Academic literature on the topic 'Kernel filtering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kernel filtering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Kernel filtering"
Maeda, Yoshihiro, Norishige Fukushima, and Hiroshi Matsuo. "Taxonomy of Vectorization Patterns of Programming for FIR Image Filters Using Kernel Subsampling and New One." Applied Sciences 8, no. 8 (July 26, 2018): 1235. http://dx.doi.org/10.3390/app8081235.
Full textNair, Pravin, and Kunal Narayan Chaudhury. "Fast High-Dimensional Kernel Filtering." IEEE Signal Processing Letters 26, no. 2 (February 2019): 377–81. http://dx.doi.org/10.1109/lsp.2019.2891879.
Full textDouma, Huub, David Yingst, Ivan Vasconcelos, and Jeroen Tromp. "On the connection between artifact filtering in reverse-time migration and adjoint tomography." GEOPHYSICS 75, no. 6 (November 2010): S219—S223. http://dx.doi.org/10.1190/1.3505124.
Full textHuang, Di, Xishan Zhang, Rui Zhang, Tian Zhi, Deyuan He, Jiaming Guo, Chang Liu, et al. "DWM: A Decomposable Winograd Method for Convolution Acceleration." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 4174–81. http://dx.doi.org/10.1609/aaai.v34i04.5838.
Full textYijie Tang, Yijie Tang, Guobing Qian Yijie Tang, Wenqi Wu Guobing Qian, and Ying-Ren Chien Wenqi Wu. "An Efficient Filtering Algorithm against Impulse Noise in Communication Systems." 網際網路技術學刊 24, no. 2 (March 2023): 357–62. http://dx.doi.org/10.53106/160792642023032402014.
Full textCheng, Sheng-Wei, Yi-Ting Lin, and Yan-Tsung Peng. "A Fast Two-Stage Bilateral Filter Using Constant Time O(1) Histogram Generation." Sensors 22, no. 3 (January 25, 2022): 926. http://dx.doi.org/10.3390/s22030926.
Full textLiu, Ning, and Thomas Schumacher. "Improved Denoising of Structural Vibration Data Employing Bilateral Filtering." Sensors 20, no. 5 (March 5, 2020): 1423. http://dx.doi.org/10.3390/s20051423.
Full textCHEN, Xiao-li, and Pei-yu LIU. "Word sequence kernel applied in spam-filtering." Journal of Computer Applications 31, no. 3 (May 18, 2011): 698–701. http://dx.doi.org/10.3724/sp.j.1087.2011.00698.
Full textNan, Shanghan, and Guobing Qian. "Univariate kernel sums correntropy for adaptive filtering." Applied Acoustics 184 (December 2021): 108316. http://dx.doi.org/10.1016/j.apacoust.2021.108316.
Full textSun, Zhonggui, Bo Han, Jie Li, Jin Zhang, and Xinbo Gao. "Weighted Guided Image Filtering With Steering Kernel." IEEE Transactions on Image Processing 29 (2020): 500–508. http://dx.doi.org/10.1109/tip.2019.2928631.
Full textDissertations / Theses on the topic "Kernel filtering"
Sun, Xinyuan. "Kernel Methods for Collaborative Filtering." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/135.
Full textKabbara, Jad. "Kernel adaptive filtering algorithms with improved tracking ability." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=123272.
Full textAu cours des dernières années, il y a eu un intérêt accru pour les méthodes à noyau dans des domaines tels que l'apprentissage automatique et le traitement du signal, puisque ces méthodes démontrent une performance supérieure dans la résolution des problèmes de classification et de régression. D'intéressantes extensions à noyau de plusieurs algorithmes connus en intelligence artificielle et en traitement du signal ont été introduites, particulièrement, les versions à noyau du fameux algorithme d'apprentissage incrémental des moindres carrés récursifs (en anglais, Recursive Least Squares (RLS)), nommées KRLS. Ces algorithmes ont reçu une attention considérable durant la dernière décennie dans les problèmes d'estimation statistique, particulièrement ceux de suivi des systèmes variant dans le temps. Les algorithmes KRLS forment le régresseur aux moindres carrés non-linéaires en utilisant une combinaison linéaire de noyaux évalués aux membres d'un sous-ensemble, appelé dictionnaire, des données d'entrée. Le nombre des coefficients dans la combinaison linéaire, c'est à dire les poids, est égal à la taille du dictionnaire. Ce couplage entre le nombre de poids et la taille du dictionnaire introduit un compromis. D'une part, un dictionnaire de grande taille reflète avec précision la dynamique de la relation entre les données d'entrée et les sorties à travers le temps. De l'autre part, un tel dictionnaire diminue la capacité de l'algorithme à suivre les variations dans cette relation, car ajuster un grand nombre de poids ralentit considérablement l'adaptation de l'algorithme aux variations du système. Dans cette thèse, nous présentons un nouvel algorithme KRLS conçu précisément pour suivre les systèmes variant dans le temps. L'idée principale de l'algorithme est d'enlever la dépendance du nombre de poids sur la taille du dictionnaire. Ainsi, nous proposons de fixer le nombre de poids indépendamment de la taille du dictionnaire.Particulièrement, nous présentons une nouvelle approche hybride pour la construction du dictionnaire qui emploie le test de la surprise pour l'admission des données d'entrées avec une méthode simple d'élagage (l'élimination du membre le plus ancien du dictionnaire) qui impose une limite stricte sur la taille du dictionnaire. Nous proposons ainsi de construire un régresseur "K-creux" (en anglais, K-sparse) aux moindres carrés qui suit la relation des paires de données d'entrées et sorties les plus récentes en utilisant les K membres du dictionnaire qui approximent le mieux possible les sorties. L'identification de ces membres est un problème d'optimisation combinatoire ayant une complexité prohibitive. Pour surmonter cet obstacle, nous étendons l'algorithme Subspace Pursuit (SP), qui est une méthode à complexité réduite pour le calcul des solutions aux moindres carrés ayant un niveau préfixé de parcimonie, aux problèmes de régression non-linéaire. Ainsi, nous introduisons une version à noyau de SP qu'on appelle Kernel Subspace Pursuit (KSP). L'algorithme standard KRLS est utilisé pour l'ajustement récursif des poids jusqu'à ce qu'un nouveau vecteur de donnée soit admis au dictionnaire. Les simulations démontrent que la performance de notre algorithme dans le cadre du suivi des systèmes variant dans le temps surpasse celle d'autres algorithmes KRLS.
Bilal, Tahir. "Content Based Packet Filtering In Linux Kernel Using Deterministic Finite Automata." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613710/index.pdf.
Full textPolato, Mirko. "Definition and learning of logic-based kernels for categorical data, and application to collaborative filtering." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3427260.
Full textThe continuous pursuit of better prediction quality has gradually led to the development of increasingly complex machine learning models, e.g., deep neural networks. Despite the great success in many domains, the black-box nature of these models makes them not suitable for applications in which the model understanding is at least as important as the prediction accuracy, such as medical applications. On the other hand, more interpretable models, as decision trees, are in general much less accurate. In this thesis, we try to merge the positive aspects of these two realities, by injecting interpretable elements inside complex methods. We focus on kernel methods which have an elegant framework that decouples learning algorithms from data representations. In particular, the first main contribution of this thesis is the proposal of a new family of Boolean kernels, i.e., kernels defined on binary data, with the aim of creating interpretable feature spaces. Assuming binary input vectors, the core idea is to build embedding spaces in which the dimensions represent logical formulas (of a specific form) of the input variables. As a result the solution of a kernel machine can be represented as a weighted sum of logical propositions, and this allows to extract from it human-readable rules. Our framework provides a constructive and efficient way to calculate Boolean kernels of different forms (e.g., disjunctive, conjunctive, DNF, CNF). We show that on binary classification tasks over categorical datasets the proposed kernels achieve state-of-the-art performances. We also provide some theoretical properties about the expressiveness of such kernels. The second main contribution consists in the development of a new multiple kernel learning algorithm to automatically learn the best representation (avoiding the validation). We start from a theoretical result which states that, under mild conditions, any dot-product kernel can be seen as a linear non-negative combination of Boolean conjunctive kernels. Then, from this combination, our MKL algorithm learns non-parametrically the best combination of the conjunctive kernels. This algorithm is designed to optimize the radius-margin ratio of the combined kernel, which has been demonstrated of being an upper bound of the Leave-One-Out error. An extensive empirical evaluation, on several binary classification tasks, shows how our MKL technique is able to outperform state-of-the-art MKL approaches. A third contribution is the proposal of another kernel family for binary input data, which aims to overcome the limitations of the Boolean kernels. In this case the focus is not exclusively on the interpretability, but also on the expressivity. With this new framework, that we dubbed propositional kernel framework, is possible to build kernel functions able to create feature spaces containing almost any kind of logical propositions. Finally, the last contribution is the application of the Boolean kernels to Recommender Systems, specifically, on top-N recommendation tasks. First of all, we propose a novel kernel-based collaborative filtering method and we apply on top of it our Boolean kernels. Empirical results on several collaborative filtering datasets show how less expressive kernels can alleviate the sparsity issue, which is peculiar in this kind of applications.
Fischer, Manfred M., and Peter Stumpner. "Income Distribution Dynamics and Cross-Region Convergence in Europe. Spatial filtering and novel stochastic kernel representations." WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/3969/1/SSRN%2Did981148.pdf.
Full textMahfouz, Sandy. "Kernel-based machine learning for tracking and environmental monitoring in wireless sensor networkds." Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0025/document.
Full textThis thesis focuses on the problems of localization and gas field monitoring using wireless sensor networks. First, we focus on the geolocalization of sensors and target tracking. Using the powers of the signals exchanged between sensors, we propose a localization method combining radio-location fingerprinting and kernel methods from statistical machine learning. Based on this localization method, we develop a target tracking method that enhances the estimated position of the target by combining it to acceleration information using the Kalman filter. We also provide a semi-parametric model that estimates the distances separating sensors based on the powers of the signals exchanged between them. This semi-parametric model is a combination of the well-known log-distance propagation model with a non-linear fluctuation term estimated within the framework of kernel methods. The target's position is estimated by incorporating acceleration information to the distances separating the target from the sensors, using either the Kalman filter or the particle filter. In another context, we study gas diffusions in wireless sensor networks, using also machine learning. We propose a method that allows the detection of multiple gas diffusions based on concentration measures regularly collected from the studied region. The method estimates then the parameters of the multiple gas sources, including the sources' locations and their release rates
Vaerenbergh, Steven Van. "Kernel Methods for Nonlinear Identification, Equalization and Separation of Signals." Doctoral thesis, Universidad de Cantabria, 2010. http://hdl.handle.net/10803/10673.
Full textIn the last decade, kernel methods have become established techniques to perform nonlinear signal processing. Thanks to their foundation in the solid mathematical framework of reproducing kernel Hilbert spaces (RKHS), kernel methods yield convex optimization problems. In addition, they are universal nonlinear approximators and require only moderate computational complexity. These properties make them an attractive alternative to traditional nonlinear techniques such as Volterra series, polynomial filters and neural networks.This work aims to study the application of kernel methods to resolve nonlinear problems in signal processing and communications. Specifically, the problems treated in this thesis consist of the identification and equalization of nonlinear systems, both in supervised and blind scenarios, kernel adaptive filtering and nonlinear blind source separation.In a first contribution, a framework for identification and equalization of nonlinear Wiener and Hammerstein systems is designed, based on kernel canonical correlation analysis (KCCA). As a result of this study, various other related techniques are proposed, including two kernel recursive least squares (KRLS) algorithms with fixed memory size, and a KCCA-based blind equalization technique for Wiener systems that uses oversampling. The second part of this thesis treats two nonlinear blind decoding problems of sparse data, posed under conditions that do not permit the application of traditional clustering techniques. For these problems, which include the blind decoding of fast time-varying MIMO channels, a set of algorithms based on spectral clustering is designed. The effectiveness of the proposed techniques is demonstrated through various simulations.
Suutala, J. (Jaakko). "Learning discriminative models from structured multi-sensor data for human context recognition." Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789514298493.
Full textTiivistelmä Tässä työssä kehitettiin ja sovellettiin tilastollisen koneoppimisen ja hahmontunnistuksen menetelmiä anturipohjaiseen ihmiseen liittyvän tilannetiedon tunnistamiseen. Esitetyt menetelmät kuuluvat erottelevan oppimisen viitekehykseen, jossa ennustemalli sisääntulomuuttujien ja vastemuuttujan välille voidaan oppia suoraan tunnetuilla vastemuuttujilla nimetystä aineistosta. Parametrittomien erottelevien mallien oppimiseen käytettiin ydinmenetelmiä kuten tukivektorikoneita (SVM) ja Gaussin prosesseja (GP), joita voidaan pitää yhtenä modernin tilastollisen koneoppimisen tärkeimmistä menetelmistä. Työssä kehitettiin näihin menetelmiin liittyviä laajennuksia, joiden avulla rakenteellista aineistoa voidaan mallittaa paremmin reaalimaailman sovelluksissa, esimerkiksi tilannetietoisen laskennan sovellusalueella. Tutkimuksessa sovellettiin SVM- ja GP-menetelmiä moniluokkaisiin luokitteluongelmiin rakenteellisen monianturitiedon mallituksessa. Useiden tietolähteiden käsittelyyn esitetään menettely, joka yhdistää useat opetetut luokittelijat päätöstason säännöillä lopulliseksi malliksi. Tämän lisäksi aikasarjatiedon käsittelyyn kehitettiin uusi graafiesitykseen perustuva ydinfunktio sekä menettely sekventiaalisten luokkavastemuuttujien käsittelyyn. Nämä voidaan liittää modulaarisesti ydinmenetelmiin perustuviin erotteleviin luokittelijoihin. Lopuksi esitetään tekniikoita usean liikkuvan kohteen seuraamiseen. Menetelmät perustuvat anturitiedosta oppivaan GP-regressiomalliin ja partikkelisuodattimeen. Työssä esitettyjä menetelmiä sovellettiin kolmessa ihmisen liikkeisiin liittyvässä tilannetiedon tunnistussovelluksessa: henkilön biometrinen tunnistaminen, henkilöiden seuraaminen sekä aktiviteettien tunnistaminen. Näissä sovelluksissa henkilön asentoa, liikkeitä ja astuntaa kävelyn ja muiden aktiviteettien aikana mitattiin kahdella erilaisella paineherkällä lattia-anturilla sekä puettavilla kiihtyvyysantureilla. Tunnistusmenetelmien laajennuksien lisäksi jokaisessa sovelluksessa kehitettiin menetelmiä signaalin segmentointiin ja kuvaavien piirteiden irroittamiseen matalantason anturitiedosta. Tutkimuksen tuloksena saatiin parannuksia erottelevien mallien oppimiseen rakenteellisesta anturitiedosta sekä erityisesti uusia menettelyjä tilannetiedon tunnistamiseen
Verzotto, Davide. "Advanced Computational Methods for Massive Biological Sequence Analysis." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3426282.
Full textCon l'avvento delle moderne tecnologie di sequenziamento, massive quantità di dati biologici, da sequenze proteiche fino a interi genomi, sono disponibili per la ricerca. Questo progresso richiede l'analisi e la classificazione automatica di tali collezioni di dati, al fine di migliorare la conoscenza nel campo delle Scienze della Vita. Nonostante finora siano stati proposti molti approcci per modellare matematicamente le sequenze biologiche, ad esempio cercando pattern e similarità tra sequenze genomiche o proteiche, questi metodi spesso mancano di strutture in grado di indirizzare specifiche questioni biologiche. In questa tesi, presentiamo nuovi metodi computazionali per tre problemi fondamentali della biologia molecolare: la scoperta di relazioni evolutive remote tra sequenze proteiche, l'individuazione di segnali biologici complessi in siti funzionali tra loro correlati, e la ricostruzione della filogenesi di un insieme di organismi, attraverso la comparazione di interi genomi. Il principale contributo è dato dall'analisi sistematica dei pattern che possono interessare questi problemi, portando alla progettazione di nuovi strumenti computazionali efficaci ed efficienti. Vengono introdotti così due paradigmi avanzati per la scoperta e il filtraggio di pattern, basati sull'osservazione che i motivi biologici funzionali, o pattern, sono localizzati in differenti regioni delle sequenze in esame. Questa osservazione consente di realizzare approcci parsimoniosi in grado di evitare un conteggio multiplo degli stessi pattern. Il primo paradigma considerato, ovvero irredundant common motifs, riguarda la scoperta di pattern comuni a coppie di sequenze che hanno occorrenze non coperte da altri pattern, la cui copertura è definita da una maggiore specificità e/o possibile estensione dei pattern. Il secondo paradigma, ovvero underlying motifs, riguarda il filtraggio di pattern che hanno occorrenze non sovrapposte a quelle di altri pattern con maggiore priorità, dove la priorità è definita da proprietà lessicografiche dei pattern al confine tra pattern matching e analisi statistica. Sono stati sviluppati tre metodi computazionali basati su questi paradigmi avanzati. I risultati sperimentali indicano che i nostri metodi sono in grado di identificare le principali similitudini tra sequenze biologiche, utilizzando l'informazione presente in maniera non ridondante. In particolare, impiegando gli irredundant common motifs e le statistiche basate su questi pattern risolviamo il problema della rilevazione di omologie remote tra proteine. I risultati evidenziano che il nostro approccio, chiamato Irredundant Class, ottiene ottime prestazioni su un benchmark impegnativo, e migliora i metodi allo stato dell'arte. Inoltre, per individuare segnali biologici complessi utilizziamo la nozione di underlying motifs, definendo così alcune modalità per il confronto e il filtraggio di motivi degenerati ottenuti tramite moderni strumenti di pattern discovery. Esperimenti su grandi famiglie proteiche dimostrano che il nostro metodo riduce drasticamente il numero di motivi che gli scienziati dovrebbero altrimenti ispezionare manualmente, mettendo in luce inoltre i motivi funzionali identificati in letteratura. Infine, combinando i due paradigmi proposti presentiamo una nuova e pratica funzione di distanza tra interi genomi. Con il nostro metodo, chiamato Unic Subword Approach, relazioniamo tra loro le diverse regioni di due sequenze genomiche, selezionando i motivi conservati durante l'evoluzione. I risultati sperimentali evidenziano che il nostro approccio offre migliori prestazioni rispetto ad altri metodi allo stato dell'arte nella ricostruzione della filogenesi di organismi quali virus, procarioti ed eucarioti unicellulari, identificando inoltre le sottoclassi principali di queste specie.
Hsiao, Ming-Yuen, and 蕭閔元. "Indoor Positioning With Distributed Kernel-Based Bayesian Filtering." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/3328rw.
Full text國立中興大學
電機工程學系所
101
In the wireless sensor network, several localization algorithms have been proposed for indoor positioning systems. However, the computational complexity of these schemes is high, which may not be suitable to be implemented in sensor nodes. For example, the limited sensor capabilities lead to performing the particle filtering with a very small set of samples, which results in high positioning errors. Hence, a novel sampling scheme may be required to improve estimation accuracy for the particle filter method. In this thesis, the concept of support vector regression (SVR) is conducted to suppress the estimation error, which enhances the reliability of the positioning system. Accordingly, we propose a Kernel-Based Particle Filtering (KBPF) algorithm, which consists of the following three steps: (1) Initial SVR Estimation; (2) Kernel-based Re-weighting; and (3) Estimation Refinement. The experimental results show that the proposed scheme can achieve good indoor positioning accuracy with a small number of samples and the performance of the proposed KBPF system using three beacons is comparable with that of the KLF system using four beacons.
Books on the topic "Kernel filtering"
Príncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: Wiley, 2010.
Find full textPríncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: Wiley, 2010.
Find full textPríncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: Wiley, 2010.
Find full textPríncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: John Wiley, 2010.
Find full textPríncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: John Wiley, 2010.
Find full textPríncipe, J. C. Kernel adaptive filtering: A comprehensive introduction. Hoboken, N.J: Wiley, 2010.
Find full textPrincipe, Jos, Simon Haykin, and Weifeng Liu. Kernel Adaptive Filtering. Wiley & Sons, Incorporated, John, 2010.
Find full textHaykin, Simon, José C. Principe, and Weifeng Liu. Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley & Sons, Incorporated, John, 2010.
Find full textHaykin, Simon, José C. Principe, and Weifeng Liu. Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley & Sons, Incorporated, John, 2011.
Find full textHaykin, Simon, José C. Principe, and Weifeng Liu. Kernel Adaptive Filtering: A Comprehensive Introduction. Wiley & Sons, Incorporated, John, 2010.
Find full textBook chapters on the topic "Kernel filtering"
Ozeki, Kazuhiko. "Kernel Affine Projection Algorithm." In Theory of Affine Projection Algorithms for Adaptive Filtering, 165–85. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55738-8_7.
Full textChen, Badong, Lin Li, Weifeng Liu, and José C. Príncipe. "Nonlinear Adaptive Filtering in Kernel Spaces." In Springer Handbook of Bio-/Neuroinformatics, 715–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-30574-0_41.
Full textGarcía-Vega, S., A. M. Álvarez-Meza, and Germán Castellanos-Domínguez. "Estimation of Cyclostationary Codebooks for Kernel Adaptive Filtering." In Advanced Information Systems Engineering, 351–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-319-12568-8_43.
Full textZhang, Tao, and Wu Huang. "Kernel Relative-prototype Spectral Filtering for Few-Shot Learning." In Lecture Notes in Computer Science, 541–57. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20044-1_31.
Full textKang, Dong-Ho, and Rhee Man Kil. "Nonlinear Filtering Based on a Network with Gaussian Kernel Functions." In Neural Information Processing, 53–60. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26555-1_7.
Full textScardapane, Simone, Danilo Comminiello, Michele Scarpiniti, Raffaele Parisi, and Aurelio Uncini. "PM10 Forecasting Using Kernel Adaptive Filtering: An Italian Case Study." In Neural Nets and Surroundings, 93–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35467-0_10.
Full textBlandon, J. S., C. K. Valencia, A. Alvarez, J. Echeverry, M. A. Alvarez, and A. Orozco. "Shape Classification Using Hilbert Space Embeddings and Kernel Adaptive Filtering." In Lecture Notes in Computer Science, 245–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93000-8_28.
Full textZhang, Jing, Dong Hu, Biqiu Zhang, and Yuwei Pang. "Hierarchical Convolution Feature for Target Tracking with Kernel-Correlation Filtering." In Lecture Notes in Computer Science, 297–306. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34120-6_24.
Full textBarash, Danny, and Dorin Comaniciu. "A Common Viewpoint on Broad Kernel Filtering and Nonlinear Diffusion." In Scale Space Methods in Computer Vision, 683–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44935-3_48.
Full textCoufal, David. "On Persistence of Convergence of Kernel Density Estimates in Particle Filtering." In Advances in Intelligent Systems and Computing, 339–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18058-4_27.
Full textConference papers on the topic "Kernel filtering"
Wada, Tomoya, and Toshihisa Tanaka. "Doubly adaptive kernel filtering." In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282173.
Full textChen, Badong, Nanning Zheng, and Jose C. Principe. "Survival kernel with application to kernel adaptive filtering." In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6706866.
Full textDe Luca, Patrick Medeiros, and Wemerson Delcio Parreira. "Simulação do comportamento estocástico do algoritmo KLMS com diferentes kernels." In Computer on the Beach. Itajaí: Universidade do Vale do Itajaí, 2020. http://dx.doi.org/10.14210/cotb.v11n1.p004-006.
Full textLiu, Jin, Hua Qu, Badong Chen, and Wentao Ma. "Kernel robust mixed-norm adaptive filtering." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889889.
Full textXia, Zhonghang, Wenke Zhang, Manghui Tu, and I.-Ling Yen. "Kernel-based Approaches for Collaborative Filtering." In 2010 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2010. http://dx.doi.org/10.1109/icmla.2010.41.
Full textLi, Kan, Badong Chen, and Jose C. Principe. "Kernel adaptive filtering with confidence intervals." In 2013 International Joint Conference on Neural Networks (IJCNN 2013 - Dallas). IEEE, 2013. http://dx.doi.org/10.1109/ijcnn.2013.6707045.
Full textRawat, Paresh, and Manish D. Sawale. "Gaussian kernel filtering for video stabilization." In 2017 International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE). IEEE, 2017. http://dx.doi.org/10.1109/rise.2017.8378142.
Full textFernandez-Berni, J., R. Carmona-Galan, and A. Rodriguez-Vazquez. "Image filtering by reduced kernels exploiting kernel structure and focal-plane averaging." In 2011 European Conference on Circuit Theory and Design (ECCTD). IEEE, 2011. http://dx.doi.org/10.1109/ecctd.2011.6043324.
Full textTakeuchi, Airi, Masahiro Yukawa, and Klaus-Robert Muller. "A better metric in kernel adaptive filtering." In 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. http://dx.doi.org/10.1109/eusipco.2016.7760514.
Full textEngholm, Rasmus, Henrik Karstoft, and Eva B. V. Jensen. "Adaptive kernel filtering used in video processing." In IS&T/SPIE Electronic Imaging, edited by Majid Rabbani and Robert L. Stevenson. SPIE, 2009. http://dx.doi.org/10.1117/12.808155.
Full text