Journal articles on the topic 'Keldysha'

To see the other types of publications on this topic, follow the link: Keldysha.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Keldysha.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Radovskaya, A. A., and A. G. Semenov. "Lokal'nyy kvench v tekhnike Keldysha." Письма в Журнал экспериментальной и теоретической физики 118, no. 11-12 (12) (December 15, 2023): 921–27. http://dx.doi.org/10.31857/s1234567823240096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Popov, Vladimir S. "Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)." Uspekhi Fizicheskih Nauk 174, no. 9 (2004): 921. http://dx.doi.org/10.3367/ufnr.0174.200409a.0921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Capasso, Federico, Paul Corkum, Olga Kocharovskaya, Lev Pitaevskii, and Michael V. Sadovskii. "Leonid Keldysh." Physics Today 70, no. 6 (June 2017): 75–76. http://dx.doi.org/10.1063/pt.3.3605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Galiautdinov, Andrei. "Anisotropic Keldysh interaction." Physics Letters A 383, no. 25 (September 2019): 3167–74. http://dx.doi.org/10.1016/j.physleta.2019.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Polilova, Tatyana Alekseevna. "Keldysh Institute Preprints in the diagrams of the Science Space system." Keldysh Institute Preprints, no. 27 (2022): 1–38. http://dx.doi.org/10.20948/prepr-2022-27.

Full text
Abstract:
The bibliometric and statistical indicators of the scientific journal "Keldysh Institute Preprints" are considered. The functionality of the system named “Science Space” is demonstrated. The issues of correspondence of the thematic directions of the GRNTI rubricator used in the Science Space system and the thematic scientific directions fixed in the charter and in the electronic library of the Keldysh Insitute are discussed. The given bibliometric characteristics of the "Keldysh Institute Preprints" is forced to be more careful about the interpretation of scientometric indicators and the results of the ratings in the eLibrary.ru.
APA, Harvard, Vancouver, ISO, and other styles
6

Andreev, Aleksandr F., N. G. Basov, Vitalii L. Ginzburg, Aleksandr V. Gurevich, Boris B. Kadomtsev, D. A. Kirzhnits, Yurii V. Kopaev, et al. "Leonid Veniaminovich Keldysh (On his sixtieth birthday)." Uspekhi Fizicheskih Nauk 161, no. 4 (1991): 179. http://dx.doi.org/10.3367/ufnr.0161.199104h.0179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Volkov, Boris A., Aleksandr V. Gurevich, Vitalii L. Ginzburg, Yurii V. Kopaev, Oleg N. Krokhin, Vladimir I. Ritus, Viktor P. Silin, V. Ya Fainberg, Evgenii L. Feinberg, and Dmitrii S. Chernavskii. "Leonid Veniaminovich Keldysh (on his seventieth birthday)." Uspekhi Fizicheskih Nauk 171, no. 4 (2001): 435. http://dx.doi.org/10.3367/ufnr.0171.200104e.0435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bauer, Jarosław H. "Keldysh theory re-examined." Journal of Physics B: Atomic, Molecular and Optical Physics 49, no. 14 (June 15, 2016): 145601. http://dx.doi.org/10.1088/0953-4075/49/14/145601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jauho, A. P., and K. Johnsen. "Dynamical Franz-Keldysh Effect." Physical Review Letters 76, no. 24 (June 10, 1996): 4576–79. http://dx.doi.org/10.1103/physrevlett.76.4576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Trunin, Dmitrii A. "Comments on the adiabatic theorem." International Journal of Modern Physics A 33, no. 24 (August 30, 2018): 1850140. http://dx.doi.org/10.1142/s0217751x18501403.

Full text
Abstract:
We consider the simplest example of a nonstationary quantum system which is quantum mechanical oscillator with varying frequency and [Formula: see text] self-interaction. We calculate loop corrections to the Keldysh, retarded/advanced propagators and vertices using Schwinger–Keldysh diagrammatic technique and show that there is no physical secular growth of the loop corrections in the cases of constant and adiabatically varying frequency. This fact corresponds to the well-known adiabatic theorem in quantum mechanics. However, in the case of nonadiabatically varying frequency we obtain strong IR corrections to the Keldysh propagator which come from the “sunset” diagrams, grow with time indefinitely and indicate energy pumping into the system. It reveals itself via the change in time of the level population and of the anomalous quantum average.
APA, Harvard, Vancouver, ISO, and other styles
11

Long, Zi Jian, and Wing-Ki Liu. "Keldysh theory of strong-field ionization." Canadian Journal of Physics 88, no. 4 (April 2010): 227–45. http://dx.doi.org/10.1139/p09-111.

Full text
Abstract:
In this paper, we provide a detailed derivation of the strong-field ionization rates originally developed by Keldysh who introduced the strong-field approximation. Numerical results are presented to examine the saddle-point approximation, the low photoelectron energy approximation, and neglecting the interference terms, which are necessary to arrive at the simple quasistatic result, when the Keldysh parameter becomes very small.
APA, Harvard, Vancouver, ISO, and other styles
12

Andreev, Aleksandr F., Petr I. Arseev, Mikhail A. Vasiliev, Aleksandr V. Gurevich, Yurii V. Kopaev, Oleg N. Krokhin, Evgenii G. Maksimov, et al. "Leonid Veniaminovich Keldysh (on his 80th birthday)." Uspekhi Fizicheskih Nauk 181, no. 4 (2011): 455. http://dx.doi.org/10.3367/ufnr.0181.201104q.0455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhang, Kangqun. "Applications of Erdélyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation." Fractional Calculus and Applied Analysis 23, no. 5 (October 1, 2020): 1381–400. http://dx.doi.org/10.1515/fca-2020-0068.

Full text
Abstract:
Abstract In this paper we consider Cauchy problem of time-fractional Tricomi-Keldysh type equation. Based on the theory of a Erdélyi-Kober fractional integral operator, the formal solution of the inhomogeneous differential equation involving hyper-Bessel operator is presented with Mittag-Leffler function, then nonlinear equations are considered by applying Gronwall-type inequalities. At last, we establish the existence and uniqueness of L p -solution of time-fractional Tricomi-Keldysh type equation by use of Mikhlin multiplier theorem.
APA, Harvard, Vancouver, ISO, and other styles
14

CHEN BAO-ZHEN. "IMPROVED KELDYSH-FAISAL-REISS THEORY." Acta Physica Sinica 42, no. 2 (1993): 237. http://dx.doi.org/10.7498/aps.42.237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Guo, Y., and H. Überall. "Franz-Keldysh effect in superlattices." Radiation Effects and Defects in Solids 122-123, no. 2 (December 1991): 653–63. http://dx.doi.org/10.1080/10420159108211497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Milonni, P. W. "Shortcomings of the Keldysh approximation." Physical Review A 38, no. 5 (September 1, 1988): 2682–85. http://dx.doi.org/10.1103/physreva.38.2682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Feigel’man, M. V., A. I. Larkin, and M. A. Skvortsov. "Keldysh action for disordered superconductors." Physical Review B 61, no. 18 (May 1, 2000): 12361–88. http://dx.doi.org/10.1103/physrevb.61.12361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki. "Excitonic Dynamical Franz-Keldysh Effect." Physical Review Letters 81, no. 2 (July 13, 1998): 457–60. http://dx.doi.org/10.1103/physrevlett.81.457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Grishin, A. F., and I. V. Poedintseva. "Towards the Keldysh Tauberian Theorem." Journal of Mathematical Sciences 134, no. 4 (April 2006): 2272–87. http://dx.doi.org/10.1007/s10958-006-0102-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bonitz, Michael, Antti‐Pekka Jauho, Michael Sadovskii, and Sergei Tikhodeev. "In Memoriam Leonid V. Keldysh." physica status solidi (b) 256, no. 7 (March 19, 2019): 1800600. http://dx.doi.org/10.1002/pssb.201800600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Freimuth, Frank, Stefan Blügel, and Yuriy Mokrousov. "Theory of unidirectional magnetoresistance and nonlinear Hall effect." Journal of Physics: Condensed Matter 34, no. 5 (November 10, 2021): 055301. http://dx.doi.org/10.1088/1361-648x/ac327f.

Full text
Abstract:
Abstract We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal–Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to the f-sum rule.
APA, Harvard, Vancouver, ISO, and other styles
22

Jaiani, G. "On a Generalization of the Keldysh Theorem." gmj 2, no. 3 (June 1995): 291–97. http://dx.doi.org/10.1515/gmj.1995.291.

Full text
Abstract:
Abstract The Keldysh theorem for an elliptic equation with characteristic parabolic degeneration is generalized for the case of an elliptic equation of the second-order canonical form with order and type degeneration. The criteria under which the Dirichlet or Keldysh problems are correct are given in a one-sided neighborhood of the degeneration segment, enabling one to write the criteria in a single form. Moreover, some cases are pointed out in which it is even nessesary to give a criterion in the neighborhood because it is impossible to establish it on the segment of degeneracy of the equation.
APA, Harvard, Vancouver, ISO, and other styles
23

Alvestad, Daniel, Rasmus Larsen, and Alexander Rothkopf. "Kernel controlled real-time Complex Langevin simulation." EPJ Web of Conferences 274 (2022): 08001. http://dx.doi.org/10.1051/epjconf/202227408001.

Full text
Abstract:
This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a kernel. This allows us to simulate up to 2β on the real-time Schwinger-Keldysh contour with the 0 + 1 dimensional anharmonic oscillator using m = 1; λ = 24, which was previously unattainable using the complex Langevin equation.
APA, Harvard, Vancouver, ISO, and other styles
24

TANATAR, B., and V. MOLDOVEANU. "RPA APPROACH TO NON-LINEAR TRANSPORT IN QUANTUM DOTS." International Journal of Modern Physics B 23, no. 20n21 (August 20, 2009): 4414–21. http://dx.doi.org/10.1142/s0217979209063560.

Full text
Abstract:
An accurate theoretical treatment of electron-electron interactions in mesoscopic systems is available in very few cases and approximation schemes are developed in most of the applications, especially for many-level quantum dots. Here we present transport calculations within the random-phase approximation for the Coulomb interaction using the Keldysh Green's functions formalism. We describe the quantum dot systems by a tight-binding Hamiltonian. Our method is similar to the one used by Faleev and Stockman [Phys. Rev. B 66 085318 (2002)] in their study of the equilibrium properties of a homogeneous 2D electron gas. The important extension at the formal level is that we combine the RPA and the Keldysh formalism for studying non-linear transport properties of open quantum dots. Within the Keldysh formalism the polarization operator becomes a contour-ordered quantity that should be computed either from the non-interacting Green functions of the coupled quantum dot (the so-called G0W approximation) either self-consistently (GW approximation). We performed both non-selfconsistent and self-consistent calculations and compare the results. In particular we recover the Coulomb diamonds for interacting quantum dots and we discuss the charge sensing effects in parallel quantum dots.
APA, Harvard, Vancouver, ISO, and other styles
25

Yuan, Minghu, Dandan Wang, Junsheng Chen, Aiping Fu, Fenghui Tian, and Tianshu Chu. "Influence of pulse duration on above-threshold ionization in intensive circularly polarized laser field." Canadian Journal of Physics 93, no. 1 (January 2015): 93–99. http://dx.doi.org/10.1139/cjp-2014-0336.

Full text
Abstract:
The above-threshold ionization (ATI) process of argon in intensive circularly polarized laser field has been investigated by solving the time-dependent Schrödinger equation in length gauge with emphasis on pulse duration effect. It is shown that the influence of pulse duration is obvious on the transition between multiple-photon and tunneling ionization regimes when the Keldysh parameter is no more than 3.25. That is, photoelectron ionization by shorter pulse occurs in the tunneling regime mainly, and yet the multiple-photon absorption appears more easily with longer pulse. However, such influence disappears when the Keldysh parameter is sufficiently large and the ATI always appears in the multiple-photon ionization regime.
APA, Harvard, Vancouver, ISO, and other styles
26

Aptekarev, Alexandr, and Nadezhda Afendikova. "Unknown autographs of academician M.V. Keldysh." Вестник Российской академии наук 88, no. 12 (2018): 1153–59. http://dx.doi.org/10.31857/s086958730003195-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Banerjee, C., I. V. Fialkovsky, M. Lewkowicz, C. X. Zhang, and M. A. Zubkov. "Wigner-Weyl calculus in Keldysh technique." Journal of Computational Electronics 20, no. 6 (October 17, 2021): 2255–83. http://dx.doi.org/10.1007/s10825-021-01775-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Shen, H., and M. Dutta. "Franz–Keldysh oscillations in modulation spectroscopy." Journal of Applied Physics 78, no. 4 (August 15, 1995): 2151–76. http://dx.doi.org/10.1063/1.360131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bechler, S., M. Oehme, O. Latzel, M. Schmid, K. Kostecki, R. Koerner, M. Gollhofer, E. Kasper, and J. Schulze. "Franz-Keldysh Effect in GeSn Detectors." ECS Transactions 64, no. 6 (August 12, 2014): 383–90. http://dx.doi.org/10.1149/06406.0383ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chen, Xingang, Yi Wang, and Zhong-Zhi Xianyu. "Schwinger-Keldysh diagrammatics for primordial perturbations." Journal of Cosmology and Astroparticle Physics 2017, no. 12 (December 5, 2017): 006. http://dx.doi.org/10.1088/1475-7516/2017/12/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Zheltikov, Aleksei M. "Keldysh photoionization theory: through the barriers." Uspekhi Fizicheskih Nauk 187, no. 11 (August 2017): 1169–204. http://dx.doi.org/10.3367/ufnr.2017.08.038198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cavallini, A., L. Polenta, M. Rossi, T. Stoica, R. Calarco, R. J. Meijers, T. Richter, and H. Lüth. "Franz−Keldysh Effect in GaN Nanowires." Nano Letters 7, no. 7 (July 2007): 2166–70. http://dx.doi.org/10.1021/nl070954o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ansari, M., and Y. V. Nazarov. "Keldysh formalism for multiple parallel worlds." Journal of Experimental and Theoretical Physics 122, no. 3 (March 2016): 389–401. http://dx.doi.org/10.1134/s1063776116030134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shen, H., and Fred H. Pollak. "Generalized Franz-Keldysh theory of electromodulation." Physical Review B 42, no. 11 (October 15, 1990): 7097–102. http://dx.doi.org/10.1103/physrevb.42.7097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Citrin, D. S., and S. Hughes. "Circularly polarized dynamic Franz-Keldysh effect." Physical Review B 60, no. 19 (November 15, 1999): 13272–75. http://dx.doi.org/10.1103/physrevb.60.13272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Rahmani, A., and M. A. Sadeghzadeh. "Polaritonic linear dynamics in Keldysh formalism." Superlattices and Microstructures 100 (December 2016): 842–56. http://dx.doi.org/10.1016/j.spmi.2016.10.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dostanić, Milutin R. "The generalization of the Keldysh theorem." Journal of Mathematical Analysis and Applications 162, no. 1 (November 1991): 7–12. http://dx.doi.org/10.1016/0022-247x(91)90175-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Coriasso, C., D. Campi, C. Cacciatore, C. Alibert, S. Gaillard, B. Lambert, and A. Regreny. "Observation of Superlattice Franz-Keldysh Oscillations." Europhysics Letters (EPL) 16, no. 6 (October 7, 1991): 591–96. http://dx.doi.org/10.1209/0295-5075/16/6/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Feigel’man, M. V., A. I. Larkin, and M. A. Skvortsov. "Keldysh proximity action for disordered superconductors." Pramana 64, no. 6 (June 2005): 1039–49. http://dx.doi.org/10.1007/bf02704166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zheltikov, A. M. "Keldysh photoionization theory: through the barriers." Physics-Uspekhi 60, no. 11 (November 30, 2017): 1087–120. http://dx.doi.org/10.3367/ufne.2017.08.038198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Aksent'eva, M. S., and V. A. Rubakov. "In memory of Leonid Veniaminovich Keldysh." Physics-Uspekhi 60, no. 11 (November 30, 2017): 1065–66. http://dx.doi.org/10.3367/ufne.2017.10.038223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ehlotzky, F. "Harmonic generation in keldysh-type models." Il Nuovo Cimento D 14, no. 5 (May 1992): 517–25. http://dx.doi.org/10.1007/bf02457041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki. "Observation of Dynamical Franz-Keldysh Effect." physica status solidi (b) 204, no. 1 (November 1997): 52–54. http://dx.doi.org/10.1002/1521-3951(199711)204:1<52::aid-pssb52>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hansen, Wolfhard. "On the identity of Keldych solutions." Czechoslovak Mathematical Journal 35, no. 4 (1985): 632–38. http://dx.doi.org/10.21136/cmj.1985.102054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cherepanov, Dmitry A., Fedor E. Gostev, Ivan V. Shelaev, Nikolay N. Denisov, and Victor A. Nadtochenko. "Monitoring the electric field in CdSe quantum dots under ultrafast interfacial electron transfer via coherent phonon dynamics." Nanoscale 10, no. 47 (2018): 22409–19. http://dx.doi.org/10.1039/c8nr07644h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhu, Lin, Ruimin Li, and Kailun Yao. "Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons." Physical Chemistry Chemical Physics 19, no. 5 (2017): 4085–92. http://dx.doi.org/10.1039/c6cp07179a.

Full text
Abstract:
Thermal spin transport properties of graphene and hexagonal boron nitride nanoribbon heterojunctions have been investigated using density functional theory calculations combined with the Keldysh nonequilibrium Green's function approach.
APA, Harvard, Vancouver, ISO, and other styles
47

MISHIMA, K., M. HAYASHI, and S. H. LIN. "QUANTUM INTERFERENCE AND LASER PULSE PHASE EFFECT ON THE PHOTOIONIZATION RATES OF EXCITED HYDROGEN ATOMS IN THE TUNNELING REGION." Journal of Theoretical and Computational Chemistry 04, no. 04 (December 2005): 1153–63. http://dx.doi.org/10.1142/s0219633605001933.

Full text
Abstract:
Using the generalized Keldysh theory, we investigate the quantum interference and the laser pulse phase effects by tunneling photoionization of an excited hydrogen atom. We assume that its initial state be a linear combination of 1s, 2s, 2p Stark-shifted atomic states. It is found that within the Keldysh approximation, quantum interference can take place among the 1s, 2s, and 2pz states, while this is not the case among 1s, 2s, 2pz and 2px, 2py, or 2px and 2py themselves. From the numerical calculations, we predict that the prominent destructive quantum interference takes place between 2s and 2pz atomic orbitals. In addition, we have found that in general, the laser pulse phase does not affect the individual photoionization rates while it does affect the quantum interference terms.
APA, Harvard, Vancouver, ISO, and other styles
48

Huang, Ziwen, Yunwei Lu, Anna Grassellino, Alexander Romanenko, Jens Koch, and Shaojiang Zhu. "Completely Positive Map for Noisy Driven Quantum Systems Derived by Keldysh Expansion." Quantum 7 (November 3, 2023): 1158. http://dx.doi.org/10.22331/q-2023-11-03-1158.

Full text
Abstract:
Accurate modeling of decoherence errors in quantum processors is crucial for analyzing and improving gate fidelities. To increase the accuracy beyond that of the Lindblad dynamical map, several generalizations have been proposed, and the exploration of simpler and more systematic frameworks is still ongoing. In this paper, we introduce a decoherence model based on the Keldysh formalism. This formalism allows us to include non-periodic drives and correlated quantum noise in our model. In addition to its wide range of applications, our method is also numerically simple, and yields a CPTP map. These features allow us to integrate the Keldysh map with quantum-optimal-control techniques. We demonstrate that this strategy generates pulses that mitigate correlated quantum noise in qubit state-transfer and gate operations.
APA, Harvard, Vancouver, ISO, and other styles
49

Zou, Fei, Lin Zhu, Gaoying Gao, Menghao Wu, and Kailun Yao. "Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2." Physical Chemistry Chemical Physics 18, no. 8 (2016): 6053–58. http://dx.doi.org/10.1039/c5cp05001d.

Full text
Abstract:
The thermal transport properties of an iron-doped molybdenum disulfide system were explored theoretically using the density functional theory calculations combined with the Keldysh non-equilibrium Green's function approach.
APA, Harvard, Vancouver, ISO, and other styles
50

Kornilina, Marina Andreyevna. "Analysis of dissertation defenses in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences." Keldysh Institute Preprints, no. 14 (2024): 1–22. http://dx.doi.org/10.20948/prepr-2024-14.

Full text
Abstract:
Statistic data was collected and analyzed for dissertation defenses carried out in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences during 2010-2023.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography