Academic literature on the topic 'Kinetics of non-isothermal crystallization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kinetics of non-isothermal crystallization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kinetics of non-isothermal crystallization"
Eltahir, Yassir A., Haroon A. M. Saeed, Chen Yuejun, Yumin Xia, and Wang Yimin. "Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry." Journal of Polymer Engineering 34, no. 4 (June 1, 2014): 353–58. http://dx.doi.org/10.1515/polyeng-2013-0250.
Full textZhou, Ying-Guo, Wen-Bin Wu, Gui-Yun Lu, and Jun Zou. "Isothermal and non-isothermal crystallization kinetics and predictive modeling in the solidification of poly(cyclohexylene dimethylene cyclohexanedicarboxylate) melt." Journal of Elastomers & Plastics 49, no. 2 (July 27, 2016): 132–56. http://dx.doi.org/10.1177/0095244316641327.
Full textMilićević, Bojana, Milena Marinović-Cincović, and Miroslav D. Dramićanin. "Non-isothermal crystallization kinetics of Y2Ti2O7." Powder Technology 310 (April 2017): 67–73. http://dx.doi.org/10.1016/j.powtec.2017.01.001.
Full textPiccarolo, S., V. Brucato, and Z. Kiflie. "Non-isothermal crystallization kinetics of PET." Polymer Engineering & Science 40, no. 6 (June 2000): 1263–72. http://dx.doi.org/10.1002/pen.11254.
Full textChattopadhyay, C., S. Sarkar, S. Sangal, and K. Mondal. "Simulated Isothermal Crystallization Kinetics from Non-Isothermal Experimental Data." Transactions of the Indian Institute of Metals 67, no. 6 (May 13, 2014): 945–58. http://dx.doi.org/10.1007/s12666-014-0422-7.
Full textHu, Hui E., Zhou Lu, Xiao Hong Su, and Jing Xin Deng. "Study of the crystallization kinetics of a Zr57Cu15.4Ni12.6Al10Nb5 amorphous alloy." International Journal of Materials Research 111, no. 10 (October 1, 2020): 849–56. http://dx.doi.org/10.1515/ijmr-2020-1111009.
Full textLee, Chain-Ming, Yeong-Iuan Lin, and Tsung-Shune Chin. "Crystallization kinetics of amorphous Ga–Sb–Te films: Part II. Isothermal studies by a time-resolved optical transmission method." Journal of Materials Research 19, no. 10 (October 1, 2004): 2938–46. http://dx.doi.org/10.1557/jmr.2004.0379.
Full textErukhimovitch, V., and J. Baram. "A model for non-isothermal crystallization kinetics." Journal of Non-Crystalline Solids 208, no. 3 (December 1996): 288–93. http://dx.doi.org/10.1016/s0022-3093(96)00521-2.
Full textFan-Chiang, C. C., W. Y. Chiu, K. H. Hsieh, and L. W. Chen. "Crystallization of polypropylene II. Non-isothermal kinetics." Materials Chemistry and Physics 34, no. 1 (April 1993): 52–57. http://dx.doi.org/10.1016/0254-0584(93)90119-7.
Full textLi, Cheng Peng, Mary She, and Ling Xue Kong. "Non-Isothermal Crystallization Kinetics of Polyvinyl Alcohol-Graphene Oxide Composites." Applied Mechanics and Materials 446-447 (November 2013): 206–9. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.206.
Full textDissertations / Theses on the topic "Kinetics of non-isothermal crystallization"
Wang, Shujun. "Liquid-Liquid Phase Separation in an Isorefractive Polethylene Blend Monitored by Crystallization Kinetics and Crystal-Decorated Phase Morphologies." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1226680911.
Full textFailla, Simone. "Crystallization and morphology of the PLLA phase within random poly (L-lactide-ran-ɛ-caprolactone)." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7638/.
Full textBruna, Escuer Pere. "Microstructural characterization and modelling in primary crystallization." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6588.
Full textLes dades experimentals obtingudes a partir de l'estudi calorimètric de cristal·litzacions primàries s'analitzen generalment en el marc del model KJMA (Kolmogorov, Johnson & Mehl, Avrami). Aquest model proporciona l'evolució temporal de la fracció transformada basant-se en tres hipòtesis:
- Els nuclis de la fase secundaria estan distribuïts aleatòriament en tot l'espai.
- El creixement d'aquests nuclis és isotròpic.
- El creixement s'atura únicament per xoc directe (hard impingement).
En la cristal·lizació de vidres metàl·lics s'ha observat experimentalment un alentiment de la cinètica respecte del comportament calculat emprant la citada cinètica KJMA. Aquest alentiment s'explica a la literatura en base a que en aquest tipus de transformacions, controlades per difusió, la interacció entre els cristalls no és directa sinó que es produeix a través dels perfils de concentració (soft impingement) i, a més, l'evolució d'aquests perfils de concentració causa canvis en la concentració de la matriu amorfa, estabilitzant la i per tant fent que la nucleació de nous cristalls esdevingui no aleatòria. Diversos autors han proposat modificacions del model KJMA per tal d'intentar superar aquestes limitacions, basats bé en consideracions geomètriques, bé en aproximacions de camp mitjà. A pesar de tot, cap d'aquests models és capaç d'explicar satisfactòriament la cinètica observada en cristal·litzacions primàries. L'objectiu d'aquest treball ha estat la simulació realista de la cinètica de les transformacions primàries per trobar una explicació consistent a les diferències observades entre les dades experimentals i els models teòrics disponibles.
Per tal de poder descriure de forma realista el procés de cristal·lització primària s'ha d'estudiar el procés de nucleació i creixement de la fase secundaria alhora que es resol l'equació de difusió en la fase primària. En aquest treball s'ha emprat un model de simulació phase field que permet estudiar aquest sistema introduint una nova variable lligada al camp de concentració que pren dos valors diferents segons es tracti de fase transformada o no transformada. Amb aquest tipus de models també es poden introduir diferents protocols de nucleació i per tant estudiar independentment els efectes de la nucleació en la cinètica. D'aquesta manera s'han realitzat simulacions en 2 i 3 dimensions de cristal·litzacions primàries amb diferents graus de fracció transformada final). Els resultats de les simulacions s'ha comparat amb el model KJMA i, contra el que es preveia, s'ha obtingut un bon acord entre les fraccions transformades del model KJMA i de les simulacions. Donat que el model KJMA no reprodueix satisfactòriament el comportament experimental d'aquest resultat es dedueix que ni el soft impingement ni la nucleació no aleatòria son les responsables de l'alentiment de la cinètica obtingut en cristal·litzacions primàries.
Per tal de trobar una explicació físicament convincent del comportament observat experimentalment s'ha aprofundit en l'estudi teòric de les cristali·litzaciones primàries, incloent-hi l'efecte dels canvis composicionals que tenen lloc en la matriu a mesura que la transformació es produeix. Aquest fet, tot i ser conegut a la bibliografia, ha estat sistemàticament ignorat en l'elaboració de models cinètics. En concret, s'ha fet palès que canvis en la composició química de la fase primària han d'afectar de forma radical a la viscositat, que varia fortament a prop de la transició vitrea, i han de produir canvis en les propietats de transport atòmic. Això s'ha modelat a través de l'assumpció d'un coeficient de difusió depenent de la concentració, en base a la relació modificada d'Stokes-Einstein entre la viscositat i el coeficient de difusió. Les simulacions phase-field amb un coeficient de difusió d'aquest tipus donen lloc a una cinètica més lenta i que mostra un acord excel·lent amb la cinètica experimentalment observada en cristal·litzacions primàries de vidres metàl·lics. Per tant, les simulacions phase field confirmen que la cinètica de les cristal·litzacions primàries està controlada fonamentalment pel canvi en les propietats de transport atòmic, mentre que els efectes de soft impingement i nucleació no aleatoria, tot i estar presents, son secundaris.
El objetivo de la tesi es estudiar la cinética de las cristalizaciones primarias en vidrios metálicos mediante simulaciones de tipo phase field. Una cristalización primaria es una transición de fase sólido-sólido donde la fase que cristaliza (fase transformada o fase secundaria) tiene una composición química diferente a la fase precursora (fase no transformada o fase primaria).
Los datos experimentales obtenidos a partir del estudio calorimétrico de cristalizaciones primarias se analizan generalmente en el marco del modelo KJMA (Kolmogorov, Johnson & Mehl, Avrami). Este modelo proporciona la evolución temporal de la fracción transformada basándose en tres hipótesis:
- Los núcleos de la fase secundaria están distribuidos aleatoriamente en todo el espacio
- El crecimiento de estos núcleos es isotrópico
- El crecimiento se detiene únicamente por choque directo (hard impingement).
En la cristalización de vidrios metálicos se ha observado experimentalmente un retardo de la cinética respecto del comportamiento calculado usando la cinética KJMA. Este retardo se explica en la literatura en base a que en este tipo de transformaciones, controladas por difusión, la interacción entre los cristales no es directa sino que se produce a través de los perfiles de concentración (soft impingement) y, además, la evolución de estos perfiles de concentración causa cambios en la concentración de la matriz amorfa, estabilizándola y por tanto haciendo que la nucleación de nuevos cristales sea no aleatoria. Varios autores han propuesto modificaciones del modelo KJMA para intentar superar estas limitaciones, basados bien en consideraciones geométricas, bien en aproximaciones de campo medio. A pesar de todo, ninguno de estos modelos es capaz de explicar satisfactoriamente la cinética observada en cristalizaciones primarias. El objetivo de este trabajo ha sido la simulación realista de la cinética de las transformaciones primarias para hallar una explicación consistente a las diferencias entre los datos experimentales y los modelos teóricos disponibles.
Para describir de manera realista el proceso de cristalización primaria se tiene que estudiar el proceso de nucleación y crecimiento de la fase secundaria a la vez que se resuelve la ecuación de difusión en la fase primaria. En este trabajo se ha usado un modelo de simulación phase-field que permite estudiar este sistema introduciendo una nueva variable ligada al campo de concentración que toma dos valores diferentes según se trate de fase transformada o no transformada. Con este tipo de modelos también se pueden introducir diferentes protocolos de nucleación y por tanto estudiar independientemente los efectos de la nucleación en la cinética. De esta manera se han realizado simulaciones en 2 y 3 dimensiones de cristalizaciones primarias con diferentes grados de fracción transformada final. Los resultados de la simulaciones se han comparado con el modelo KJMA y, en contra de lo que se preveía, se ha obtenido un buen acuerdo entre las fracciones transformadas del modelo KJMA y de las simulaciones. Dado que el modelo KJMA no reproduce satisfactoriamente el comportamiento experimental, de este resultado se deduce que ni el soft impingement ni la nucleación no aleatoria son las responsables del retardo en la cinética obtenido en cristalizaciones primarias.
Para encontrar una explicación físicamente convincente del comportamiento observado experimentalmente se ha profundizado en el estudio teórico de las cristalizaciones primarias, incluyendo el efecto de los cambios composicionales que tienen lugar en la matriz a medida que la transformación se produce. Este hecho, aún y ser conocido en la bibliografía, ha sido sistemáticamente ignorado en la elaboración de modelos cinéticos. En concreto, se ha hecho patente que cambios en la composición química de la fase primaria tienen que afectar de forma radical a la viscosidad, que varía fuertemente cerca de la transición vítrea, y tienen que producirse cambios en las propiedades de transporte atómico. Esto se ha modelado a través de la asunción de un coeficiente de difusión dependiente de la concentración, en base a la relación de Stokes-Einstein modificada entre la viscosidad y el coeficiente de difusión. Las simulaciones phsae-field con un coeficiente de difusión de este tipo dan lugar a una cinética más lenta y que muestra un acuerdo excelente con la cinética experimentalmente observada en cristalizaciones primarias de vidrios metálicos. Por tanto, las simulaciones phase-field confirman que la cinética de las cristalizaciones primarias está controlada fundamentalmente por los cambios en las propiedades de transporte atómico, mientras que los efectos de soft-impingement y nucleación no aleatoria, aún y estar presentes, son secundarios.
The aim of this thesis is to study the kinetics of primary crystallization in metallic glasses by means of phase-field simulations. A primary crystallization is a solid-solid phase transformation where the crystallized phase (transformed phase or secondary phase) has a chemical composition different than the precursor phase (untransformed phase or primary phase).
Experimental data from calorimetric studies of primary crystallization are usually studied in the framework of the KJMA model (Kolmogorov, Johnson & Mehl, Avrami). This model yields the temporal evolution of the transformed fraction on the basis of three main assumptions:
- A random distribution of particle nuclei of the secondary phase
- The growth of these nuclei is isotropic
- The growth is only halted by direct collisions (hard impingement).
In the crystallization of metallic glasses, a slowing down of the kinetics respect the behavior calculated with the KJMA kinetics has been observed. This delay is explained in the literature by the fact that in this kind of transformations, that are diffusion controlled, the interaction between the crystals is not direct but through the concentration profiles (soft impingement) and moreover, the evolution of these profiles causes changes in the concentration of the amorphous matrix, stabilizing it and thus, the nucleation of new nuclei become non random. Several authors had proposed modifications to the KJMA model to try to overcome these limitations, based either on geometrical considerations or in mean field approaches. However, none of these models is able to explain the observed kinetics in primary crystallizations. The aim of this work has been the realistic simulation of the kinetics of primary crystallization to find a explanation to the differences between the experimental data and the available theoretical models.
In order to describe in a realistic way the process of a primary crystallization, the nucleation and growth process of the secondary phase has to be studied at the same time that the diffusion equation is solved in the primary phase. In this work, it has been used a phase field model for the simulations that allows to study this system introducing a new variable, coupled to the concentration field, that takes two different values in each of the existing phases. With these kinds of models, different nucleation protocols can also be introduced and thus, independently study the effects of the nucleation in the kinetics. Therefore, 2 and 3 dimensional simulations of primary crystallization have been performed with several degrees of final transformed fraction. The simulation results have been compared with the KJMA model and, unexpectedly, a good agreement between the simulations and the KJMA model has been obtained. As the KJMA model does not reproduce satisfactorily the experimental behavior, from this result can be deduced that neither the soft impingement nor the non random nucleation are the responsible of the slowing down observed in the kinetics of primary crystallization.
In order to find a physical convincing explanation of the observed experimental behavior, the theoretical study of primary crystallization has been extended, including the effects of the compositional changes that take place in the matrix as the transformation proceed. This fact, notwithstanding being known in the literature, has been systematically ignored in the development of the kinetics models. In particular, it has become clear that changes in the chemical composition of the primary phase have to radically affect the viscosity, that strongly varies near the glass transition, and some changes in the atomic transport properties must occur. This has been modeled through the assumption of a compositional dependent diffusion coefficient, on the basis of a modified Stokes-Einstein relation between viscosity and diffusion coefficient. Phase field simulations with a diffusion coefficient of this type yield a slower kinetics and show an excellent agreement with the kinetics experimentally observed in primary crystallization of metallic glasses. Thus, phase field simulations confirm that the kinetics of primary crystallization is fundamentally controlled by the changes in the atomic transport properties, while the soft impingement and non random effects, although being present, are secondary.
Benke-Jacob, Julia Verfasser], Matthias [Akademischer Betreuer] Wuttig, and Joachim [Akademischer Betreuer] [Mayer. "Investigation of the crystallization kinetics in phase-change materials for different structurally non-crystalline phases in a wide time and temperature range / Julia Benke-Jacob ; Matthias Wuttig, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1220082430/34.
Full textBenke-Jacob, Julia [Verfasser], Matthias Akademischer Betreuer] Wuttig, and Joachim [Akademischer Betreuer] [Mayer. "Investigation of the crystallization kinetics in phase-change materials for different structurally non-crystalline phases in a wide time and temperature range / Julia Benke-Jacob ; Matthias Wuttig, Joachim Mayer." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1220082430/34.
Full textČervený, Ľuboš. "Kinetika neizotermické krystalizace polylaktidu s přídavkem vybraných činidel." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-444212.
Full textColonese, André. "Avaliação de propriedades mecânicas e térmicas de compósito à base de polietileno de alta densidade e hidroxiapatita deficiente de cálcio." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8492.
Full textIn this work, composites of high density polyethylene HDPE with calciumdeficient hydroxyapatite were synthesized in order to obtain materials with good mechanical properties and bioactivity. The addition of calcium-deficient hydroxyapatite resulted in an increase in elastic modulus (high rigidity), lower impact resistance and lower HDPE crystallinity degree, promoting, in these materials, a higher bioactivity. Scanning thermal analysis (non-isothermal system) was carried out by differential scanning calorimetry (DSC), and it was evaluated the calcium phosphate content added and the screw speed in the processing. In non-isothermal crystallization studies it was observed a decrease in crystallization temperature as the cooling rate was increased for all produced materials. The activation energy of crystallization was evaluated by Kissinger and Ozawa methods. The sample with 5 wt.% of calcium-deficient hydroxyapatite and processed at 200 rpm screw speed showed the lower value of activation energy (262 kJ/mol) and the lower deviation from linearity. Calcium-deficient hydroxyapatite does not promote the crystallization process due to the high activation energy determined by the described methods. Probably the screw speed promotes the dispersion of the filler in the HDPE matrix and hinders the crystallization process. Correlation coefficients in Osawa-Avrami method indicated loss in the linear correlation. These losses might be associated with a small percentage of secundary crystallization and/or the temperatures chosen to determine the crystallization rate. The parameters obteined from Mo method, the lower percentages of crystallization showed a great deviation from linearity, with correlation coefficient much smaller than 1, when increasing the percentage of crystallization, the deviation from linearity decreases, getting closer to 1.The results of Mo and Osawa-Avrami models were not able to set the kinetic behavior of the materials produced in this study.
Joshi, Sameehan Shrikant. "Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062821/.
Full textAnderegg, David Alexander. "In-Situ Monitoring and Simulations of the Non-Isothermal Crystallization of FFF Printed Materials." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/99303.
Full textMS
Ojosipe, B. A. "Non-isothermal kinetics : stability studies of drugs using automated high pressure liquid chromatography." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356435.
Full textBooks on the topic "Kinetics of non-isothermal crystallization"
Šesták, Jaroslav. Thermal analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics. Dordrecht: Springer Netherlands, 2013.
Find full textSimon, Peter, and Jaroslav Šesták. Thermal analysis of Micro, Nano- and Non-Crystalline Materials: Transformation, Crystallization, Kinetics and Thermodynamics. Ingramcontent, 2014.
Find full textF, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textF, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textF, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textF, Kelton K., and United States. National Aeronautics and Space Administration., eds. Computer modeling of non-isothermal crystallization. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textS, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textNon-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textS, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textS, Ray C., and United States. National Aeronautics and Space Administration., eds. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. 2nd ed. [Amsterdam: North-Holland, 1996.
Find full textBook chapters on the topic "Kinetics of non-isothermal crystallization"
Müller, Alejandro J., Rose Mary Michell, and Arnaldo T. Lorenzo. "Isothermal Crystallization Kinetics of Polymers." In Polymer Morphology, 181–203. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118892756.ch11.
Full textChu, Mei-Jan, and Tzong-Ming Wu. "Isothermal Crystallization Kinetics of Poly(Lactic Acid)/ Montmorillonite Nanocomposites." In Experimental Analysis of Nano and Engineering Materials and Structures, 827–28. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_411.
Full textZhou, Wang, Bing Xie, Wen-Feng Tan, Jiang Diao, Hong-Yi Li, and Zhang Tao. "Influence of CaO on Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag." In 7th International Symposium on High-Temperature Metallurgical Processing, 675–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119274643.ch83.
Full textZhou, Wang, Bing Xie, Wen-Feng Tan, Jiang Diao, Hong-Yi Li, and Zhang Tao. "Influence of CaO on Non-isothermal Crystallization Kinetics of Spinels in Vanadium Slag." In 7th International Symposium on High-Temperature Metallurgical Processing, 675–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48093-0_83.
Full textWu, Tzong-Ming, Sung-Fu Hsu, and Chien-Shiun Liao. "Isothermal Crystallization Kinetics of Poly(3-Hydroxybutyrate) /Layered Double Hydroxide Nanocomposites." In Experimental Analysis of Nano and Engineering Materials and Structures, 819–20. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_407.
Full textFang, Hai-Xing, Hong-Yi Li, Tao Zhang, Chao Liu, Cui Li, and Bing Xie. "Characteristics and Non-Isothermal Crystallization Kinetics of Spinels in Vanadium Slag Containing High Content of Chromium." In Characterization of Minerals, Metals, and Materials 2013, 345–54. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118659045.ch40.
Full textHwang, Nong Moon. "Charge-Enhanced Kinetics." In Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes, 291–306. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7616-5_13.
Full textPisitsak, Penwisa, and Rathanawan Magaraphan. "Non-Isothermal Crystallization Kinetics and Melting Behaviors of Thermoplastic/Liquid Crystalline Polymer Blends of Poly(Trimethylene Terephthalate)/Vectra A950." In Advances in Science and Technology, 249–54. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-11-7.249.
Full textRay, Hem Shanker, and Saradindukumar Ray. "Non-isothermal Kinetics." In Kinetics of Metallurgical Processes, 239–79. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0686-0_9.
Full textBruna, P., D. Crespo, R. González-Cinca, and E. Pineda. "Effects of Soft-Impingement and Non-random Nucleation on the Kinetics and Microstructural Development of Primary Crystallization." In Solid State Transformation and Heat Treatment, 126–34. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604839.ch16.
Full textConference papers on the topic "Kinetics of non-isothermal crystallization"
Rao, T. Lilly Shanker, A. M. Shaker, T. Shanker Rao, and K. Venkataraman. "Non-isothermal crystallization kinetics in xanthan gum biopolymer." In INTERNATIONAL CONFERENCE ON MULTIFUNCTIONAL MATERIALS (ICMM-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019759.
Full textKratochvíl, Jaroslav, and Ivan Kelnar. "Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites." In VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2016. http://dx.doi.org/10.1063/1.4949684.
Full textZinet, Matthieu, Rabie El Otmani, M’hamed Boutaous, and Patrice Chantrenne. "A Numerical Model for Non-Isothermal Flow Induced Crystallization in Thermoplastic Polymers." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-12122.
Full textKugele, Daniel, Dominik Dörr, Florian Wittemann, Benjamin Hangs, Julius Rausch, Luise Kärger, and Frank Henning. "Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5007992.
Full textOndro, Tomáš, Štefan Csáki, František Lukáč, and Anton Trník. "Non-isothermal kinetic analysis of spinel phase crystallization from metakaolinite." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5120167.
Full textDeng, Shuling, Chongmin Du, Hubin Lin, Jianyi Zhu, and Zhidan Lin. "Isothermal crystallization kinetics and morphology of nanodiamond/polyphenylene sulfide composites." In 2015 International Conference on Materials, Environmental and Biological Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/mebe-15.2015.24.
Full textBiswas, Swarup, and S. Bhattacharya. "Effect of polypyrrole embedment on non-isothermal crystallization kinetics of poly (vinylidene fluoride-co-hexafluoropropylene)." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980204.
Full textRefaa, Zakariaa, Mhamed Boutaous, Shihe Xin, and Patrick Bourgin. "Towards the Enhancement of the Crystallization Kinetics of a Bio-Sourced and Biodegradable Polymer PLA (Poly (Lactic Acid))." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21952.
Full textMarzuki, Ahmad, Khairurrijal, Mikrajuddin Abdullah, Wahyu Srigutomo, Sparisoma Viridi, and Novitrian. "Evaluation Of The Kinetics Of Crystallization in Aluminum Fluoride Glass Using Isothermal DSC Method." In THE 4TH ASIAN PHYSICS SYMPOSIUM—AN INTERNATIONAL SYMPOSIUM. AIP, 2010. http://dx.doi.org/10.1063/1.4757195.
Full textPatial, Balbir Singh, Nagesh Thakur, and S. K. Tripathi. "Kinetics of amorphous-crystallization transformation of Se[sub 85−x]Te[sub 15]Sn[sub x] (x = 2, 4 and 6) alloys under non-isothermal conditions using Matusita's approach." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791151.
Full text