Journal articles on the topic 'KIF5A'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'KIF5A.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rahman, Amena, Adeela Kamal, Elizabeth A. Roberts, and Lawrence S. B. Goldstein. "Defective Kinesin Heavy Chain Behavior in Mouse Kinesin Light Chain Mutants." Journal of Cell Biology 146, no. 6 (September 20, 1999): 1277–88. http://dx.doi.org/10.1083/jcb.146.6.1277.
Full textKanai, Yoshimitsu, Yasushi Okada, Yousuke Tanaka, and Nobutaka Hirokawa. "605 Localization of kinesin heavy chains (KIF5A, KIF5B, KIF5C) in nervous system." Neuroscience Research 28 (January 1997): S84. http://dx.doi.org/10.1016/s0168-0102(97)90217-0.
Full textTian, Da-Wei, Zhou-Liang Wu, Li-Ming Jiang, Jie Gao, Chang-Li Wu, and Hai-Long Hu. "KIF5A Promotes Bladder Cancer Proliferation In Vitro and In Vivo." Disease Markers 2019 (July 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4824902.
Full textHares, Kelly, Scott Miners, Neil Scolding, Seth Love, and Alastair Wilkins. "KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences." AMRC Open Research 1 (June 26, 2019): 1. http://dx.doi.org/10.12688/amrcopenres.12861.2.
Full textHares, Kelly, Scott Miners, Neil Scolding, Seth Love, and Alastair Wilkins. "KIF5A and KLC1 expression in Alzheimer’s disease: relationship and genetic influences." AMRC Open Research 1 (February 19, 2019): 1. http://dx.doi.org/10.12688/amrcopenres.12861.1.
Full textHares, Kelly, K. Kemp, S. Loveless, C. M. Rice, N. Scolding, E. Tallantyre, N. Robertson, and A. Wilkins. "KIF5A and the contribution of susceptibility genotypes as a predictive biomarker for multiple sclerosis." Journal of Neurology 268, no. 6 (January 23, 2021): 2175–84. http://dx.doi.org/10.1007/s00415-020-10373-w.
Full textMahase, Vidhyanand, Adebiyi Sobitan, Christina Johnson, Farion Cooper, Yixin Xie, Lin Li, and Shaolei Teng. "Computational analysis of hereditary spastic paraplegia mutations in the kinesin motor domains of KIF1A and KIF5A." Journal of Theoretical and Computational Chemistry 19, no. 06 (August 5, 2020): 2041003. http://dx.doi.org/10.1142/s0219633620410035.
Full textKALCHISHKOVA, NIKOLINA, and KONRAD J. BÖHM. "ON THE RELEVANCE OF THE CORE HELIX ALPHA 6 TO KINESIN ACTIVITY GENERATION." Biophysical Reviews and Letters 04, no. 01n02 (April 2009): 63–75. http://dx.doi.org/10.1142/s1793048009000934.
Full textFilosto, Massimiliano, Stefano Piccinelli, Ilaria Palmieri, Nicola Necchini, Marialuisa Valente, Isabella Zanella, Giorgio Biasiotto, Diego Lorenzo, Cristina Cereda, and Alessandro Padovani. "A Novel Mutation in the Stalk Domain of KIF5A Causes a Slowly Progressive Atypical Motor Syndrome." Journal of Clinical Medicine 8, no. 1 (December 22, 2018): 17. http://dx.doi.org/10.3390/jcm8010017.
Full textNakajima, Kazuo, Xiling Yin, Yosuke Takei, Dae-Hyun Seog, Noriko Homma, and Nobutaka Hirokawa. "Molecular Motor KIF5A Is Essential for GABAA Receptor Transport, and KIF5A Deletion Causes Epilepsy." Neuron 76, no. 5 (December 2012): 945–61. http://dx.doi.org/10.1016/j.neuron.2012.10.012.
Full textHares, K., K. Kemp, C. Rice, E. Gray, N. Scolding, and A. Wilkins. "Reduced axonal motor protein expression in non-lesional grey matter in multiple sclerosis." Multiple Sclerosis Journal 20, no. 7 (October 21, 2013): 812–21. http://dx.doi.org/10.1177/1352458513508836.
Full textCuchanski, Mathieu, and Kelly Jo Baldwin. "Mutation in KIF5A c.610C>T Causing Hereditary Spastic Paraplegia with Axonal Sensorimotor Neuropathy." Case Reports in Neurology 10, no. 2 (July 4, 2018): 165–68. http://dx.doi.org/10.1159/000490456.
Full textXia, Chun-Hong, Elizabeth A. Roberts, Lu-Shiun Her, Xinran Liu, David S. Williams, Don W. Cleveland, and Lawrence S. B. Goldstein. "Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A." Journal of Cell Biology 161, no. 1 (April 7, 2003): 55–66. http://dx.doi.org/10.1083/jcb.200301026.
Full textMoe, Aye, Andrew Schaefer, Gráinne Gorman, and Yi Shiau Ng. "Changing phenotypes, a spectrum over 10 years." Journal of Neurology, Neurosurgery & Psychiatry 93, no. 9 (August 12, 2022): e2.189. http://dx.doi.org/10.1136/jnnp-2022-abn2.42.
Full textBrenner, David, Rüstem Yilmaz, Kathrin Müller, Torsten Grehl, Susanne Petri, Thomas Meyer, Julian Grosskreutz, et al. "Hot-spot KIF5A mutations cause familial ALS." Brain 141, no. 3 (January 12, 2018): 688–97. http://dx.doi.org/10.1093/brain/awx370.
Full textCHIBA, Kyoko. "Analysis of ALS-associated Mutant of KIF5A." Seibutsu Butsuri 63, no. 3 (2023): 169–70. http://dx.doi.org/10.2142/biophys.63.169.
Full textAndréasson, Mattias, Kristina Lagerstedt-Robinson, Kristin Samuelsson, Göran Solders, Kaj Blennow, Martin Paucar, and Per Svenningsson. "Altered CSF levels of monoamines in hereditary spastic paraparesis 10." Neurology Genetics 5, no. 4 (June 12, 2019): e344. http://dx.doi.org/10.1212/nxg.0000000000000344.
Full textKanai, Yoshimitsu, Yasushi Okada, Yosuke Tanaka, and Nobutaka Hirokawa. "Differential localization of neuronal (KIF5A and KIF 5C) and ubiquitous (KIF5B) kinesin heavy chains in nervous system." Neuroscience Research 31 (January 1998): S132. http://dx.doi.org/10.1016/s0168-0102(98)82022-1.
Full textKarle, Kathrin N., Diana Möckel, Evan Reid, and Ludger Schöls. "Axonal transport deficit in a KIF5A –/– mouse model." neurogenetics 13, no. 2 (April 1, 2012): 169–79. http://dx.doi.org/10.1007/s10048-012-0324-y.
Full textYang, Tien-Chun, Aliaksandr A. Yarmishyn, Yi-Ping Yang, Pin-Chen Lu, Shih-Jie Chou, Mong-Lien Wang, Tai-Chi Lin, et al. "Mitochondrial transport mediates survival of retinal ganglion cells in affected LHON patients." Human Molecular Genetics 29, no. 9 (April 10, 2020): 1454–64. http://dx.doi.org/10.1093/hmg/ddaa063.
Full textNicolas, Aude, Kevin P. Kenna, Alan E. Renton, Nicola Ticozzi, Faraz Faghri, Ruth Chia, Janice A. Dominov, et al. "Genome-wide Analyses Identify KIF5A as a Novel ALS Gene." Neuron 97, no. 6 (March 2018): 1268–83. http://dx.doi.org/10.1016/j.neuron.2018.02.027.
Full textZhang, Kang, Qing Liu, Dongchao Shen, Hongfei Tai, Shuangwu Liu, Zhili Wang, Jiayu Shi, et al. "Mutation analysis of KIF5A in Chinese amyotrophic lateral sclerosis patients." Neurobiology of Aging 73 (January 2019): 229.e1–229.e4. http://dx.doi.org/10.1016/j.neurobiolaging.2018.08.006.
Full textWang, Qi, Jing Tian, Hao Chen, Heng Du, and Lan Guo. "Amyloid beta-mediated KIF5A deficiency disrupts anterograde axonal mitochondrial movement." Neurobiology of Disease 127 (July 2019): 410–18. http://dx.doi.org/10.1016/j.nbd.2019.03.021.
Full textJang, Won Hee, and Dae-Hyun Seog. "PtdIns(3,5)P25-phosphatase Fig4 Interacts with Kinesin Superfamily 5A (KIF5A)." Journal of Life Science 24, no. 1 (January 30, 2014): 14–19. http://dx.doi.org/10.5352/jls.2014.24.1.14.
Full textPerić, Stojan, Vladana Marković, Ayşe Candayan, Els De Vriendt, Nikola Momčilović, Andrija Savić, Nataša Dragašević-Mišković, et al. "Phenotypic and Genetic Heterogeneity of Adult Patients with Hereditary Spastic Paraplegia from Serbia." Cells 11, no. 18 (September 8, 2022): 2804. http://dx.doi.org/10.3390/cells11182804.
Full textCampbell, P. D., K. Shen, M. R. Sapio, T. D. Glenn, W. S. Talbot, and F. L. Marlow. "Unique Function of Kinesin Kif5A in Localization of Mitochondria in Axons." Journal of Neuroscience 34, no. 44 (October 29, 2014): 14717–32. http://dx.doi.org/10.1523/jneurosci.2770-14.2014.
Full textEbbing, Bettina, Klaudiusz Mann, Agata Starosta, Johann Jaud, Ludger Schöls, Rebecca Schüle, and Günther Woehlke. "Effect of spastic paraplegia mutations in KIF5A kinesin on transport activity." Human Molecular Genetics 17, no. 9 (January 18, 2008): 1245–52. http://dx.doi.org/10.1093/hmg/ddn014.
Full textNam, D. E., J. H. Woo, M. J. Kim, S. Y. Shin, B. O. Choi, and K. W. Chung. "Wide phenotypic spectrum of axonal peripheral neuropathy patients with KIF5A mutations." Journal of the Neurological Sciences 381 (October 2017): 380. http://dx.doi.org/10.1016/j.jns.2017.08.3288.
Full textTsukasaki, Yoshikazu, Hirotoshi Kamata, Julia Wang, Tsuyoshi Sakai, Reiko Ikebe, Ann Jeffers, Boren Jake, et al. "KIF5A is Responsible for Collagen Transport of Myofibroblasts during Pleural Fibrosis." Biophysical Journal 112, no. 3 (February 2017): 238a. http://dx.doi.org/10.1016/j.bpj.2016.11.1304.
Full textBlair, Marcia A., Shaochun Ma, and Peter Hedera. "Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia." Neurogenetics 7, no. 1 (February 18, 2006): 47–50. http://dx.doi.org/10.1007/s10048-005-0027-8.
Full textReid, Evan, Mark Kloos, Allison Ashley-Koch, Lori Hughes, Simon Bevan, Ingrid K. Svenson, Felicia Lennon Graham, et al. "A Kinesin Heavy Chain (KIF5A) Mutation in Hereditary Spastic Paraplegia (SPG10)." American Journal of Human Genetics 71, no. 5 (November 2002): 1189–94. http://dx.doi.org/10.1086/344210.
Full textYoo, Ki-Seo, Kina Lee, and Hyong Kyu Kim. "Dendritic transport of postsynaptic density protein 95 (PSD-95) by KIF5A." IBRO Reports 6 (September 2019): S296—S297. http://dx.doi.org/10.1016/j.ibror.2019.07.917.
Full textYokota, Satoshi, Sahil H. Shah, Emma Lee Huie, Runxia Rain Wen, Ziming Luo, and Jeffrey L. Goldberg. "Kif5a Regulates Mitochondrial Transport in Developing Retinal Ganglion Cells In Vitro." Investigative Opthalmology & Visual Science 64, no. 3 (March 2, 2023): 4. http://dx.doi.org/10.1167/iovs.64.3.4.
Full textTakemura, R., T. Nakata, Y. Okada, H. Yamazaki, Z. Zhang, and N. Hirokawa. "mRNA expression of KIF1A, KIF1B, KIF2, KIF3A, KIF3B, KIF4, KIF5, and cytoplasmic dynein during axonal regeneration." Journal of Neuroscience 16, no. 1 (January 1, 1996): 31–35. http://dx.doi.org/10.1523/jneurosci.16-01-00031.1996.
Full textRydzanicz, M., M. Jagła, J. Kosinska, T. Tomasik, A. Sobczak, A. Pollak, I. Herman-Sucharska, A. Walczak, P. Kwinta, and R. Płoski. "KIF5A de novomutation associated with myoclonic seizures and neonatal onset progressive leukoencephalopathy." Clinical Genetics 91, no. 5 (September 16, 2016): 769–73. http://dx.doi.org/10.1111/cge.12831.
Full textWang, Lina, and Anthony Brown. "A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport." Molecular Neurodegeneration 5, no. 1 (2010): 52. http://dx.doi.org/10.1186/1750-1326-5-52.
Full textSaez-Atienzar, Sara, Clifton L. Dalgard, Jinhui Ding, Adriano Chiò, Camile Alba, Dan N. Hupalo, Matthew D. Wilkerson, et al. "Identification of a pathogenic intronic KIF5A mutation in an ALS-FTD kindred." Neurology 95, no. 22 (October 19, 2020): 1015–18. http://dx.doi.org/10.1212/wnl.0000000000011064.
Full textFichera, M., M. Lo Giudice, M. Falco, M. Sturnio, S. Amata, O. Calabrese, S. Bigoni, E. Calzolari, and M. Neri. "Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia." Neurology 63, no. 6 (September 27, 2004): 1108–10. http://dx.doi.org/10.1212/01.wnl.0000138731.60693.d2.
Full textLiu, Y. T., M. Laura, J. Hersheson, A. Horga, Z. Jaunmuktane, S. Brandner, A. Pittman, et al. "Extended phenotypic spectrum of KIF5A mutations: From spastic paraplegia to axonal neuropathy." Neurology 83, no. 7 (July 9, 2014): 612–19. http://dx.doi.org/10.1212/wnl.0000000000000691.
Full textTessa, A., G. Silvestri, M. F. de Leva, A. Modoni, P. S. Denora, M. Masciullo, M. T. Dotti, et al. "A novel KIF5A/SPG10 mutation in spastic paraplegia associated with axonal neuropathy." Journal of Neurology 255, no. 7 (June 2, 2008): 1090–92. http://dx.doi.org/10.1007/s00415-008-0840-8.
Full textKawasaki, Takashi, Kanta Kurauchi, Akira Higashihata, Tomonori Deguchi, Yuji Ishikawa, Masatake Yamauchi, Motoe Sasanuma, et al. "Transgenic medaka fish which mimic the endogenous expression of neuronal kinesin, KIF5A." Brain Research 1480 (October 2012): 12–21. http://dx.doi.org/10.1016/j.brainres.2012.08.047.
Full textForsberg, Karin, Karin Graffmo, Bente Pakkenberg, Markus Weber, Martin Nielsen, Stefan Marklund, Thomas Brännström, and Peter Munch Andersen. "Misfolded SOD1 inclusions in patients with mutations in C9orf72 and other ALS/FTD-associated genes." Journal of Neurology, Neurosurgery & Psychiatry 90, no. 8 (April 16, 2019): 861–69. http://dx.doi.org/10.1136/jnnp-2018-319386.
Full textBaron, Desiree M., Adam R. Fenton, Sara Saez-Atienzar, Anthony Giampetruzzi, Aparna Sreeram, Shankaracharya, Pamela J. Keagle, et al. "ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function." Cell Reports 39, no. 1 (April 2022): 110598. http://dx.doi.org/10.1016/j.celrep.2022.110598.
Full textde Fuenmayor-Fernández de la Hoz, Carlos Pablo, Aurelio Hernández-Laín, Montse Olivé, María Teresa Sánchez-Calvín, Juan Francisco Gonzalo-Martínez, and Cristina Domínguez-González. "Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations." Brain 142, no. 12 (October 15, 2019): e66-e66. http://dx.doi.org/10.1093/brain/awz317.
Full textFaruq, Mohammed, Deepak Kumar, Saruchi Wadhwa, Uzma Shamim, Aradhana Mathur, Shaista Parveen, Ajay Garg, and Achal K. Srivastava. "Intrafamilial variable spastic paraplegia/ataxia/ALS phenotype linked to a novel KIF5A mutation." Clinical Genetics 96, no. 3 (July 8, 2019): 271–73. http://dx.doi.org/10.1111/cge.13585.
Full textMusumeci, Olimpia, Maria Teresa Bassi, Anna Mazzeo, Marina Grandis, Claudia Crimella, Andrea Martinuzzi, and Antonio Toscano. "A novel mutation in KIF5A gene causing hereditary spastic paraplegia with axonal neuropathy." Neurological Sciences 32, no. 4 (November 24, 2010): 665–68. http://dx.doi.org/10.1007/s10072-010-0445-8.
Full textGu, XiaoJing, ChunYu Li, YongPing Chen, QianQian Wei, Bei Cao, RuWei Ou, XiaoQin Yuan, et al. "Mutation screening of the KIF5A gene in Chinese patients with amyotrophic lateral sclerosis." Journal of Neurology, Neurosurgery & Psychiatry 90, no. 2 (June 28, 2018): 245–46. http://dx.doi.org/10.1136/jnnp-2018-318395.
Full textLorenzo, Damaris N., Alexandra Badea, Ruobo Zhou, Peter J. Mohler, Xiaowei Zhuang, and Vann Bennett. "βII-spectrin promotes mouse brain connectivity through stabilizing axonal plasma membranes and enabling axonal organelle transport." Proceedings of the National Academy of Sciences 116, no. 31 (June 17, 2019): 15686–95. http://dx.doi.org/10.1073/pnas.1820649116.
Full textBrenner, David, Angela Rosenbohm, Rüstem Yilmaz, Kathrin Müller, Torsten Grehl, Susanne Petri, Thomas Meyer, et al. "Reply: Adult-onset distal spinal muscular atrophy: a new phenotype associated with KIF5A mutations." Brain 142, no. 12 (October 15, 2019): e67-e67. http://dx.doi.org/10.1093/brain/awz306.
Full textRinaldi, Fabrizio, Maria T. Bassi, Alice Todeschini, Silvia Rota, Alessia Arnoldi, Alessandro Padovani, and Massimiliano Filosto. "A Novel Mutation in Motor Domain of KIF5A Associated With an HSP/Axonal Neuropathy Phenotype." Journal of Clinical Neuromuscular Disease 16, no. 3 (March 2015): 153–58. http://dx.doi.org/10.1097/cnd.0000000000000063.
Full text