Academic literature on the topic 'Kähler- Einstein equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Kähler- Einstein equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Kähler- Einstein equation"

1

Zhang, Xi, and Xiangwen Zhang. "Generalized Kähler–Einstein Metrics and Energy Functionals." Canadian Journal of Mathematics 66, no. 6 (December 1, 2014): 1413–35. http://dx.doi.org/10.4153/cjm-2013-034-3.

Full text
Abstract:
Abstract.In this paper, we consider a generalized Kähler–Einstein equation on a Kähler manifold M. Using the twisted 𝒦–energy introduced by Song and Tian, we show that the existence of generalized Kähler–Einstein metrics with semi–positive twisting (1, 1)–form θ is also closely related to the properness of the twisted 𝒦-energy functional. Under the condition that the twisting form θ is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector field, we prove that the existence of generalized Kähler–Einstein metric implies a Moser–Trudinger type inequality.
APA, Harvard, Vancouver, ISO, and other styles
2

PAN, LISHUANG, AN WANG, and LIYOU ZHANG. "ON THE KÄHLER–EINSTEIN METRIC OF BERGMAN–HARTOGS DOMAINS." Nagoya Mathematical Journal 221, no. 1 (March 2016): 184–206. http://dx.doi.org/10.1017/nmj.2016.4.

Full text
Abstract:
We study the complete Kähler–Einstein metric of certain Hartogs domains ${\rm\Omega}_{s}$ over bounded homogeneous domains in $\mathbb{C}^{n}$. The generating function of the Kähler–Einstein metric satisfies a complex Monge–Ampère equation with Dirichlet boundary condition. We reduce the Monge–Ampère equation to an ordinary differential equation and solve it explicitly when we take the parameter $s$ for some critical value. This generalizes previous results when the base is either the Euclidean unit ball or a bounded symmetric domain.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Xi. "Hermitian Yang–Mills–Higgs Metrics on Complete Kähler Manifolds." Canadian Journal of Mathematics 57, no. 4 (August 1, 2005): 871–96. http://dx.doi.org/10.4153/cjm-2005-034-3.

Full text
Abstract:
AbstractIn this paper, first, we will investigate the Dirichlet problem for one type of vortex equation, which generalizes the well-known Hermitian Einstein equation. Secondly, we will give existence results for solutions of these vortex equations over various complete noncompact Kähler manifolds.
APA, Harvard, Vancouver, ISO, and other styles
4

Visinescu, Mihai. "Sasaki–Ricci flow equation on five-dimensional Sasaki–Einstein space Yp,q." Modern Physics Letters A 35, no. 14 (March 20, 2020): 2050114. http://dx.doi.org/10.1142/s021773232050114x.

Full text
Abstract:
We analyze the transverse Kähler–Ricci flow equation on Sasaki-Einstein space [Formula: see text]. Explicit solutions are produced representing new five-dimensional Sasaki structures. Solutions which do not modify the transverse metric preserve the Sasaki–Einstein feature of the contact structure. If the transverse metric is altered, the deformed metrics remain Sasaki, but not Einstein.
APA, Harvard, Vancouver, ISO, and other styles
5

Alekseevsky, Dmitri V., and Fabio Podestà. "Homogeneous almost-Kähler manifolds and the Chern–Einstein equation." Mathematische Zeitschrift 296, no. 1-2 (December 4, 2019): 831–46. http://dx.doi.org/10.1007/s00209-019-02446-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

ARVANITOYEORGOS, ANDREAS, IOANNIS CHRYSIKOS, and YUSUKE SAKANE. "HOMOGENEOUS EINSTEIN METRICS ON GENERALIZED FLAG MANIFOLDS WITH FIVE ISOTROPY SUMMANDS." International Journal of Mathematics 24, no. 10 (September 2013): 1350077. http://dx.doi.org/10.1142/s0129167x13500778.

Full text
Abstract:
We construct the homogeneous Einstein equation for generalized flag manifolds G/K of a compact simple Lie group G whose isotropy representation decomposes into five inequivalent irreducible Ad (K)-submodules. To this end, we apply a new technique which is based on a fibration of a flag manifold over another such space and the theory of Riemannian submersions. We classify all generalized flag manifolds with five isotropy summands, and we use Gröbner bases to study the corresponding polynomial systems for the Einstein equation. For the generalized flag manifolds E6/(SU(4) × SU(2) × U(1) × U(1)) and E7/(U(1) × U(6)) we find explicitly all invariant Einstein metrics up to isometry. For the generalized flag manifolds SO (2ℓ + 1)/( U (1) × U (p) × SO (2(ℓ - p - 1) + 1)) and SO (2ℓ)/( U (1) × U (p) × SO (2(ℓ - p - 1))) we prove existence of at least two non-Kähler–Einstein metrics. For small values of ℓ and p we give the precise number of invariant Einstein metrics.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Chi. "On the limit behavior of metrics in the continuity method for the Kähler–Einstein problem on a toric Fano manifold." Compositio Mathematica 148, no. 6 (October 12, 2012): 1985–2003. http://dx.doi.org/10.1112/s0010437x12000334.

Full text
Abstract:
AbstractThis work is a continuation of the author’s previous paper [Greatest lower bounds on the Ricci curvature of toric Fano manifolds, Adv. Math. 226 (2011), 4921–4932]. On any toric Fano manifold, we discuss the behavior of the limit metric of a sequence of metrics which are solutions to a continuity family of complex Monge–Ampère equations in the Kähler–Einstein problem. We show that the limit metric satisfies a singular complex Monge–Ampère equation. This gives a conic-type singularity for the limit metric. Information on conic-type singularities can be read off from the geometry of the moment polytope.
APA, Harvard, Vancouver, ISO, and other styles
8

SAKAGUCHI, MAKOTO. "FOUR-DIMENSIONAL N=2 SUPERSTRING BACKGROUNDS AND THE REAL HEAVENS." International Journal of Modern Physics A 11, no. 07 (March 20, 1996): 1279–97. http://dx.doi.org/10.1142/s0217751x96000572.

Full text
Abstract:
We study N=2 superstring backgrounds which are four-dimensional, non-Kählerian and contain nontrivial dilaton and torsion fields. In particular we consider the case where the backgrounds possess at least one U(1) isometry and are characterized by the continual Toda equation and the Laplace equation. We obtain a string background associated with a nontrivial solution of the continual Toda equation, which is mapped, under the T duality transformation, to the Taub-NUT instanton background. It is shown that the integrable property of the non-Kählerian spaces has a direct origin in the real heavens: real, self-dual, Euclidean, Einstein spaces. The Laplace equation and the continual Toda equation imposed on quasi-Kähler geometry for consistent string propagation are related to the self-duality conditions of the real heavens with “translational” and “rotational” Killing symmetry respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Biswas, Indranil. "Yang–Mills connections on compact complex tori." Journal of Topology and Analysis 07, no. 02 (March 26, 2015): 293–307. http://dx.doi.org/10.1142/s1793525315500107.

Full text
Abstract:
Let G be a connected reductive complex affine algebraic group and K ⊂ G a maximal compact subgroup. Let M be a compact complex torus equipped with a flat Kähler structure and (EG, θ) a polystable Higgs G-bundle on M. Take any C∞ reduction of structure group EK ⊂ EG to the subgroup K that solves the Yang–Mills equation for (EG, θ). We prove that the principal G-bundle EG is polystable and the above reduction EK solves the Einstein–Hermitian equation for EG. We also prove that for a semistable (respectively, polystable) Higgs G-bundle (EG, θ) on a compact connected Calabi–Yau manifold, the underlying principal G-bundle EG is semistable (respectively, polystable).
APA, Harvard, Vancouver, ISO, and other styles
10

ARVANITOYEORGOS, ANDREAS. "GEOMETRY OF FLAG MANIFOLDS." International Journal of Geometric Methods in Modern Physics 03, no. 05n06 (September 2006): 957–74. http://dx.doi.org/10.1142/s0219887806001399.

Full text
Abstract:
A flag manifold is a homogeneous space M = G/K, where G is a compact semisimple Lie group, and K the centralizer of a torus in G. Equivalently, M can be identified with the adjoint orbit Ad (G)w of an element w in the Lie algebra of G. We present several aspects of flag manifolds, such as their classification in terms of painted Dynkin diagrams, T-roots and G-invariant metrics, and Kähler metrics. We give a Lie-theoretic expression of the Ricci tensor in M, hence reducing the Einstein equation on flag manifolds into an algebraic system of equations, which can be solved in several cases. A flag manifold is also a complex manifold, and this dual representation as a real and a complex manifold is related to a similar property of an infinite-dimensional manifold, the loop space, which in fact can be viewed as a "universal" flag manifold.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Kähler- Einstein equation"

1

Yi, Li. "Théorèmes d'extension et métriques de Kähler-Einstein généralisées." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0151/document.

Full text
Abstract:
Cette thèse comporte deux parties: - Dans la première partie, nous traitons d'abord une version kahlérienne du célèbre théorème d'extension d'Ohsawa-Takegoshi, puis, un problème de prolongement des courants positifs fermés. Notre motivation provient de la conjecture de Siu sur l'invariance des plurigenres dans le cas d'une famille kahlérienne. En effet, dans la preuve du célèbre théorème d'invariance des plurigenres de Siu, le théorème d'extension d'Ohsawa-Takegoshi joue un rôle important. Il est donc naturel de penser que la preuve de la conjecture fera également intervenir un théorème d'extension de type Ohsawa-Takegoshi dans le cas kahlérien. Suite aux difficultés techniques qui proviennent de la régularisation des fonctions quasi-psh sur les variétés kahlériennes compactes, nous obtenons seulement deux cas particuliers du résultat espéré. Pour ce qui est du prolongement des courants positifs fermés, notre résultat est un cas particulier de la conjecture qui prédit que tout courant positif fermé défini sur le fibré central d'une classe de cohomologie kahlérienne tordue par la classe de Chern du fibré canonique admet un prolongement. - Dans la deuxième partie, nous nous intéressons à l'unicité des solutions des équations de type Monge-Ampère généralisées. Il s'agit d'une généralisation d'un théorème de Bando-Mabuchi concernant les métriques de Kahler-Einstein sur les variétés de Fano. Nous suivons la méthode introduite par Berndtsson et généralisons son résultat en travaillant avec un courant positif fermé à la place d'une paire klt dans son contexte. Les propriétés de convexité des métriques de Bergman jouent un rôle important dans cette partie
This thesis consists in two parts: -In the first part, we first deal with a Kahler version of the famous Ohsawa-Takegoshi extension theorem; then, a problem of extending the closed positive currents. Our motivation comes from the Siu's conjecture on the invariance of plurigenera over a Kahler family. Indeed, in the proof of his famous theorem, the Ohsawa-Takegoshi theorem plays an important role. It is, therefore, natural to think that the proof for the conjecture involves an extension theorem of Ohsawa-Takegoshi type in the Kahler case. Because of the technical difficulties coming from the regularization process of quasi-psh functions over the compact Kahler manifolds, we only obtain two special cases of the hoped result. As for the extension of closed positive currents, our result is a special case of the conjecture which predicts that every closed positive current defined over the central fiber in a Kahler cohomology class twisted by the first Chern class of the canonical bundle admits an extension. -In the second part, we are interested in the uniqueness of the solutions of the equations of generalized Monge-Ampère type, a generalized Bando-Mabuchi theorem concerning the Kahler-Einstein metrics over Fano manifolds. We follow the method introduced by Berndtsson and generalize his result by working with a closed positive current in place of a klt pair in his context. The properties of the convexity of the Bergman metrics play an important role in this part
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Kähler- Einstein equation"

1

Siu, Yum-Tong. "The Heat Equation Approach to Hermitian-Einstein Metrics on Stable Bundles." In Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, 11–84. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-7486-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Koiso, Norihito. "On Rotationally Symmetric Hamilton's Equation for Kähler-Einstein Metrics." In Recent Topics in Differential and Analytic Geometry, 327–37. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-12-001018-9.50015-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LeBrun, Claude. "The Einstein‐Maxwell Equations, Extremal Kähler Metrics, and Seiberg‐Witten Theory." In The Many Facets of Geometry, 17–33. Oxford University Press, 2010. http://dx.doi.org/10.1093/acprof:oso/9780199534920.003.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography