions of the Kuramoto-Sivashinsky equation." In Singularities in Fluids, Plasmas and Optics, 255–63. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2022-7_19.
Full textShibata, Hiroshi. "Lyapunov Exponent of the System Described by Kuramoto-Sivashinsky Equation." In Statistical Theories and Computational Approaches to Turbulence, 269–73. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-67002-5_19.
Full textNicolaenko, Basil. "The Kuramoto-Sivashinsky Equation: Spatio-Temporal Chaos and Intermittencies for a Dynamical System." In NATO ASI Series, 1029–52. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0707-5_70.
Full textElezgaray, J., G. Berkooz, and P. Holmes. "Modelling the coupling between small and large scales in the Kuramoto-Sivashinsky equation." In CRM Proceedings and Lecture Notes, 293–302. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/crmp/018/23.
Full textKaur, Deepti, and R. K. Mohanty. "A Higher Order Finite Difference Method for Numerical Solution of the Kuramoto–Sivashinsky Equation." In Springer Proceedings in Mathematics & Statistics, 217–29. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5455-1_18.
Full textUeno, Kazuto. "Application of the Renormalization Group Analysis to a Noisy Kuramoto–Sivashinsky Equation and its Numerical Simulation." In Frontiers of Computational Science, 231–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46375-7_31.
Full textConference papers on the topic "Kuramoto-Sivashinsky equation"
Dubljevic, Stevan. "Optimal boundary control of Kuramoto-Sivashinsky equation." In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5160231.
Full textElder, K. R., Hao-wen Xi, Matt Deans, and J. D. Gunton. "Spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation." In CAM-94 Physics meeting. AIP, 1995. http://dx.doi.org/10.1063/1.48763.
Full textXie, Junyao, and Stevan Dubljevic. "Discrete Kalman Filter Design for Kuramoto-Sivashinsky Equation." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8814595.
Full textal Jamal, Rasha, and Kirsten Morris. "Output feedback control of the Kuramoto-Sivashinsky equation." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402289.
Full textByrnes, C. I., D. S. Gilliam, and C. Hu. "Set-point boundary control for a Kuramoto-Sivashinsky equation." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.377117.
Full textQimin Zhang. "Exponential stability of solution for the Kuramoto-Sivashinsky equation." In 2008 7th World Congress on Intelligent Control and Automation. IEEE, 2008. http://dx.doi.org/10.1109/wcica.2008.4594318.
Full textLi, Cai, and Xie Wenxian. "Efficient lattice Boltzmann method for specialized Kuramoto-Sivashinsky equation." In TENCON 2013 - 2013 IEEE Region 10 Conference. IEEE, 2013. http://dx.doi.org/10.1109/tencon.2013.6718850.
Full textLiu, Jian-Guo, Zhi-Fang Zeng, and Qing Ye. "New exact solutions for the generalized Kuramoto-Sivashinsky equation." In 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018. http://dx.doi.org/10.1109/ccdc.2018.8407535.
Full textal Jamal, Rasha, and Kirsten Morris. "Distributed control of the Kuramoto-Sivashinsky equation using approximations." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7171845.
Full textBruzón, M. S., and M. L. Gandarias. "Conservation laws for a Kuramoto-Sivashinsky equation with dispersive effects." In NONLINEAR AND MODERN MATHEMATICAL PHYSICS: Proceedings of the 2nd International Workshop. AIP, 2013. http://dx.doi.org/10.1063/1.4828678.
Full text