Contents
Academic literature on the topic 'Khovanov-Rozansky homologies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Khovanov-Rozansky homologies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Khovanov-Rozansky homologies"
Robert, Louis-Hadrien, and Emmanuel Wagner. "Symmetric Khovanov-Rozansky link homologies." Journal de l’École polytechnique — Mathématiques 7 (April 2, 2020): 573–651. http://dx.doi.org/10.5802/jep.124.
Full textTubbenhauer, Daniel. "𝔤𝔩n-webs, categorification and Khovanov–Rozansky homologies." Journal of Knot Theory and Its Ramifications 29, no. 11 (October 2020): 2050074. http://dx.doi.org/10.1142/s0218216520500741.
Full textNaisse, Grégoire, and Pedro Vaz. "2-Verma modules and the Khovanov–Rozansky link homologies." Mathematische Zeitschrift 299, no. 1-2 (January 12, 2021): 139–62. http://dx.doi.org/10.1007/s00209-020-02658-7.
Full textCautis, Sabin, Aaron D. Lauda, and Joshua Sussan. "Curved Rickard complexes and link homologies." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 769 (December 1, 2020): 87–119. http://dx.doi.org/10.1515/crelle-2019-0044.
Full textDolotin, V., and A. Morozov. "Introduction to Khovanov homologies. III. A new and simple tensor-algebra construction of Khovanov–Rozansky invariants." Nuclear Physics B 878 (January 2014): 12–81. http://dx.doi.org/10.1016/j.nuclphysb.2013.11.007.
Full textGorsky, Eugene, and Paul Wedrich. "Evaluations of annular Khovanov–Rozansky homology." Mathematische Zeitschrift 303, no. 1 (December 19, 2022). http://dx.doi.org/10.1007/s00209-022-03163-9.
Full textQi, You, and Joshua Sussan. "On some p-differential graded link homologies." Forum of Mathematics, Pi 10 (2022). http://dx.doi.org/10.1017/fmp.2022.19.
Full textDissertations / Theses on the topic "Khovanov-Rozansky homologies"
Lewark, Lukas. "Homologies de Khovanov-Rozansky, toiles nouées pondérées et genre lisse." Paris 7, 2013. http://www.theses.fr/2013PA077117.
Full textThis thesis focuses on the Khovanov-Rozansky homologies and the knot concordance invariants issuing from them, paying particular attention to the s13-foam homology. The first chapter treats the interrelation of different Khovanov-Rozansky homologies: unreduced and reduced, graded and filtered, and categorifying the Homflypt-polynomial and the slN-polynomial for varying N. A combination of new and known spectral sequences allows to show exemplarily that the slN-knot concordance invariants may differ, which was unknown until now. In the second and third chapter, an implementation of an algorithm Computing s13-homology is presented. Aside from Bar-Natan, Green and Morrisons' programme calculating Khovanov homology, this is the only existing programme that efficiently computes any Khovanov-Rozansky homology theory. Its calculations show that the s!3-knot concordance invariant may be an odd integer. In the fourth chapter, graded and filtered s!3-homology are generalised to a class of knotted F3-weighted graphs, called knotted weighted webs. Weightable foams are defined, which are to knotted weighted webs what orientable cobordisms are to knots, and the slice degree of knotted weighted webs is introduced. In analogy with Rasmussen's result, it is shown that the filtered sl3-homology yields a lower bound for the slice degree of knotted weighted webs
Wagner, Emmanuel. "On Khovanov-Rozansky homology of graphs and links." Université Louis Pasteur (Strasbourg) (1971-2008), 2007. https://publication-theses.unistra.fr/restreint/theses_doctorat/2007/WAGNER_Emmanuel_2007.pdf.
Full textThis thesis is devoted to the categorification of polynomial invariants of graphs and links. For any positive integer n, Khovanov and Rozansky introduced in 2004 a bigraded link homology, and an homology of planar graphs. Given n, their link homology categorifies the n-th specialization of the HOMFLY-PT polynomial and their homology of planar graphs categorifies an associated graph polynomial. In this thesis, we study these homology and generalize their constructions by introducing an additional grading. First, we generalize a formula of Jaeger for link polynomials to polynomials of planar graphs and associated homology of planar graphs; we extend also the link homology of Khovanov and Rozansky to embedded graphs. Then we construct a triply graded link homology. This homology recovers the bigraded link homology of Khovanov and Rozansky. Finally, we give examples, applications and generalizations of the triply graded link homology. We develop homological tools that permit to compute explicitly the triply graded link homology for some knots and we consider deformations of the triply graded link homology
Wagner, Emmanuel Touraev Vladimir G. "On Khovanov-Rozansky homology of graphs and links." Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/00000912.
Full textWagner, Emmanuel. "Sur l'homologie de Khovanov-Rozansky des graphes et des entrelacs." Phd thesis, Université Louis Pasteur - Strasbourg I, 2007. http://tel.archives-ouvertes.fr/tel-00192447.
Full textDans cette thèse, on étudie ces homologies et on généralise leur construction en introduisant une graduation supplémentaire. Tout d'abord, on généralise une formule de Jaeger pour les polynômes d'entrelacs aux polynômes de graphes planaires, ainsi qu'à l'homologie de graphes planaires; on étend ensuite l'homologie d'entrelacs de Khovanov-Rozansky aux graphes plongés. Puis on construit une homologie trigraduée d'entrelacs. Cette homologie recouvre l'homologie bigraduée d'entrelacs de Khovanov et Rozansky. Enfin, on donne des exemples, des applications et des généralisations de l'homologie trigraduée d'entrelacs. On développe des outils d'algèbre homologique qui permettent de calculer explicitement l'homologie trigraduée d'entrelacs pour des exemples et on considère des déformations de l'homologie trigraduée d'entrelacs.
Wagner, Emmanuel Turaev Vladimir G. "Sur l'homologie de Khovanov-Rozansky des graphes et des entrelacs /." Paris, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016808065&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textCOLLARI, CARLO. "Transverse invariants from the deformations of Khovanov sl2- and sl3-homologies." Doctoral thesis, 2017. http://hdl.handle.net/2158/1079076.
Full text