Academic literature on the topic 'Kinematic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kinematic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kinematic"
Zhao, Rui Feng, Zhen Zhang, and Jiu Qiang Cui. "The Kinematics Modeling and Simulation of a Mechanical Arm in Nuclear Industry with Postpositional Drive." Applied Mechanics and Materials 496-500 (January 2014): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.754.
Full textCho, Dong Kwon, Byoung Wook Choi, and Myung Jin Chung. "Optimal conditions for inverse kinematics of a robot manipulator with redundancy." Robotica 13, no. 1 (January 1995): 95–101. http://dx.doi.org/10.1017/s0263574700017525.
Full textXu, Yi Chun, Bin Li, and Xin Hua Zhao. "Influence upon Kinematics Performance of a Family of 3-PRS Parallel Mechanisms Affected by Kinematic Chain Layout." Applied Mechanics and Materials 321-324 (June 2013): 37–41. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.37.
Full textJames, P. A., and B. Roth. "A Unified Theory for Kinematic Synthesis." Journal of Mechanical Design 116, no. 1 (March 1, 1994): 144–54. http://dx.doi.org/10.1115/1.2919338.
Full textTolstosheev, A. K., and V. A. Tatarintsev. "Designing Statically Determinable Mechanisms of Technological Mechatronic Machines with Parallel Kinematics." Mekhatronika, Avtomatizatsiya, Upravlenie 20, no. 7 (July 4, 2019): 428–36. http://dx.doi.org/10.17587/mau.20.428-436.
Full textPurwana, Unang, Dadi Rusdiana, and Winny Liliawati. "PENGUJIAN KEMAMPUAN MENGINTERPRETASIKAN GRAFIK KINEMATIKA CALON GURU FISIKA: THE POLYTOMOUS RASCH ANALYSIS." ORBITA: Jurnal Kajian, Inovasi dan Aplikasi Pendidikan Fisika 6, no. 2 (November 8, 2020): 259. http://dx.doi.org/10.31764/orbita.v6i2.3264.
Full textHanson, Robert B. "Statistical Analysis of Proper Motion Surveys." Symposium - International Astronomical Union 109 (1986): 43–45. http://dx.doi.org/10.1017/s0074180900076385.
Full textTan, Yue Sheng, Peng Le Cheng, and Ai Ping Xiao. "Inverse Kinematics Solution for a 6R Special Configuration Manipulators Based on Screw Theory." Advanced Materials Research 216 (March 2011): 250–53. http://dx.doi.org/10.4028/www.scientific.net/amr.216.250.
Full textFreitas, Gustavo M., Antonio C. Leite, and Fernando Lizarralde. "Kinematic control of constrained robotic systems." Sba: Controle & Automação Sociedade Brasileira de Automatica 22, no. 6 (December 2011): 559–72. http://dx.doi.org/10.1590/s0103-17592011000600002.
Full textMüller, Andreas. "Kinematic topology and constraints of multi-loop linkages." Robotica 36, no. 11 (August 2, 2018): 1641–63. http://dx.doi.org/10.1017/s0263574718000619.
Full textDissertations / Theses on the topic "Kinematic"
Zaplana, Agut Isiah. "Solving robotic kinematic problems : singularities and inverse kinematics." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/667496.
Full textLa cinemática es una rama de la mecánica clásica que describe el movimiento de puntos, cuerpos y sistemas de cuerpos sin considerar las fuerzas que causan dicho movimiento. Para un robot manipulador serie, la cinemática consiste en la descripción de su geometría, su posición, velocidad y/o aceleración. Los robots manipuladores serie están diseñados como una secuencia de elementos estructurales rígidos, llamados eslabones, conectados entres si por articulaciones actuadas, que permiten el movimiento relativo entre pares de eslabones consecutivos. Dos problemas cinemáticos de especial relevancia para robots serie son: - Singularidades: son aquellas configuraciones donde el robot pierde al menos un grado de libertad (GDL). Esto equivale a: (a) El robot no puede trasladar ni rotar su elemento terminal en al menos una dirección. (b) Se requieren velocidades articulares no acotadas para generar velocidades lineales y angulares finitas. Ya sea en un sistema teleoperado en tiempo real o planificando una trayectoria, las singularidades deben manejarse para que el robot muestre un rendimiento óptimo mientras realiza una tarea. El objetivo no es solo identificar las singularidades y sus direcciones singulares asociadas, sino diseñar estrategias para evitarlas o manejarlas. - Problema de la cinemática inversa: dada una posición y orientación del elemento terminal (también conocida como la pose del elemento terminal), la cinemática inversa consiste en obtener las configuraciones asociadas a dicha pose. La importancia de la cinemática inversa se basa en el papel que juega en la programación y el control de robots serie. Además, dado que para cada pose la cinemática inversa tiene hasta dieciséis soluciones diferentes, el objetivo es encontrar un método cerrado para resolver este problema, ya que los métodos cerrados permiten obtener todas las soluciones en una forma compacta. El objetivo principal de la tesis doctoral es contribuir a la solución de ambos problemas. En particular, con respecto al problema de las singularidades, se presenta un nuevo método para su identificación basado en el álgebra geométrica. Además, el álgebra geométrica permite definir una distancia en el espacio de configuraciones del robot que permite la definición de distintos algoritmos para evitar las configuraciones singulares. Con respecto a la cinemática inversa, los robots redundantes se reducen a robots no-redundantes mediante la selección de un conjunto de articulaciones, las articulaciones redundantes, para después parametrizar sus variables articulares. Esta selección se realiza a través de un análisis de espacio de trabajo que también proporciona un límite superior para el número de diferentes soluciones en forma cerrada. Una vez las articulaciones redundantes han sido identificadas, varios métodos en forma cerrada desarrollados para robots no-redundantes pueden aplicarse a fin de obtener las expresiones analíticas de todas las soluciones. Uno de dichos métodos es una nueva estrategia desarrollada usando el modelo conforme del álgebra geométrica tridimensional. En resumen, la tesis doctoral proporciona un análisis riguroso de los dos problemas cinemáticos mencionados anteriormente, así como nuevas estrategias para resolverlos. Para ilustrar los diferentes resultados presentados en la tesis, la memoria contiene varios ejemplos al final de cada uno de sus capítulos.
Šimková, Kristýna. "Návrh SW pro řízení delta robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-400926.
Full textKozubík, Jiří. "Experimentální robotizované pracoviště s delta-robotem." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229633.
Full textFabricius, Maximilian Hieronymus. "Kinematics across bulge types a longslit kinematic survey and dedicated instrumentation." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-144409.
Full textSummerfield, Philip John. "Kinematic GPS surveying." Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254471.
Full textCuffaro, Marco. "Plate Kinematic Models." Doctoral thesis, La Sapienza, 2007. http://hdl.handle.net/11573/917380.
Full textCentea, Dan Elbestawi Mohamed A. A. "Design, kinematics and dynamics of a machine tool based on parallel kinematic structure." *McMaster only, 2004.
Find full textWhittingham, Ben. "Applications of the kinematic modelling of a parallel kinematic mechanism machine tool." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272714.
Full textLiu, Zheng 1962. "Kinematic optimization of linkages." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39742.
Full textBoth the input-output (I/O) equation and the I/O curve are employed in the input-output analysis of four-bar linkages. Based on these, the properties of a special class of linkage, the constant-branch linkage, as well as its engineering application are discussed. Two schemes are developed for the optimization of function-generating linkages, namely, a constrained least-square procedure using slack variables and an unconstrained method based on I/O curve planning. The issue of data-conditioning is also discussed so that singularities can be avoided in the optimization procedure.
With the help of linkage coordinate systems defined in this thesis, equations governing the coupler-link motion are derived for both path generation and rigid-body guidance. In the optimization of path-generating and rigid-body guiding linkages, a two-loop scheme based on a constrained least-square procedure is first proposed. Then, as an extension to I/O curve planning in function generation, a method resorting to input-output-coupler (I/O-C) curve planning is developed for path generation and rigid-body guidance. Using unconstrained approaches, this method simplifies the optimization procedure to a great extent.
Walsh, David M. A. "Kinematic GPS ambiguity resolution." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239858.
Full textBooks on the topic "Kinematic"
Radzevich, S. P. Kinematic geometry of surface machining. Boca Raton: CRC Press, 2008.
Find full textBoër, C. R., L. Molinari-Tosatti, and K. S. Smith, eds. Parallel Kinematic Machines. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0885-6.
Full textJackson, J. David. Relativistic kinematics: A guide to the kinematic problem of highenergy physics. New York: W.A. Benjamin Inc., 2012.
Find full textDooner, David B. Kinematic Geometry of Gearing. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119942474.
Full textE, Meadows Michael, ed. Kinematic hydrology and modelling. Amsterdam: Elsevier, 1986.
Find full textKinematic geometry of mechanisms. Oxford: Clarendon Press, 1990.
Find full textDooner, David B. Kinematic geometry of gearing. 2nd ed. Chichester, West Sussex: Wiley, 2012.
Find full textSöylemez, Eres. Kinematic Synthesis of Mechanisms. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30955-7.
Full textChèze, Laurence. Kinematic Analysis of Human Movement. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119058144.
Full text1937-, Duffy Joseph, ed. Kinematic analysis of robot manipulators. Cambridge, U.K: Cambridge University Press, 1998.
Find full textBook chapters on the topic "Kinematic"
Youssef, Fady, and Sebastian Kassner. "Kinematic Design." In Springer Series on Touch and Haptic Systems, 267–307. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04536-3_8.
Full textHuang, Zhen, Qinchuan Li, and Huafeng Ding. "Kinematic Influence Coefficient and Kinematics Analysis." In Theory of Parallel Mechanisms, 135–62. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4201-7_5.
Full textHamlin, Gregory J., and Arthur C. Sanderson. "Kinematic Control." In Tetrobot, 113–23. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5471-4_6.
Full textKassner, Sebastian. "Kinematic Design." In Springer Series on Touch and Haptic Systems, 227–52. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6518-7_8.
Full textPott, Andreas. "Kinematic Codes." In Springer Tracts in Advanced Robotics, 119–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76138-1_4.
Full textMcCarthy, J. Michael. "Kinematic Synthesis." In 21st Century Kinematics, 13–48. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4510-3_2.
Full textAngeles, Jorge. "Kinematic Chains." In Springer Tracts in Natural Philosophy, 78–122. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3916-1_5.
Full textVukobratović, Miomir, and Manja Kirćanski. "Kinematic Equations." In Kinematics and Trajectory Synthesis of Manipulation Robots, 1–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82195-0_1.
Full textStone, Henry W. "Kinematic Identification." In The Kluwer International Series in Engineering and Computer Science, 43–78. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1999-3_4.
Full textTarnai, Tibor. "Kinematic Bifurcation." In Deployable Structures, 143–69. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2584-7_8.
Full textConference papers on the topic "Kinematic"
Bi, Z. M., Y. Jin, R. Gibson, and P. McTotal. "Kinematics of parallel kinematic machine Exechon." In 2009 International Conference on Information and Automation (ICIA). IEEE, 2009. http://dx.doi.org/10.1109/icinfa.2009.5204921.
Full textYang, Wenlong, Wei Dong, and Zhijiang Du. "Kinematics modeling for a kinematic-mechanics coupling continuum manipulator." In 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). IEEE, 2014. http://dx.doi.org/10.1109/3m-nano.2014.7057344.
Full textJames, Paul A., and Bernard Roth. "A Unified Theory for Kinematic Synthesis." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0345.
Full textKlett, Yves, and Peter Middendorf. "Kinematic Analysis of Congruent Multilayer Tessellations." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47340.
Full textRico, J. M., J. J. Cervantes, A. Tadeo, J. Gallardo, L. D. Aguilera, and C. R. Diez. "Infinitesimal Kinematics Methods in the Mobility Determination of Kinematic Chains." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86489.
Full textShevlin, Fergal P. "Kinematic resection." In Photonics for Industrial Applications, edited by Robert A. Melter and Angela Y. Wu. SPIE, 1995. http://dx.doi.org/10.1117/12.198603.
Full textFung, Richard, Edward Lank, Michael Terry, and Celine Latulipe. "Kinematic templates." In the 21st annual ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1449715.1449725.
Full textRosyid, Abdur, Bashar El-Khasawneh, and Anas Alazzam. "Nonlinear estimation for kinematic calibration of 3PRR planar parallel kinematics manipulator." In 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, 2017. http://dx.doi.org/10.1109/icmsao.2017.7934847.
Full textMaric, Filip, Matthew Giamou, Soroush Khoubyarian, Ivan Petrovic, and Jonathan Kelly. "Inverse Kinematics for Serial Kinematic Chains via Sum of Squares Optimization." In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9196704.
Full textWen, Haiying, Ming Cong, Wenlong Qin, and Weiliang Xu. "Contact kinematics of spatial higher kinematic pairs of a masticatory robot." In 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP). IEEE, 2016. http://dx.doi.org/10.1109/m2vip.2016.7827333.
Full textReports on the topic "Kinematic"
Webb, Philip. Deployment of Parallel Kinematic Machines in Manufacturing. SAE International, April 2022. http://dx.doi.org/10.4271/epr2022010.
Full textHenry, R. S. Parallel Kinematic Machines (PKM). Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/752338.
Full textMattione, Paul. Kinematic Fitting of Detached Vertices. Office of Scientific and Technical Information (OSTI), May 2007. http://dx.doi.org/10.2172/903056.
Full textFarnsworth, Grant V., and Allen Conrad Robinson. Improved kinematic options in ALEGRA. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/918209.
Full textBourne, D. A., D. Navinchandra, and R. Ramaswamy. Relating Tolerances and Kinematic Behavior. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada211125.
Full textHowell, Stephen M. Kinematic Total Knee Replacement (TKR). Touch Surgery Simulations, March 2015. http://dx.doi.org/10.18556/touchsurgery/2015.s0045.
Full textPark, J. FIT70 - A Kinematic Fitting Routine. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1453907.
Full textBarraquand, Jerome, and Jean-Claude Latombe. Controllability of Mobile Robots with Kinematic Constraints. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada326998.
Full textCharlton, J. C., and M. S. Turner. Kinematic tests of exotic flat cosmological models. Office of Scientific and Technical Information (OSTI), May 1986. http://dx.doi.org/10.2172/5608890.
Full textBinkley, M., and A. Beretvas. Overview of kinematic variables in top production. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/405161.
Full text