Academic literature on the topic 'Kinetic of combustion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kinetic of combustion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kinetic of combustion"
Qin, Yuelin, Qingfeng Ling, Wenchao He, Jinglan Hu, and Xin Li. "Metallurgical Coke Combustion with Different Reactivity under Nonisothermal Conditions: A Kinetic Study." Materials 15, no. 3 (January 27, 2022): 987. http://dx.doi.org/10.3390/ma15030987.
Full textZhang, Yong Feng, Xiang Yun Chen, Quan Zhou, Qian Cheng Zhang, and Chun Ping Li. "Combustion Kinetic Analysis of Lignite in Different Oxygen Concentration." Advanced Materials Research 884-885 (January 2014): 37–40. http://dx.doi.org/10.4028/www.scientific.net/amr.884-885.37.
Full textOo, Chit Wityi, Masahiro Shioji, Hiroshi Kawanabe, Susan A. Roces, and Nathaniel P. Dugos. "A Skeletal Kinetic Model For Biodiesel Fuels Surrogate Blend Under Diesel-Engine Conditions." ASEAN Journal of Chemical Engineering 15, no. 1 (October 1, 2015): 52. http://dx.doi.org/10.22146/ajche.49693.
Full textZhu, Zhouyuan, Canhua Liu, Yajing Chen, Yuning Gong, Yang Song, and Junshi Tang. "In-situ Combustion Simulation from Laboratory to Field Scale." Geofluids 2021 (December 14, 2021): 1–12. http://dx.doi.org/10.1155/2021/8153583.
Full textSun, Minmin, Jianliang Zhang, Kejiang Li, Guangwei Wang, Haiyang Wang, and Qi Wang. "Thermal and kinetic analysis on the co-combustion behaviors of anthracite and PVC." Metallurgical Research & Technology 115, no. 4 (2018): 411. http://dx.doi.org/10.1051/metal/2018064.
Full textDinde, Prashant, A. Rajasekaran, and V. Babu. "3D numerical simulation of the supersonic combustion of H2." Aeronautical Journal 110, no. 1114 (December 2006): 773–82. http://dx.doi.org/10.1017/s0001924000001640.
Full textGutierrez, Albio D., and Luis F. Alvarez. "Simulation of Plasma Assisted Supersonic Combustion over a Flat Wall." Mathematical Modelling of Engineering Problems 9, no. 4 (August 31, 2022): 862–72. http://dx.doi.org/10.18280/mmep.090402.
Full textKomarov, Ivan, Daria Kharlamova, Bulat Makhmutov, Sofia Shabalova, and Ilya Kaplanovich. "Natural Gas-Oxygen Combustion in a Super-Critical Carbon Dioxide Gas Turbine Combustor." E3S Web of Conferences 178 (2020): 01027. http://dx.doi.org/10.1051/e3sconf/202017801027.
Full textZhang, Yong-Feng, Xiang-Yun Chen, Qian-Cheng Zhang, Chun-Ping Li, and Quan Zhou. "Oxygen-enriched combustion of lignite." Thermal Science 19, no. 4 (2015): 1389–92. http://dx.doi.org/10.2298/tsci1504389z.
Full textVárhegyi, Gábor, Zoltán Sebestyén, Zsuzsanna Czégény, Ferenc Lezsovits, and Sándor Könczöl. "Combustion Kinetics of Biomass Materials in the Kinetic Regime." Energy & Fuels 26, no. 2 (December 23, 2011): 1323–35. http://dx.doi.org/10.1021/ef201497k.
Full textDissertations / Theses on the topic "Kinetic of combustion"
Marsano, Flavio. "Chemical kinetic modelling of hydrocarbon combustion." Thesis, Cardiff University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402067.
Full textMartins, Ivana. "Redução sistemática de mecanismos cinéticos de combustão." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/35625.
Full textDetailed chemical kinetic mechanisms are routinely used to describe, at the molecular level, the transformation of reactants to products of combustion, which occurs via many elementary steps. Its use in computer models to simulate combustion processes can generate information to improve the fuel quality and performance of the combustion process, and to quantify the emissions from this process. Thus, to describe a process of oxidation, the computational effort becomes very large, requiring simplifications of the reaction mechanism. The development of reduced kinetic mechanisms for combustion processes aims to reduce the computational effort necessary for the numerical analysis. The reduced models can replace the differential equations of the intermediate species, which are considered to be in steady state, through algebraic relationships. In this way, this work develops a method for reducing the kinetics of combustion for hydrogen, carbon monoxide and hydrocarbons C1-C7, using assumptions of steady-state. A detailed kinetic mechanism containing 439 elementary reactions was analysed and reduced mechanisms with up to 10 steps were developed. Comparisons between experiment and simulations for the reduced kinetic mechanism of methane and propane, show good agreement, validating these mechanisms, and consequently, increasing the reliability of the others mechanisms studied.
Honnet, Sylvie. "Detailed and reduced kinetic mechanisms in low-emission combustion processes /." Göttingen : Cuvillier, 2007. http://d-nb.info/98605528X/04.
Full textZANONI, M. A. B. "Smoldering Combustion In Porous Media Kinetic Models For Numerical Simulations." Universidade Federal do Espírito Santo, 2012. http://repositorio.ufes.br/handle/10/4161.
Full textTecnologias avançadas para a geração de energia usando combustíveis não convencionais xisto betuminoso e seu semi-coque, areias betuminosas, petróleo extra-pesado e biomassa proveniente de resíduos sólidos urbanos e de lodo de esgoto - têm em comum processos termoquímicos compostos de complexas reações químicas. Este trabalho trata da formulação e otimização de mecanismos químicos normalmente envolvidos na pirólise do xisto betuminoso e na combustão do xisto betuminoso e seu semi-coque. Problemas inversos (usando o algoritmo de Levenberg-Marquardt) foram empregados para minimizar o erro entre os valores estimados e os dados de termogravimétria para os mecanismos de reação de 3 passos para a pirólise do xisto betuminos, e mecanismos de 4 e 3 passos para o xisto betuminoso e seu semi-coque, respectivamente. Os parâmetros cinéticos, tais como ordem de reação, fator pré-exponencial, energia de ativação e os coeficientes estequiométricos que afetam a secagem, as reações de oxidação, pirólise e descarbonatação foram estimadas com sucesso. Além disso, os erros estatísticos e residuais foram avaliados, resultando em um valor razoável para todas as estimativas e o mecanismo cinético proposto e estimado para a combustão do semi-coque foi aplicado em um código em meios porosos. Um estudo paramétrico entre o perfil de temperatura e a velocidade do ar, e o perfil de temperatura e a concentração de carbono fixo foi desenvolvido. Este estudo mostra que o perfil de temperatura é extremamente influenciado por estes parâmetros, confirmando que a propagação da frente é controlada pela injeção de O2. Palavras-chave: Xisto Betuminoso, Semi-Coque, Pirólise, Combustão, Estimação de Parâmetros, Problemas Inversos, Levenberg-Marquardt, Meios Porosos.
Leung, Kai Ming. "Kinetic modelling of hydrocarbon flames using detailed and systematically reduced chemistry." Thesis, Imperial College London, 1995. http://hdl.handle.net/10044/1/7760.
Full textFürst, Magnus. "Uncertainty Quantification and Optimization of kinetic mechanisms for non-conventional combustion regimes: Turning uncertainties into possibilities." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/307514/5/contratMF.pdf.
Full textDoctorat en Sciences de l'ingénieur et technologie
This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 643134, and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 714605.
info:eu-repo/semantics/nonPublished
Qureshi, Nafisa. "A kinetic study of Maya crude oil for in-situ combustion." Thesis, University of Salford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.484213.
Full textSOUZA, OBERDAN MIGUEL RODRIGUES DE. "PRESUMED PDF MODEL WITH TABULATED CHEMICAL KINETIC APPLIED FOR SPRAY COMBUSTION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30283@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Neste trabalho, foi desenvolvida uma modificação do modelo para simulação de sprays Diesel com o método de PDF presumida e cinética química tabulada. Através do acoplamento entre a parte química e a parte turbulenta, avaliou-se os efeitos do spray com a metodologia flamelet. Onde o conceito flamelet trata a chama difusiva e transiente como um conjunto de chamas unidimensionais, utilizando o modelo de PDF presumida para a avaliação dos valores turbulentos. A validação do modelo foi realizada com dados experimentais do laboratório Sandia, em uma câmara a volume constante. A validação e a aplicação do modelo foram conduzidas em diferentes tipos de ensaios experimentais: avaliação e comparação para diferentes modelos de cinética química do n-heptano, validação do método para o modelo de turbulência K-epsilon na câmara de volume constante do Sandia para o n-heptano não reativo, validação e comparação do modelo para o spray reativo e aplicação de modelo para o estudo comprimento do ancoramento de chama e para o tempo de atraso de ignição do n-heptano para diferentes temperaturas ambientes. Em geral, a modelagem proposta tem demonstrado excelente capacidade de previsão para a combustão com spray Diesel numa vasta gama de aplicações e é um candidato altamente promissor para outras aplicações em motores Diesel.
In this work, a modification of the model for the simulation of diesel sprays with the presumed PDF method and tabulated chemical kinetics was developed. Through the coupling between the chemical part and the turbulent part, the effects of the spray were evaluated for the flamelet methodology. Where the textit flamelet concept treats the diffusive and transient flame as a set of one-dimensional flames, using the presumed PDF model for the evaluation of turbulent values. The validation of the model was performed with experimental data from the Sandia laboratory, in a chamber at constant volume. The validation and application of the model were conducted in different types of experimental trials: evaluation and comparison for different chemical kinetics models of n-heptane, validation of the method for the turbulence model K-epsilon in the constant volume chamber of the Sandia for non-reactive n-heptane, validation and comparison of the model for the reactive spray and model application for the study of the flame anchoring length and for the ignition delay time of n-heptane at different ambient temperatures. In general, the proposed modeling has demonstrated excellent predictive capacity for diesel spray combustion in a wide range of applications and is a highly promising candidate for other applications in diesel engines.
Khan, Mohammad A. "Thermochemical kinetic studies of organic peroxides relevant to the combustion of hydrocarbons." Thesis, University of Aberdeen, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.290241.
Full textPhadungsukanan, Weerapong. "Building a computational chemistry database system for the kinetic studies in combustion." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648233.
Full textBooks on the topic "Kinetic of combustion"
Norbert, Peters, and Rogg Bernd 1951-, eds. Reduced kinetic mechanisms for applications in combustion systems. Berlin: Springer-Verlag, 1993.
Find full textWestley, Francis. Compilation of chemical Kinetic data for combustion chemistry. Washington: National Bureau of Standards, 1987.
Find full textWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textPeters, Norbert, and Bernd Rogg, eds. Reduced Kinetic Mechanisms for Applications in Combustion Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-540-47543-9.
Full textWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Washington: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textWestley, Francis. Compilation of chemical kinetic data for combustion chemistry. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textKamath, Vimod Mangalore. A kinetic study of in-situ combustion for oil recovery. Salford: University of Salford, 1986.
Find full textKrishna, Kundu, Ghorashi Bahman, and United States. National Aeronautics and Space Administration., eds. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textP, Kundu Krishna, Ghorashi Bahman, and United States. National Aeronautics and Space Administration., eds. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textP, Kundu Krishna, Ghorashi Bahman, and United States. National Aeronautics and Space Administration., eds. Simplified Jet-A kinetic mechanism for combustor application. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Kinetic of combustion"
Turányi, Tamás, and Alison S. Tomlin. "Storage of Chemical Kinetic Information." In Cleaner Combustion, 485–512. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_19.
Full textBlurock, Edward, and Frédérique Battin-Leclerc. "Modeling Combustion with Detailed Kinetic Mechanisms." In Cleaner Combustion, 17–57. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_2.
Full textFaravelli, Tiziano, Alessio Frassoldati, Emma Barker Hemings, and Eliseo Ranzi. "Multistep Kinetic Model of Biomass Pyrolysis." In Cleaner Combustion, 111–39. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_5.
Full textFittschen, Christa. "Kinetic Studies of Elementary Chemical Steps with Relevance in Combustion and Environmental Chemistry." In Cleaner Combustion, 607–28. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_23.
Full textBattin-Leclerc, Frédérique, Henry Curran, Tiziano Faravelli, and Pierre A. Glaude. "Specificities Related to Detailed Kinetic Models for the Combustion of Oxygenated Fuels Components." In Cleaner Combustion, 93–109. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5307-8_4.
Full textBoettner, J. C., M. Cathonnet, P. Dagaut, and F. Gaillard. "Kinetic Modelling of Light Hydrocarbons Combustion." In Mathematical Modeling in Combustion and Related Topics, 421–29. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2770-4_27.
Full textRubtsov, Nickolai M. "Some Features of Kinetic Mechanisms of Gaseous Combustion." In The Modes of Gaseous Combustion, 83–109. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25933-8_4.
Full textZhang, Jing, and Ping Lu. "Study on Kinetic Parameters and Reductive Decomposition Characteristics of FGD Gypsum." In Cleaner Combustion and Sustainable World, 411–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_58.
Full textKlimontovich, Yu I. "Kinetic Description of Autowave Processes and Hydrodynamic Motion." In Dissipative Structures in Transport Processes and Combustion, 144–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84230-6_11.
Full textWang, Zhandong. "Experimental Method and Kinetic Modeling." In Experimental and Kinetic Modeling Study of Cyclohexane and Its Mono-alkylated Derivatives Combustion, 23–37. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5693-2_2.
Full textConference papers on the topic "Kinetic of combustion"
Ju, Yiguang, Joseph K. Lefkowitz, Tomoya Wada, Xueliang Yang, Sang Hee Won, and Wenting Sun. "Plasma assisted combustion: kinetic studies and new combustion technology." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0156.
Full textCavanzo, E. A., S. F. Muñoz, A. Ordoñez, and H. Bottia. "Kinetics of Wet In-Situ Combustion: A Review of Kinetic Models." In SPE Heavy and Extra Heavy Oil Conference: Latin America. SPE, 2014. http://dx.doi.org/10.2118/171134-ms.
Full textJoklik, Richard G., Ponnuthurai Gokulakrishnan, and Michael S. Klassen. "Kinetic Modeling of Plasma-Enhanced Vitiated Combustion." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43772.
Full textSuttle, Aaron E., Brian T. Fisher, Dennis R. Parnell, and Joshua A. Bittle. "Demonstrating a Direct-Injection Constant-Volume Combustion Chamber As a Validation Tool for Chemical Kinetic Modeling of Liquid Fuels." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9729.
Full textDagaut, P., A. Mze´-Ahmed, K. Hadj-Ali, and P. Die´vart. "Synthetic Jet Fuel Combustion: Experimental and Kinetic Modeling Study." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45234.
Full textRao, G. Arvind, Yeshayahou Levy, and Ephraim J. Gutmark. "Chemical Kinetic Analysis of a Flameless Gas Turbine Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50619.
Full textGalie, Peter, Bo Xu, and Yiguang Ju. "Kinetic Enhancement of Mesoscale Combustion by Using a Novel Nested Doll Combustor." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-576.
Full textWang, Huiru, and Jie Jin. "Reduced Chemical Kinetic Mechanism for Jet Fuel Combustion." In 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6709.
Full textMiyoshi, Akira. "SI Combustion Characteristics of Cyclopentane - Detailed Kinetic Mechanism." In 2019 JSAE/SAE Powertrains, Fuels and Lubricants. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2019. http://dx.doi.org/10.4271/2019-01-2305.
Full textMontgomery, C., S. Cannon, M. Mawid, and B. Sekar. "Reduced chemical kinetic mechanisms for JP-8 combustion." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-336.
Full textReports on the topic "Kinetic of combustion"
Pitz, William J., Marco Mehl, and Charles K. Westbrook. Chemical Kinetic Models for Advanced Engine Combustion. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1174293.
Full textLempert, Walter R., and Igor V. Adamovich. Kinetic Studies of Nonequilibrium Plasma-Assisted Combustion. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada524301.
Full textPitz, W., and C. Westbrook. Chemical Kinetic Modeling of Hydrogen Combustion Limits. Office of Scientific and Technical Information (OSTI), April 2008. http://dx.doi.org/10.2172/928549.
Full textPitz, W., C. Westbrook, and E. Silke. Chemical Kinetic Modeling of Combustion of Automotive Fuels. Office of Scientific and Technical Information (OSTI), November 2006. http://dx.doi.org/10.2172/897957.
Full textWestley, Francis, John T. Herron, and R. J. Cvetanovic. Compilation of chemical kinetic data for combustion chemistry :. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.nsrds.73p1.
Full textWestley, Francis, John T. Herron, and R. J. Cvetanovic. Compilation of chemical kinetic data for combustion chemistry :. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.nsrds.73p2.
Full textPitz, W., C. Westbook, and M. Mehl. Chemical Kinetic Models for HCCI and Diesel Combustion. Office of Scientific and Technical Information (OSTI), October 2008. http://dx.doi.org/10.2172/945558.
Full textPitz, W., C. Westbrook, M. Mehl, and S. Sarathy. Chemical Kinetic Models for HCCI and Diesel Combustion. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1016930.
Full textSeshadri, K. Chemical-Kinetic Characterization of Autoignition and Combustion of Surrogate Diesel. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/15007311.
Full textMitchell, R., R. Hurt, L. Baxter, and D. Hardesty. Compilation of Sandia coal char combustion data and kinetic analyses. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7045508.
Full text