Academic literature on the topic 'Kinesthetic motor imagery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kinesthetic motor imagery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kinesthetic motor imagery":

1

Sadato, Norihiro, and Eiichi Naito. "Emulation of kinesthesia during motor imagery." Behavioral and Brain Sciences 27, no. 3 (June 2004): 412–13. http://dx.doi.org/10.1017/s0140525x0438009x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Illusory kinesthetic sensation was influenced by motor imagery of the wrist following tendon vibration. The imagery and the illusion conditions commonly activated the contralateral cingulate motor area, supplementary motor area, dorsal premotor cortex, and ipsilateral cerebellum. This supports the notion that motor imagery is a mental rehearsal of movement, during which expected kinesthetic sensation is emulated by recruiting multiple motor areas, commonly activated by pure kinesthesia.
2

Ryo, K. "Kinestheitc motor imagery internally generate kinesthetic sensations." Neuroscience Research 38 (2000): S153. http://dx.doi.org/10.1016/s0168-0102(00)81764-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kwon, Sechang, Jingu Kim, and Teri Kim. "Neuropsychological Activations and Networks While Performing Visual and Kinesthetic Motor Imagery." Brain Sciences 13, no. 7 (June 22, 2023): 983. http://dx.doi.org/10.3390/brainsci13070983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This study aimed to answer the questions ‘What are the neural networks and mechanisms involved in visual and kinesthetic motor imagery?’, and ‘Is part of cognitive processing included during visual and kinesthetic motor imagery?’ by investigating the neurophysiological networks and activations during visual and kinesthetic motor imagery using motor imagery tasks (golf putting). The experiment was conducted with 19 healthy adults. Functional magnetic resonance imaging (fMRI) was used to examine neural activations and networks during visual and kinesthetic motor imagery using golf putting tasks. The findings of the analysis on cerebral activation patterns based on the two distinct types of motor imagery indicate that the posterior lobe, occipital lobe, and limbic lobe exhibited activation, and the right hemisphere was activated during the process of visual motor imagery. The activation of the temporal lobe and the parietal lobe were observed during the process of kinesthetic motor imagery. This study revealed that visual motor imagery elicited stronger activation in the right frontal lobe, whereas kinesthetic motor imagery resulted in greater activation in the left frontal lobe. It seems that kinesthetic motor imagery activates the primary somatosensory cortex (BA 2), the secondary somatosensory cortex (BA 5 and 7), and the temporal lobe areas and induces human sensibility. The present investigation evinced that the neural network and the regions of the brain that are activated exhibit variability contingent on the category of motor imagery.
4

Zhang, Lanlan, Yanling Pi, Hua Zhu, Cheng Shen, Jian Zhang, and Yin Wu. "Motor experience with a sport-specific implement affects motor imagery." PeerJ 6 (April 27, 2018): e4687. http://dx.doi.org/10.7717/peerj.4687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts.
5

Coker Girón, Elizabeth, Tara Mclsaac, and Dawn Nilsen. "Effects of Kinesthetic versus Visual Imagery Practice on Two Technical Dance Movements." Journal of Dance Medicine & Science 16, no. 1 (March 2012): 36–38. http://dx.doi.org/10.1177/1089313x1201600105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Motor imagery is a type of mental practice that involves imagining the body performing a movement in the absence of motor output. Dance training traditionally incorporates mental practice techniques, but quantitative effects of motor imagery on the performance of dance movements are largely unknown. This pilot study compared the effects of two different imagery modalities, external visual imagery and kinesthetic imagery, on pelvis and hip kinematics during two technical dance movements, plié and sauté. Each of three female dance students (mean age = 19.7 years, mean years of training = 10.7) was assigned to use a type of imagery practice: visual imagery, kinesthetic imagery, or no imagery. Effects of motor imagery on peak external hip rotation varied by both modality and task. Kinesthetic imagery increased peak external hip rotation for pliés, while visual imagery increased peak external hip rotation for sautés. Findings suggest that the success of motor imagery in improving performance may be task-specific. Dancers may benefit from matching imagery modality to technical tasks in order to improve alignment and thereby avoid chronic injury.
6

Stepp, C. E., N. Oyunerdene, and Y. Matsuoka. "Kinesthetic Motor Imagery Modulates Intermuscular Coherence." IEEE Transactions on Neural Systems and Rehabilitation Engineering 19, no. 6 (December 2011): 638–43. http://dx.doi.org/10.1109/tnsre.2011.2168982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodrigues, E. C., T. Lemos, B. Gouvea, E. Volchan, L. A. Imbiriba, and C. D. Vargas. "Kinesthetic motor imagery modulates body sway." Neuroscience 169, no. 2 (August 2010): 743–50. http://dx.doi.org/10.1016/j.neuroscience.2010.04.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oldrati, Viola, Alessandra Finisguerra, Alessio Avenanti, Salvatore Maria Aglioti, and Cosimo Urgesi. "Differential Influence of the Dorsal Premotor and Primary Somatosensory Cortex on Corticospinal Excitability during Kinesthetic and Visual Motor Imagery: A Low-Frequency Repetitive Transcranial Magnetic Stimulation Study." Brain Sciences 11, no. 9 (September 10, 2021): 1196. http://dx.doi.org/10.3390/brainsci11091196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Consistent evidence suggests that motor imagery involves the activation of several sensorimotor areas also involved during action execution, including the dorsal premotor cortex (dPMC) and the primary somatosensory cortex (S1). However, it is still unclear whether their involvement is specific for either kinesthetic or visual imagery or whether they contribute to motor activation for both modalities. Although sensorial experience during motor imagery is often multimodal, identifying the modality exerting greater facilitation of the motor system may allow optimizing the functional outcomes of rehabilitation interventions. In a sample of healthy adults, we combined 1 Hz repetitive transcranial magnetic stimulation (rTMS) to suppress neural activity of the dPMC, S1, and primary motor cortex (M1) with single-pulse TMS over M1 for measuring cortico-spinal excitability (CSE) during kinesthetic and visual motor imagery of finger movements as compared to static imagery conditions. We found that rTMS over both dPMC and S1, but not over M1, modulates the muscle-specific facilitation of CSE during kinesthetic but not during visual motor imagery. Furthermore, dPMC rTMS suppressed the facilitation of CSE, whereas S1 rTMS boosted it. The results highlight the differential pattern of cortico-cortical connectivity within the sensorimotor system during the mental simulation of the kinesthetic and visual consequences of actions.
9

Ozlem, Ozcan, and Kul Hayriye. "Kinesthetic and visual imagery in young adults with chronic neck pain." Sanamed, no. 00 (2022): 4. http://dx.doi.org/10.5937/sanamed17-37885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Background:Young adults complain of neck pain almost every year. In recent years the ability of motor imagery (kinesthetic and visual imagery) in many musculoskeletal system problems other than neck pain in young adults has been investigated in the literature. The Cross-Sectional study aimed to question motor imagery ability in young adults with chronic neck pain. Methods: Two groups were included in the study: the chronic neck pain group (n = 83) and the control group (n = 91). Motor imagery ability of both groups was evaluated with Movement Imagery Questionnaire-3. Additionally, in the chronic neck pain group, pain was evaluated with the Short Form-McGill Pain Questionnaire, disability was evaluated with the Neck Disability Index, and kinesiophobia was evaluated with Tampa Scale for Kinesiophobia. Conclusions: Internal visual imagery and kinesthetic imagery were significantly different between chronic neck pain and control groups. There was a negative linear relationship between disability and internal visual imagery, external visual imagery, and kinesthetic imagery. Motor imagery ability is reduced in young adults with chronic neck pain. In addition, as the severity of disability increases, the motor imagery ability decreases. Therefore, it is considered appropriate to include a motor imagery training program when treating chronic neck pain in the future.
10

Ramezanzade, Hesam, Georgian Badicu, Stefania Cataldi, Fateme Parimi, Sahar Mohammadzadeh, Mahya Mohamadtaghi, Seyed Hojjat Zamani Zamani Sani, and Gianpiero Greco. "Sonification of Motor Imagery in the Basketball Jump Shot: Effect on Muscle Activity Amplitude." Applied Sciences 13, no. 3 (January 23, 2023): 1495. http://dx.doi.org/10.3390/app13031495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The purpose of this research was to study the effect of AudioVisual pattern on the muscle activity amplitude during mental imagery. For this purpose, 25 female students (20.73 ± 1.56 years old) engaged in mental imagery (internal, external, and kinesthetic) in three conditions: No pattern, Visual pattern, and AudioVisual pattern. The angular velocity of the elbow joint in the basketball jump shot skill was sonified and presented to the subjects as an auditory pattern. The results showed that the muscle activity amplitude in AudioVisual–kinesthetic and AudioVisual–internal (and not external) conditions is higher than for other conditions. Additionally, a positive correlation was observed between Visual–kinesthetic imagery ability and muscle activity amplitude in the AudioVisual pattern condition and in kinesthetic and internal imagery. In addition, the muscle activity amplitude of high and low Visual–kinesthetic imagery ability conditions were only different in the AudioVisual pattern. The superiority of the AudioVisual condition is most likely due to the auditory information presented in this research being closely related to the kinesthetic sense of movement.

Dissertations / Theses on the topic "Kinesthetic motor imagery":

1

Herrera, Altamira Gabriela. "Vibrotactile feedback to support kinesthetic motor imagery in a brain-computer interface for post-stroke motor rehabilitation." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0002_HERRERA_ALTAMIRA.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les interfaces cerveau-ordinateur (ICOs) basées sur l'imagination motrice offrent des solutions prometteuses pour la rééducation motrice des patients après un accident vasculaire cérébrale (AVC). L'imagerie motrice kinesthésique (IMK) consiste à imaginer les sensations d'un mouvement, telles que la température, la pression, la rugosité, la contraction musculaire et l'activation nerveuse, plutôt que de visualiser le mouvement. Cependant, l'IMK ne comporte pas de retour sensoriel ou kinesthésique, ce qui rend cette tâche difficile à comprendre, à apprendre et à réaliser. Cette absence de retour d'information, ou feedback en anglais, restreint l'évaluation de la performance et l'orientation thérapeutique des patients post-AVC. Pour faire face à ce problème, un retour d'information est fourni aux patients et aux thérapeutes en fonction de la performance du patient. Diverses modalités de feedback ont été étudiées pour résoudre ce problème, notamment visuelles, la stimulation électrique fonctionnelle, les exosquelettes et les robots. Le feedback vibrotactile est une alternative peu explorée, qui vise à stimuler la peau et s'adresse aux patients avec une mobilité très réduite qui ne peuvent pas profiter des autres solutions. La combinaison des différents feedbacks est révélée comme une approche prometteuse pour fournir un retour d'information plus efficace et améliorer le processus de réadaptation. Le développement du feedback pour les ICOs a souvent donné la priorité au progrès technologique plutôt qu'aux considérations centrées sur le patient, ce qui a eu pour conséquence une adoption clinique limitée. Cette thèse adopte une nouvelle approche de recherche basée sur la conception (desing-based research en anglais, DBR), plaçant l'utilisateur au cœur du développement du système du retour d'information. L'objectif est de concevoir et d'évaluer un feedback vibrotactile, complémenté par un feedback visuel, et de l'intégrer à une ICO basée sur l'IMK pour améliorer la rééducation motrice post-AVC. Nous commençons par identifier les besoins et les objectifs des patients post-AVC qui suivent un entraînement par une ICO. Comme résultat, nous avons formulé l'hypothèse que le feedback bimodal (intégrant les modalités vibrotactiles et visuelles) peut améliorer l'IMK dans le contexte d'interaction avec une ICO. Le dispositif vibrotactile est ensuite construit en tenant compte des limitations anatomiques et physiques des patients post-AVC. Ensuite, la stimulation vibrotactile est construite en deux phases : établissement des seuils sensoriels de vibration pour trois groupes des âges différents et synchronisation d'un environnement visuel avec la stimulation vibrotactile. Différents modèles de vibration sont comparés pour déterminer celui qui correspond le mieux à l'animation graphique. La stimulation a été conçue en s'inspirant de l'activation des muscles lors d'un mouvement de préhension. Après la validation de la stimulation, l'ICO est évaluée auprès d'un groupe de participants neurotypiques afin de mesurer l'efficacité, l'utilisabilité et la fiabilité du système. Trois modalités de feedback (vibrotactile, visuelle, bimodal — vibrotactile et visuelle) sont comparées pour évaluer leur efficacité à soutenir l'exécution de l'IMK. Cette recherche met en évidence le potentiel d'une approche centrée sur l'utilisateur pour développer des solutions de feedback qui améliorent l'IMK et la rééducation. Un protocole expérimental est présenté pour une future étude chez les patients post-AVC afin d'évaluer l'acceptabilité et l'utilisabilité de l'ICO avec un feedback bimodal méticuleusement conçu. Les résultats de ce travail offrent les basses pour l'application de notre ICO dans la pratique clinique, avec le potentiel de bénéficier les patients post-AVC
Motor imagery-based brain-computer interfaces (BCI) offer promising solutions for post-stroke motor rehabilitation. Kinesthetic motor imagery (KMI) consists of imagining the sensations of a movement (such as temperature, pressure, roughness, muscular contraction, and nerve activation) rather than visualizing the movement. However, KMI lacks sensory or kinesthetic feedback, making this task challenging to understand, learn, and perform. This absence of feedback hinders performance evaluation and therapeutic guidance for post-stroke patients. To address this issue, feedback is provided to both patients and therapists, based on the patient's performance. Various feedback modalities, including visual, functional electrical stimulation, exoskeletons, and robotic assistance, have been explored to bridge this gap. Vibrotactile feedback is an underexplored alternative, that offers skin stimulation, targeting patients with limited mobility. Combining different feedback modalities has emerged as a promising approach to provide more effective feedback and enhance the rehabilitation process. The development of BCI feedback has often prioritized technological advancement over patient-centric considerations, resulting in limited clinical adoption. This thesis adopts a novel design-based research (DBR) approach, placing the user at the core of feedback system development. The objective is to design and evaluate vibrotactile feedback, complemented with visual feedback and integrated it with a KMI-based BCI to improve post-stroke motor rehabilitation. We start by identifying the needs and objectives of patients undergoing BCI training, leading to the hypothesis that bimodal feedback (combining vibrotactile and visual modalities) can enhance KMI within the BCI context. We tailor the vibrotactile stimulation to provide precise sensory feedback during grasping KMI. The vibrotactile device is then built considering the anatomical and physical limitations of post-stroke patients. Then, the vibrotactile stimulation is built in two phases: establishing vibration sensory thresholds for age-dependent groups and synchronizing a visual environment with vibrotactile stimulation. Different vibration patterns are compared to determine the one that better corresponds to the graphic animation. The stimulation was designed, drawing inspiration from the natural muscle activation of the muscles during grasping. Following the validation of the stimulation, the BCI is assessed with a group of neurotypical participants to measure its efficacy in improving KMI and evaluate its acceptability, usability, and reliability. Three feedback modalities (vibrotactile, visual and bimodal - vibrotactile and visual) are compared to determine their effectiveness. This research highlights the potential of a user-centered approach for developing feedback solutions that enhance motor imagery and rehabilitation outcomes. Furthermore, an experimental protocol is presented for future studies with post-stroke patients to assess the acceptability and usability of the meticulously designed BCI with bimodal feedback. The findings of this work lay the foundation for translating the resulting BCI into practical clinical applications, ultimately benefiting post-stroke patients
2

Jackson, Elizabeth Helene. "An exploratory examination of the electroencephalographic correlates of aural imagery, kinesthetic imagery, music listening, and motor movement by novice and expert conductors." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345482654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rabahi, Tahar. "Étude des relations entre stimuli cognitifs et la motricité relative à un geste complexe." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10023/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Plusieurs travaux ont montré que les aires cortico-motrices, localisées dans le cortex frontal et responsables des mouvements volontaires, pouvaient être impliquées dans le processus de compréhension de mots d'action. De ce point de vue, il a été rapporté que la performance d'un acte moteur simple (e.g.: attraper un objet) pouvait être améliorée par la prononciation, la lecture ou l'écoute de mots évoquant une action. Nous avons approché la relation entre parole et action à travers l'étude de l'effet de verbes d'action ainsi que d'autres stimuli cognitifs, l'imagerie kinesthésique (IK) et la soustraction mentale (SM), sur la performance d'un acte moteur complexe, le Squat Vertical Jump (SVJ, ou saut vertical accroupi). Nous avons mesuré la hauteur du SVJ chez des hommes (7 expériences, n = 114) et des femmes (2 expériences, n = 41) à l'aide de deux systèmes de mesure, l'Optojump® et le Myotest®. Les résultats ont montré que la prononciation silencieuse et à haute voix du verbe d'action spécifique au SVJ (saute, conjugué à la première personne de l'impératif), ainsi que l'IK et la SM, améliorent significativement la performance du saut, chez les hommes (jusqu'à + 2,7 cm) et, de manière moins prononcée, chez les femmes (jusqu'à + 1 cm dans 2 expériences). Le reste des résultats obtenus avec les hommes ont indiqué que la prononciation du verbe d'action non spécifique au saut (pince) augmente également la hauteur en SVJ, alors que la prononciation ou l'écoute d'autres verbes sans lien avec le saut (lèche, bouge) n'ont pas eu d'effet significatif sur le SVJ. C'est également le cas du verbe d'état 'rêve et d'un verbe incompréhensible par les sujets (tiào : saute en Chinois) ou encore des verbes qui contredisent et/ou qui s'opposent au déroulement de l'action de sauter (tombe et stoppe). La hauteur du saut a été par ailleurs significativement impactée lorsque les sujets ont prononcé des verbes à fort attributs émotifs (gagne et son antonyme perds)
Several studies have shown that cortical motor areas, located in the frontal cortex and responsible for voluntary movement, might be involved in the process of understanding action words. From this point of view, it has been reported that the performance of a simple motor act (e.g.: catching an object) might be improved by the pronunciation, reading or listening to words referring to the action. We approached the relationship between speech and action through the study of the effect of action verbs and other cognitive stimuli, kinesthetic imagery (KI) and mental subtraction (MS), upon the performance of a complex motor act, the Squat vertical jump (SVJ). We measured the height of SVJ in young naive men (7 experiments, n = 114) and women (2 experiments, n = 41) using an Optojump® and a Myotest® apparatuses. The results showed that the silent and loud pronunciation of specific action verb to SVJ (jump), the KI and the MS improved significantly the performance of the movement, in men (up to 2.7 cm) but less in women (up to + 1 cm in the 2 experiments). The results of other experiments obtained with men indicated that pronunciation of the action verb nonspecific to the jump (pinch) increased also the SVJ performance, while the pronunciation or listening to other verbs unrelated to the jump (Jick, move) had no significant effect on the SVJ. A meaningless verb for the French subjects (tiao = jump in Chinese) showed, in turn, no effect as did dream, faJJ and stop. The verb win improved significantly the SVJ height as much as its antonym Jose, thus suggesting a possible influence of affects in the subjects' performance. It appears that the effects of the specific action verb jump did seem effective but not totally exclusive for the enhancement of the SVJ performance, since non-linguistic stimuli (IK) or unrelated to action (MS) may have had a positive effect on the improvement in motor performance. Moreover verbs referring to emotion, unrelated to action, increased the height of SVJ similarly to the specific action verb jump. The results led us to consider the hypothesis that improving the performance of a complex gesture is dependent, a minima, upon the individual's intention, attention, emotions and also, and perhaps most importantly, concepts (we call concepts, the mental representations) as they may be induced by the cerebral processing of words

Book chapters on the topic "Kinesthetic motor imagery":

1

Anema, Helen A., and H. Chris Dijkerman. "Motor and Kinesthetic Imagery." In Multisensory Imagery, 93–113. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5879-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stecklow, M. V., M. Cagy, and A. F. C. Infantosi. "Investigating the EEG Alpha Band during Kinesthetic and Visual Motor Imagery of the Spike Volleyball Movement." In XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010, 41–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13039-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bunno, Yoshibumi, Chieko Onigata, and Toshiaki Suzuki. "Motor imagery in evidence-based physical therapy." In Physical Therapy - Towards Evidence-Based Practice [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1003041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Motor imagery allows patients with difficulty in voluntary movements to mentally practice a target motor task. Numerous neurophysiological studies have investigated the mechanisms underlying the benefits of motor imagery, but many aspects remain unclear. Since both central and spinal neural function need to be leveraged to improve various motor functions, we have investigated motor imagery and spinal neural functions. Our previous research demonstrated a facilitation effect of motor imagery on spinal neural function and an immediate effect on muscle strength. Specifically, a mild imagined muscle contraction strength may be sufficient to enhance the excitability of spinal motor neurons. In addition, kinesthetic imagery or combined action observation and motor imagery may substantially enhance the excitability of spinal motor neurons. Also, keeping a position of the upper or lower extremities close to the desired movements leads to greater enhancement of the excitability of spinal motor neurons during motor imagery.
4

Shah, Rakshit, Sohail Daulat, Vadivelan Ramu, Viashen Moodley, Puja Sengupta, Deepa Madathil, Yifei Yao, and Kishor Lakshminarayanan. "Applications of Brain-Computer Interface in Action Observation and Motor Imagery." In New Insights in Brain-Computer Interface Systems [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.114042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Motor imagery (MI) and action observation (AO) are vital elements in brain-computer interface (BCI) applications. MI involves mentally simulating movements and physical execution, while AO involves observing others perform actions. Both activate crucial brain areas linked to movement, making them valuable for BCI-assisted motor rehabilitation. This chapter explores studies in sports, occupational therapy, and neurorehabilitation, focusing on combining AO and MI (AO + MI) in BCI applications. Results show the positive impact of AO + MI interventions on motor performance aspects such as imagery ability, reaction time, and muscle activation across various tasks. The fusion of virtual reality (VR) with MI proves potent in neurorehabilitation, especially in stroke and Parkinson’s disease rehab and cognitive enhancement. Additionally, VR-based AO combined with kinesthetic motor imagery (KMI) influences cortical activity, refining brain patterns and task performance. These findings suggest that combining VR-based action observation with KMI can significantly enhance BCI-assisted motor rehabilitation for individuals with motor deficits. This approach holds promise for improving motor control and fostering neuroplasticity.
5

Svard, Lois. "Imagery—Music in the Mind’s Eye, Ear, Body." In The Musical Brain, 149—C8P71. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780197584170.003.0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Musicians tend to use visual and auditory imagery when they practice but are less familiar with motor imagery. When we imagine the movements necessary to play an instrument, or motor imagery, we are using kinesthesia, the sense that delivers information to the brain about effort, movement, position, and weight delivery, One can learn a great deal about the value of motor imagery through the story of pianist Fei-Ping Hsu, who practiced for ten years using motor imagery when he was not allowed to physically practice during the Chinese Cultural Revolution. Hsu was able to return to playing and forge an international career following the end of the Revolution due to his use of motor imagery. Rather than the generic term “mental practice,” one should more accurately use visual imagery, auditory imagery, and motor imagery, which are specific brain processes. Visual perception and imagery share processing areas in the brain, as do auditory perception and imagery. In motor imagery, all the areas of the brain involved in music processing are active, with the single exception of the primary motor cortex, which sends signals to the muscles. Motor imagery has been shown in multiple studies to be the only kind of imagery that causes neuroplastic changes in the brain in a nearly identical way to physical practice.

Conference papers on the topic "Kinesthetic motor imagery":

1

Igasaki, Tomohiko, Junya Takemoto, and Katsuya Sakamoto. "Relationship Between Kinesthetic/Visual Motor Imagery Difficulty and Event-Related Desynchronization/Synchronization." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8512673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rimbert, Sebastien, Cecilia Lindig-Leon, and Laurent Bougrain. "Profiling BCI users based on contralateral activity to improve kinesthetic motor imagery detection." In 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2017. http://dx.doi.org/10.1109/ner.2017.8008383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arfaras, G., A. Athanasiou, N. Pandria, K. R. Kavazidi, P. Kartsidis, A. Astaras, and P. D. Bamidis. "Visual Versus Kinesthetic Motor Imagery for BCI Control of Robotic Arms (Mercury 2.0)." In 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). IEEE, 2017. http://dx.doi.org/10.1109/cbms.2017.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakamoto, Katsuya, Junya Takemoto, and Tomohiko Igasaki. "Investigation of kinesthetic and visual motor imagery differences during movement tasks using electroencephalograms." In 2017 10th Biomedical Engineering International Conference (BMEiCON). IEEE, 2017. http://dx.doi.org/10.1109/bmeicon.2017.8229139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Craik, Alexander, Atilla Kilicarslan, and Jose L. Contreras-Vidal. "Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stecklow, M. V., M. Cagy, and A. F. C. Infantosi. "Event-related synchronization/desynchronization to assess changes in alpha peak frequency along time during kinesthetic motor imagery." In 2011 Pan American Health Care Exchanges (PAHCE 2011). IEEE, 2011. http://dx.doi.org/10.1109/pahce.2011.5871909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Igasaki, Tomohiko, Arata Shibuta, and Katsuya Sakamoto. "Evaluation of Kinesthetic/Visual Motor Imagery of Dorsiflexion of the Right Ankle Joint via Event-Related Desynchronization/Synchronization." In 2019 International Biomedical Instrumentation and Technology Conference (IBITeC). IEEE, 2019. http://dx.doi.org/10.1109/ibitec46597.2019.9091709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mosqueda-Herrera, A., D. Martinez-Peon, L. Gomez-Sanchez, Marco I. Ramirez-Sosa, S. Delfin-Prieto, and F. G. Benavides-Bravo. "Characterization of Kinesthetic Motor Imagery paradigm for wrist and forearm using an algorithm based on the Hurst Exponent and Variogram." In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020. http://dx.doi.org/10.1109/smc42975.2020.9282888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guerrero-Mendez, Cristian D., Cristian F. Blanco-Diaz, Denis Delisle-Rodriguez, Andrés F. Ruiz-Olaya, Sebastián Jaramillo-Isaza, and Teodiano F. Bastos-Filho. "Analysis of EEG Rhythms During Four-Direction First-Person Reach-to-Grasp Kinesthetic Motor Imagery Tasks from the Same Limb." In 2023 IEEE 3rd Colombian BioCAS Workshop. IEEE, 2023. http://dx.doi.org/10.1109/colbiocas59270.2023.10280841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rimbert, Sebastien, Laurent Bougrain, and Stephanie Fleck. "Learning How to Generate Kinesthetic Motor Imagery Using a BCI-based Learning Environment: a Comparative Study Based on Guided or Trial-and-Error Approaches." In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020. http://dx.doi.org/10.1109/smc42975.2020.9283225.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography