Academic literature on the topic 'Kelud Volcano (Indonesia)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kelud Volcano (Indonesia).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kelud Volcano (Indonesia)"

1

Iguchi, Masato, Surono, Takeshi Nishimura, Muhamad Hendrasto, Umar Rosadi, Takahiro Ohkura, Hetty Triastuty, et al. "Methods for Eruption Prediction and Hazard Evaluation at Indonesian Volcanoes." Journal of Disaster Research 7, no. 1 (January 1, 2012): 26–36. http://dx.doi.org/10.20965/jdr.2012.p0026.

Full text
Abstract:
We report methods, based on geophysical observations and geological surveys, for the prediction of eruptions and the evaluation of the activity of 4 volcanoes in Indonesia. These are Semeru, Guntur, Kelud and Sinabung volcanoes. Minor increases in tilt were detected by borehole tiltmeters prior to eruptions at the Semeru volcano depending on the seismic amplitude of explosion earthquakes. The results show the possibility of prediction of the type and magnitude of eruption and the effectiveness of observation with a high signalto-noise ratio. The establishment of background data is important for evaluating volcanic activity in longterm prediction. Typical distributions of volcanic and local tectonic earthquakes were obtained around the Guntur volcano, where geodetic monitoring by continuous GPS observation is valuable. The cumulative volume of eruptive products is valuable for evaluating the potential for future eruption. The eruptive rate of the Kelud volcano is ca 2×106m3/y (dense rock equivalent), but the volume of the 2007 eruption was only 2×107m3, suggesting a still high potential for eruption. Based on geological surveys and dating, an eruption scenario is proposed for the activity of Mt. Sinabung, where phreatic eruptions occurred in 2010 after a historically long dormancy.
APA, Harvard, Vancouver, ISO, and other styles
2

Niasari, Sintia Windhi, Lusia Rita Nugraheni, and Puspita Dian Maghfira. "The b-value of the Kelud Volcano in the Last Three Decades." E3S Web of Conferences 325 (2021): 01019. http://dx.doi.org/10.1051/e3sconf/202132501019.

Full text
Abstract:
Kelud volcano is located in the Kediri sub-district, East Java Province, Indonesia. This volcano is still active, with total population, in the radius of 10 km, is around 10 thousand people. Kelud volcano is a popular tourist destination. On the weekend, total visitor can reach 5,000 people per-day. These people are at high risk when the Kelud volcano erupts. The last eruption of the Kelud volcano occurred in 2014 and was explosive eruption. Previously, there was an effusive eruption in 2007. These two types of eruption have its own geo hazard risk. Thus, predict the eruption type could help hazard mitigation. In this study, two data sets of earthquakes, 1990-2007 and 2008-2020, were analysed to determine the b-value and its relationship to the eruption type of the Kelud volcano. The calculation of the b-value uses the Gutenberg-Richter relationship. Calculation of the b-value in 2007, when there was an effusive eruption, showed a value of 2.27, while in 2014 (when there was an explosive eruption) was 1.85. After 2009, the curve of the b-value against time shows decrease. As a long term precursor of the Kelud activity, this b-value curve should be analysed continuously, besides volcano tectonic seismicity monitoring.
APA, Harvard, Vancouver, ISO, and other styles
3

Nasution, N. J. F., K. Sembiring, and Z. Sitorus. "Analysis of the Structure of Ceramic Materials of Clay, Mount Kelud Volcanic Ash and Sea Water." Journal of Physics: Conference Series 2019, no. 1 (October 1, 2021): 012103. http://dx.doi.org/10.1088/1742-6596/2019/1/012103.

Full text
Abstract:
Abstract Based on the durability of ancient roman buildings that are 2000 years old and are always exposed to sea waves. In which there is a mixed reaction of volcanic rock with seawater. Indonesia has many active volcanoes, this is because Indonesia is located at the confluence of the Eurasian and Indo-Australian tectonic plates. One of the mountains formed in the area where the plates meet is still active, the mountain is Mount Kelud. Mount Kelud is a volcano in the province of East Java, Indonesia, which is classified as active. The existence of volcanic ash resulting from the eruption of Mount Kelud is quite potential as a ceramic material. So the purpose of this research is to make a ceramic construction made from clay, volcanic ash from Mount Kelud and sea water by the method of die pressing and sintering at a temperature of 1000°C. So it can be known how the physical properties, mechanics and especially the crystal structure formed from ceramic samples. The results of the research that has been carried out are that the highest density value is in the composition of a mixture of 50% volcanic ash and 50% seawater, the highest compressive strength value is also found in the composition of a mixture of 50% volcanic ash and 50% seawater, and from the XRD results, the structure The crystal formed is hexagonal with the phase formed is SiO2.
APA, Harvard, Vancouver, ISO, and other styles
4

Wardhani, Puspita Indra, Junun Sartohadi, and Sunarto Sunarto. "Dynamic Land Resources Management at the Mount Kelud, Indonesia." Forum Geografi 31, no. 1 (July 1, 2017): 56–68. http://dx.doi.org/10.23917/forgeo.v31i1.3612.

Full text
Abstract:
There is a contradictive situation between the theory that believes that high volcanic hazard areas should be for limited production zones and those areas that are intensively utilised for several production activities. This paper tries to discuss that contradictive situation from both the perspective of natural hazards and natural resources, therefore, the best options for the land utilisation pattern might be formulated at these high volcanic hazards areas. We conducted landscape analysis that covers volcanic morphology, volcanic materials, and both natural and artificial processes that modify the morphology and materials characteristics. The natural processes occurring in the high volcanic hazard might cover non-volcanic processes such as erosion and landslide. The artificial processes were usually considered as land utilisation activities by the local community. In such areas where both natural and artificial processes occurred, we conducted in-depth interviews to assess the community perception on thread and benefits of the last Kelud Eruption in February 2014. We evaluated the current land resources utilisation and portrayed the local adaptive land resource utilisation. There were three types of land resources available at the active volcano: space, natural scenery, and volcanic materials. The availability of these land resources was in a dynamic condition both in terms of quality and quantity. Immediately after the eruption, the natural scenery made the area attractive as a tourist destination. Following the high intensity of rainfall, the volcanic materials might be used as high-quality construction materials. The available space might be utilised for any purposes after the situation became relatively stable. The current space was mostly used for agricultural enterprises which accommodates the physical and socio-cultural characteristics of the active volcano environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Iguchi, Masato, Setsuya Nakada, and Kuniaki Miyamoto. "Special Issue on Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Products: Part 2." Journal of Disaster Research 14, no. 1 (February 1, 2019): 5. http://dx.doi.org/10.20965/jdr.2019.p0005.

Full text
Abstract:
Our research project titled “Integrated study on mitigation of multimodal disasters caused by ejection of volcanic products” began in 2014 under SATREPS (Science and Technology Research Partnership for Sustainable Development) and is now coming to an end in 2019. Indonesia has 127 active volcanoes distributed along its archipelago making it a high risk location for volcano-related disasters. The target volcanoes in our study are Guntur, Galunggung, Merapi, Kelud, and Semeru in Java, and Sinabung in North Sumatra. Guntur and Galunggung are currently dormant and are potentially high-risk volcanoes. Merapi generated pyroclastic flows along the Gendol River in 2010, which resulted in over 300 casualties and induced frequent lahars. New eruptive activity of Merapi began in 2018. The 2014 eruption of Kelud formed a gigantic ash plume over 17 km high, dispersing ash widely over the island of Java. Semeru continued minor eruptive activity, accompanying a risk of a dome collapse. The aim of our research includes disaster mitigation of the Sinabung volcano, whose eruption began to form a lava dome at its summit at the end of 2013, followed by frequent pyroclastic flows for approximately 4 years, and the deposits became the source of rain-triggered lahars. Our goal is to implement SSDM (Support System for Decision-Making), which would allow us to forecast volcano-related hazards based on scales and types of eruptions inferred from monitoring data. This special issue collects fundamental scientific knowledge and technology for the SSDM as output from our project. The SSDM is an integrated system of monitoring, constructed scenarios, forecasting scale of eruption, simulation of sediment movement and volcanic ash dispersion in the atmosphere. X-band radars newly installed by our project in Indonesia were well utilized for estimation of spatial distribution not only of rain fall in catchments but also of volcanic ash clouds. Finally, we hope the SSDM will continue to be utilized under a consortium in Merapi, which was newly established in collaboration with our projects, and extended to other volcanoes.
APA, Harvard, Vancouver, ISO, and other styles
6

Iguchi, Masato. "Special Issue on Integrated Study on Mitigation of Multimodal Disasters Caused by Ejection of Volcanic Products." Journal of Disaster Research 11, no. 1 (February 1, 2016): 3. http://dx.doi.org/10.20965/jdr.2016.p0003.

Full text
Abstract:
Volcanic eruptions induce often widely dispersed, multimodal flows such as volcanic ash, pyroclastics, layers, and lava. Lahars triggered by heavy rain may extend far beyond ash deposits. Indonesia, which has 127 volcanoes along its archipelago, is at high risk for such disasters. The 2010 Merapi volcano eruption, for example, generated pyroclastic flows up to 17 km from the summit along the Gendol River, killing over 300 residents. The February 13, 2014, eruption of the Kelud volcano produced a gigantic ash plume over 17 km high, dispersing tehpra widely over Java Island. Ash falls and dispersion closed 7 airports and caused many flights to be cancelled. Volcanoes in Japan have recently become active, with the 2014 phreatic eruption at the Ontake volcano leaving 63 hikers dead or missing. The eruption of the Kuchinoerabujima volcano on May 29, 2015, forced all island residents to be evacuated. All of these events undeerscore how underedeveloped Japan’s early warning alert levels remain. The Sakurajima volcano, currently Japan’s most active, maintained high activity in the first half of 2015. Ash from Janaury 2015, for example, was moved down the volcano’s slopes by extremely heavy rain in June and July, accumulating as thick sediment near villages. Regarding such situations of volcano countries, we will develop an integrated system to mitigate many kinds of disasters which are generated by volcanic eruptions and extended by rain fall and wind, based on scientific knowledge. We are developing an integrated warning system to be used by local and national governments to mitigate volcanic and sediment disasters. We are also creating measure against volcanic ash for airlines. This special issue summarizes basic scientific knowledge and technology on the present warning system to be used in the integrated system for decision-making.
APA, Harvard, Vancouver, ISO, and other styles
7

Maeno, Fukashi, Setsuya Nakada, Mitsuhiro Yoshimoto, Taketo Shimano, Natsumi Hokanishi, Akhmad Zaennudin, and Masato Iguchi. "Eruption Pattern and a Long-Term Magma Discharge Rate over the Past 100 Years at Kelud Volcano, Indonesia." Journal of Disaster Research 14, no. 1 (February 1, 2019): 27–39. http://dx.doi.org/10.20965/jdr.2019.p0027.

Full text
Abstract:
Kelud Volcano is among the most active volcanoes in Indonesia, with repeated explosive eruptions throughout its history. Here, we reconstructed the relationship between the repose period and the cumulative volume of erupted material over the past 100 years and estimated the long-term magma discharge rate and future eruptive potential and hazards. Tephra data and eruption sequences described in historical documents were used to estimate the volume and mass discharge rate. The volumes of the 1901, 1919, 1951, 1966, 1990, and 2014 eruptions were estimated as 51–296 × 106m3. The mass discharge rates were estimated to be on the order of 107kg/s for the 1919, 1951, and 2014 eruptions and the order of 106kg/s for the 1966 and 1990 eruptions. Based on a linear relationship between the repose period and cumulative erupted mass, the long-term mass discharge rate was estimated as ∼ 1.5 × 1010kg/year, explaining the features of the larger eruptions (1919, 1951, and 2014) but not those of the smaller eruptions (1966 and 1990). This estimate is relatively high compared to other typical basaltic-andesitic subduction-zone volcanoes. This result provides important insights into the evolution of magmatic systems and prediction of future eruptions at Kelud Volcano.
APA, Harvard, Vancouver, ISO, and other styles
8

Nugraheni, Lusia Rita, Agung Harijoko, Wiwit Suryanto, and Hetty Triastuty. "Permutation entropy variation for 2007 effusive dome-forming eruption period of Kelud Volcano, Indonesia." E3S Web of Conferences 325 (2021): 01010. http://dx.doi.org/10.1051/e3sconf/202132501010.

Full text
Abstract:
The complexity of a system recorded in time series data can be measured statistically using permutation entropy (PE). The state of a system (e.g. regular, chaotic, random, etc.) that underlies the appearance of variations in time series can be determined with PE. Since volcanoes are considered as the complex dynamical system controlled by interactions of many processes. Permutation entropy can be applied to study the system mechanism of volcano. We utilized PE to study system mechanism of Kelud volcano in 2007 dome-forming eruption period, from 3 (KWH; KLD; UMBK) seismic stations with different distances from the crater lake. Then, we want to compare the results. The result of study shows that the PE pattern for each station is different. The unique PE pattern that can be used as an eruption precursor is only shown at KWH and KLD stations. This pattern began to appear 2.7 days before the eruption on 3 November 2007. Data from UMBK station doesn’t show unique PE pattern. The factors such as sensor distance from magmatic activity center, size, and type of eruption probably influenced the final PE result. Using PE as the addition to volcano monitoring can maximize efforts in mitigation activities.
APA, Harvard, Vancouver, ISO, and other styles
9

Tanaka, Hiroshi L., Masato Iguchi, and Setsuya Nakada. "Numerical Simulations of Volcanic Ash Plume Dispersal from Kelud Volcano in Indonesia on February 13, 2014." Journal of Disaster Research 11, no. 1 (February 1, 2016): 31–42. http://dx.doi.org/10.20965/jdr.2016.p0031.

Full text
Abstract:
In order to evaluate airborne ash densities, a real-time volcanic ash dispersion model, PUFF, is applied to the February 13, 2014 eruption of Kelud volcano in Indonesia. The emission rate of the ash mass from the vent is estimated based on the empirical formulae tested at Sakurajima volcano using ground deformation and seismic monitoring data.According to the result of the PUFF model simulation, the circular shape of the anvil ash cloud 17 km in height extends during the first two hours over a radius of 200 km from the volcano. The core region within 50 km of the volcano shows an airborne ash density of 1000 mg/m3. Three hours after the initial eruption, the area with 100 mg/m$^bm 3$ extends 300 km to the west, covering Yogyakarta Airport. Due to low-level winds, Surabaya Airport to the northeast also becomes part of the area with 100 mg/m3. The result of the ash plume dispersal 7 hours into the eruption indicates that the entire island of Java is in the danger zone for commercial airliners, as ash exceeds 10 mg/m3. Although satellite images show that the ash plume is located only in the southern half of western Java, the simulation results quantitatively indicate much wider extents of the aircraft danger zone.
APA, Harvard, Vancouver, ISO, and other styles
10

Nakada, Setsuya, Akhmad Zaennudin, Fukashi Maeno, Mitsuhiro Yoshimoto, and Natsumi Hokanishi. "Credibility of Volcanic Ash Thicknesses Reported by the Media and Local Residents Following the 2014 Eruption of Kelud Volcano, Indonesia." Journal of Disaster Research 11, no. 1 (February 1, 2016): 53–59. http://dx.doi.org/10.20965/jdr.2016.p0053.

Full text
Abstract:
Ash thicknesses reported by the media and witnessed by local residents may be exaggerated. A good example of such exaggeration is ash thicknesses reported following the Plinian eruption on February 13, 2014 at Kelud volcano, East Java, Indonesia. Volcanic ash thicknesses reported by the media and local residents were generally by 2–7 times larger than the actual values measured by volcanologists. Sensational news reports and strong fresh impressions may cause such exaggeration, or these exaggerated values may simply represent abnormal concentrations of volcanic ash. It is important to pay careful attention to the parameters that are being documented by the media and by people who do not have scientific backgrounds when utilizing such reports in scientific analyses.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Kelud Volcano (Indonesia)"

1

Mazot, Agnès. "Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210971.

Full text
Abstract:
Surface manifestations of hydrothermal fluids such as fumaroles and hot springs provide valuable information about the level of activity of a volcano during quiescent period. Geochemical study of gas and spring waters is useful to elaborate geochemical model for magmatic-hydrothermal system. Furthermore, temporal geochemical monitoring of these fluids with time provides a better understanding in processes occurring inside the volcano and can be useful to detect any changes in the activity of the magmatic-hydrothermal system. This thesis investigates two hydrothermal systems at Kelud and Papandayan volcanoes that are located at Java Island in Indonesia. Kelud is considered as one of the most dangerous volcanoes of Java because of its frequent eruptions. After the last eruption that occurred in 1990, a new lake rapidly filled the crater of Kelud volcano. Water samples collected since 1993 are near neutral Na-K chloride fluids and are typical of aged hydrothermal system where the acidity has been completely neutralized by fluid-rock interaction and where the emission of acid magmatic gases has stopped. Two sudden increases in lake temperature in 1996 and 2001 were accompanied by rapid changes in lake water compositions and suggest the existence of two hydrothermal systems feeding the lake: a shallow hydrothermal system dominated by Ca-Mg sulfate waters and a deepest aquifer with neutral alkali chloride waters. From 2001 to 2005, measurements of CO2 emitted by the surface of the lake were performed by using the accumulation chamber method modified in order to work at the surface of a crater lake. Two statistical methods were used to process data: the graphical statistical and stochastic simulation methods. The results of graphical statistical approach showed that two different degassing processes are acting at the lake surface: one corresponding to CO2 fluxes resulting from rising bubbles and the other corresponding to equilibrium diffusion of dissolved CO2 at the water-air surface. Total CO2 emission rate estimated by stochastic simulation ranges from 105 t/day for 2001 to 32 t/day for 2005. Thermal energy released by the lake was also estimated by using an energy balance model with a new constraint using the CO2 flux. The thermal flux decreased from 200 MW (2001) to 100 MW (2002) and then remained stable. Correlation between the chemical data of waters, the fluxes of CO2 and energy show that a constant decrease in the level of activity of the volcano since 1993 occurred although the lake temperature has been stable since 2003. Since the last magmatic eruption that occurred in 1772, phreatic eruptions occur on Papandayan volcano with the last one in 2002. The volcanic material ejected during this eruption is essentially made of altered rocks from within the hydrothermal system. The interaction of acid waters with the host rocks corresponds to an advanced argilic alteration. The chemical compositions of waters from Papandayan volcano and Kelud lake waters are contrasting. Indeed, the spring waters sampled since 1994 are acid sulfate-chloride waters and acid sulfate waters. The chemical and isotopic analyses of gases and waters suggest a significant magmatic contribution in SO2, HCl and HF to the hydrothermal system. The chemical composition of waters sampled after the 2002 eruption have provided information about origin of this eruption. Decrease in chloride concentration and in delta 34S of dissolved sulfates showed that the magmatic contribution in these fluids are less important and that the waters are likely to be formed by the condensation of steam (H2O, H2S) rising from a boiling aquifer.


Doctorat en sciences, Spécialisation géologie
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kelud Volcano (Indonesia)"

1

Bernard, A., and D. Tedesco. "Geochemistry of the crater lake of Kelut volcano in Indonesia." In Water-Rock Interaction, 299. London: Routledge, 2021. http://dx.doi.org/10.1201/9780203734049-73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hidayat, F., P. T. Juwono, A. Suharyanto, A. Pujiraharjo, D. Sisinggih, and D. Legono. "Sedimentation in rivers and reservoirs following the eruptions of Kelut Volcano, Indonesia." In River Sedimentation, 1016–23. CRC Press, 2016. http://dx.doi.org/10.1201/9781315623207-180.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Kelud Volcano (Indonesia)"

1

Suseno, Hendro, Ming Narto Wijaya, and Lilya Susanti. "Potential use of kelud volcano eruptive deposits, Indonesia as aggregates of Green structural lightweight concrete." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE OF GREEN CIVIL AND ENVIRONMENTAL ENGINEERING (GCEE 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0072633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sudarmanto, Eko Teguh Paripurno, and Purbudi Wahyuni. "The role of Jangkar Kelud community on building community resilience around Kelud volcano, in Blitar, Kediri and Malang Regency, East Java Province, Indonesia." In 2ND INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0013231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography