Academic literature on the topic 'K3 surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'K3 surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "K3 surfaces"

1

Garbagnati, Alice. "On K3 Surface Quotients of K3 or Abelian Surfaces." Canadian Journal of Mathematics 69, no. 02 (2017): 338–72. http://dx.doi.org/10.4153/cjm-2015-058-1.

Full text
Abstract:
Abstract The aim of this paper is to prove that a K3 surface is the minimal model of the quotient of an Abelian surface by a group G (respectively of a K3 surface by an Abelian group G) if and only if a certain lattice is primitively embedded in its Néron-Severi group. This allows one to describe the coarse moduli space of the K3 surfaces that are (rationally) G-covered by Abelian or K3 surfaces (in the latter case G is an Abelian group). When G has order 2 or G is cyclic and acts on an Abelian surface, this result is already known; we extend it to the other cases. Moreover, we prove that a K3
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Hoil, and Chang-Yeong Lee. "Noncommutative K3 surfaces." Physics Letters B 536, no. 1-2 (2002): 154–60. http://dx.doi.org/10.1016/s0370-2693(02)01807-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katsura, Toshiyuki, and Matthias Schütt. "Zariski K3 surfaces." Revista Matemática Iberoamericana 36, no. 3 (2019): 869–94. http://dx.doi.org/10.4171/rmi/1152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Keum, Jong Hae. "Every algebraic Kummer surface is the K3-cover of an Enriques surface." Nagoya Mathematical Journal 118 (June 1990): 99–110. http://dx.doi.org/10.1017/s0027763000003019.

Full text
Abstract:
A Kummer surface is the minimal desingularization of the surface T/i, where T is a complex torus of dimension 2 and i the involution automorphism on T. T is an abelian surface if and only if its associated Kummer surface is algebraic. Kummer surfaces are among classical examples of K3-surfaces (which are simply-connected smooth surfaces with a nowhere-vanishing holomorphic 2-form), and play a crucial role in the theory of K3-surfaces. In a sense, all Kummer surfaces (resp. algebraic Kummer surfaces) form a 4 (resp. 3)-dimensional subset in the 20 (resp. 19)-dimensional family of K3-surfaces (r
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Taro. "Double cover K3 surfaces of Hirzebruch surfaces." Advances in Geometry 21, no. 2 (2021): 221–25. http://dx.doi.org/10.1515/advgeom-2020-0034.

Full text
Abstract:
Abstract General K3 surfaces obtained as double covers of the n-th Hirzebruch surfaces with n = 0, 1, 4 are not double covers of other smooth surfaces. We give a criterion for such a K3 surface to be a double covering of another smooth rational surface based on the branch locus of double covers and fibre spaces of Hirzebruch surfaces.
APA, Harvard, Vancouver, ISO, and other styles
6

Artebani, Michela, Jürgen Hausen, and Antonio Laface. "On Cox rings of K3 surfaces." Compositio Mathematica 146, no. 4 (2010): 964–98. http://dx.doi.org/10.1112/s0010437x09004576.

Full text
Abstract:
AbstractWe study Cox rings of K3 surfaces. A first result is that a K3 surface has a finitely generated Cox ring if and only if its effective cone is rational polyhedral. Moreover, we investigate degrees of generators and relations for Cox rings of K3 surfaces of Picard number two, and explicitly compute the Cox rings of generic K3 surfaces with a non-symplectic involution that have Picard number 2 to 5 or occur as double covers of del Pezzo surfaces.
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Ichiro, and De-Qi Zhang. "Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces." Nagoya Mathematical Journal 161 (March 2001): 23–54. http://dx.doi.org/10.1017/s002776300002211x.

Full text
Abstract:
We present a complete list of extremal elliptic K3 surfaces (Theorem 1.1). As an application, we give a sufficient condition for the topological fundamental group of complement to an ADE-configuration of smooth rational curves on a K3 surface to be trivial (Proposition 4.1 and Theorem 4.3).
APA, Harvard, Vancouver, ISO, and other styles
8

Shimada, Ichiro. "On normal K3 surfaces." Michigan Mathematical Journal 55, no. 2 (2007): 395–416. http://dx.doi.org/10.1307/mmj/1187647000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nishiguchi, Kenji. "Degeneration of K3 surfaces." Journal of Mathematics of Kyoto University 28, no. 2 (1988): 267–300. http://dx.doi.org/10.1215/kjm/1250520482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

PARK, B. DOUG. "DOUBLING HOMOTOPY K3 SURFACES." Journal of Knot Theory and Its Ramifications 12, no. 03 (2003): 347–54. http://dx.doi.org/10.1142/s0218216503002469.

Full text
Abstract:
We perform certain doubling operation on the homotopy K3 surfaces of R. Fintushel and R. J. Stern to obtain a new family of smooth closed simply-connected irreducible spin 4-manifolds indexed by knots in S3.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "K3 surfaces"

1

Ugolini, Matteo. "K3 surfaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18774/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Makarova, Svetlana Ph D. Massachusetts Institute of Technology. "Strange duality on elliptic and K3 surfaces." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126929.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020<br>Cataloged from the official PDF of thesis.<br>Includes bibliographical references (pages 75-77).<br>The Strange Duality is a conjectural duality between two spaces of global sections of natural line bundles on moduli spaces of sheaves on a fixed variety. It has been proved in full generality on curves by Marian and Oprea, and by Belkale. There have been ongoing work on the Strange Duality on surfaces by various people. In the current paper, we show that the approach of Marian and Oprea to treating el
APA, Harvard, Vancouver, ISO, and other styles
3

Fullwood, Joshua Joseph. "Invariant Lattices of Several Elliptic K3 Surfaces." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9188.

Full text
Abstract:
This work is concerned with computing the invariant lattices of purely non-symplectic automorphisms of special elliptic K3 surfaces. Brandhorst gave a collection of K3 surfaces admitting purely non-symplectic automorphisms that are uniquely determined up to isomorphism by certain invariants. For many of these surfaces, the automorphism is also unique or the automorphism group of the surface is finite and with a nice isomorphism class. Understanding the invariant lattices of these automorphisms and surfaces is interesting because of these uniqueness properties and because it is possible to give
APA, Harvard, Vancouver, ISO, and other styles
4

Barros, Ignacio. "K3 surfaces and moduli of holomorphic differentials." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19290.

Full text
Abstract:
In dieser Arbeit behandeln wir die birationale Geometrie verschiedener Modulräume; die Modulräume von Kurven mit einem k-Differential mit vorgeschierbenen Nullen, besser bekannt als Strata von Differenzialen, Moduln von K3 Flächen mit markierten Punkten und Moduln von Kurven. Für bestimmte Geschlechter nennen wir Abschätzungen der Kodaira-Dimension, konstruieren unirationale Parametrisierungen, rationale deckende Kurven und unterschiedliche birationale Modelle. In Kapitel 1 führen wir die zu untersuchenden Objekte ein und geben einen kurzen Überblick ihrer wichtigsten Eigenschaften und off
APA, Harvard, Vancouver, ISO, and other styles
5

Veniani, Davide Cesare [Verfasser]. "Lines on K3 quartic surfaces / Davide Cesare Veniani." Hannover : Technische Informationsbibliothek (TIB), 2016. http://d-nb.info/1112954716/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goluboff, Justin Ross. "Genus Six Curves, K3 Surfaces, and Stable Pairs:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108715.

Full text
Abstract:
Thesis advisor: Maksym Fedorchuk<br>A general smooth curve of genus six lies on a quintic del Pezzo surface. In [AK11], Artebani and Kondō construct a birational period map for genus six curves by taking ramified double covers of del Pezzo surfaces. The map is not defined for special genus six curves. In this dissertation, we construct a smooth Deligne-Mumford stack P₀ parametrizing certain stable surface-curve pairs which essentially resolves this map. Moreover, we give an explicit description of pairs in P₀ containing special curves<br>Thesis (PhD) — Boston College, 2020<br>Submitted to: Bos
APA, Harvard, Vancouver, ISO, and other styles
7

Tabbaa, Dima al. "On the classification of some automorphisms of K3 surfaces." Thesis, Poitiers, 2015. http://www.theses.fr/2015POIT2299/document.

Full text
Abstract:
Un automorphisme non-symplectique d'ordre fini n sur une surface X de type K3 est un automorphisme σ ∈ Aut(X) qui satisfait σ*(ω) = λω où λ est une racine primitive n-ième de l'unité et ω est le générateur de H2,0(X). Dans cette thèse on s’intéresse aux automorphismes non-symplectiques d'ordre 8 et 16 sur les surfaces K3. Dans un premier temps, nous classifionsles automorphismes non-symplectiques σ d'ordre 8 quand le lieu fixe de sa quatrième puissance σ⁴ contient une courbe de genre positif, on montre plus précisément que le genre de la courbe fixée par σ est au plus un. Ensuite nous étudions
APA, Harvard, Vancouver, ISO, and other styles
8

Comparin, Paola. "Symétrie miroir et fibrations elliptiques spéciales sur les surfaces K3." Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2281/document.

Full text
Abstract:
Une surface K3 est une surface X complexe compacte projective lisse qui a fibré canonique trivial et h0;1(X) = 0. Dans cette thèse on s'intéresse à deux problèmes pour ces surfaces. D'abord on considère des surfaces K3 obtenues comme recouvrement double de P2 ramifié le long d'une sextique. On classifie les fibrations elliptiques sur ces surfaces et leur groupe de Mordell-Weil, c'est-à-dire le groupe des sections. Vu que une section de 2-torsion définit une involution de la surface (dite involution de van Geemen-Sarti), alors en classifiant les fibrations et les section de 2-torsion on obtient
APA, Harvard, Vancouver, ISO, and other styles
9

Harrache, Titem. "Etude des fibrations elliptiques d'une surface K3." Paris 6, 2009. http://www.theses.fr/2009PA066451.

Full text
Abstract:
Nous exploitons la possibilité pour une surface K3 elliptique d'avoir plusieurs fibrations elliptiques. Dans le cas de la courbe elliptique universelle S, considérée comme surface, sur la courbe modulaire paramétrisant les courbes elliptiques avec un point d'ordre 7, certaines fibrations définies sur les rationnels ont un rang du groupe de Mordell-Weil strictement positif. Ceci permet de construire une infinité de courbes elliptiques sur les rationnels de rang supérieur ou égal à 2. Dans cette thèse on donne 12 exemples de fibrations elliptiques et on précise le groupe de Mordell-Weil de chaqu
APA, Harvard, Vancouver, ISO, and other styles
10

Schütt, Matthias. "Hecke eigenforms and the arithmetic of singular K3 surfaces." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981878970.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "K3 surfaces"

1

Kondō, Shigeyuki. K3 surfaces. European Mathematical Society, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

V, Nikulin V., ed. Del Pezzo and K3 surfaces. Mathematical Society of Japan, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Faber, Carel, Gavril Farkas, and Gerard van der Geer, eds. K3 Surfaces and Their Moduli. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johnsen, Trygve. K3 Projective models in scrolls. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Johnsen, Trygve. K3 Projective models in scrolls. Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nikoloudakis, Nikolaos. Special K3 surfaces and Fano 3-folds. typescript, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

France, Société mathématique de, ed. Géométrie des surfaces K3: Modules et périodes. Société mathématique de France, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scattone, Francesco. On the compactification of moduli spaces for algebraic K3 surfaces. American Mathematical Society, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laza, Radu, Matthias Schütt, and Noriko Yui, eds. Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Odaka, Yūji. Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan-Shalen type. The Mathematical Society of Japan, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "K3 surfaces"

1

Silhol, Robert. "Real K3 surfaces." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0088823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barth, Wolf P., Klaus Hulek, Chris A. M. Peters, and Antonius Ven. "K3-Surfaces and Enriques Surfaces." In Compact Complex Surfaces. Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-57739-0_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schütt, Matthias, and Tetsuji Shioda. "Elliptic K3 Surfaces—Basics." In Mordell–Weil Lattices. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9301-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Várilly-Alvarado, Anthony. "Arithmetic of K3 Surfaces." In Geometry Over Nonclosed Fields. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49763-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kondō, Shigeyuki. "K3 and Enriques Surfaces." In Fields Institute Communications. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kodaira, Kunihiko. "On Homotopy K3 Surfaces." In Kunihiko Kodaira: Collected Works, Volume III. Princeton University Press, 2015. http://dx.doi.org/10.1515/9781400869879-019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shimada, Ichiro. "The Automorphism Groups of Certain Singular K3 Surfaces and an Enriques Surface." In K3 Surfaces and Their Moduli. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gritsenko, V., and K. Hulek. "Moduli of Polarized Enriques Surfaces." In K3 Surfaces and Their Moduli. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bartocci, Claudio, Ugo Bruzzo, and Daniel Hernández Ruipérez. "Fourier-Mukai on K3 surfaces." In Fourier¿Mukai and Nahm Transforms in Geometry and Mathematical Physics. Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/b11801_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schütt, Matthias, and Tetsuji Shioda. "Elliptic K3 Surfaces—Special Topics." In Mordell–Weil Lattices. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9301-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "K3 surfaces"

1

Qaddori, Fikrat, and Raid Salman. "Evaluation of Cross-Sectional Designs Impact of Different NiTi Files on Distortion Resistance Using SEM (An-in Vitro Study)." In 5th International Conference on Biomedical and Health Sciences. Cihan University-Erbil, 2024. http://dx.doi.org/10.24086/biohs2024/paper.1154.

Full text
Abstract:
Abstract—Background and aims: The aim of this study was to compare the effect of cross-sectional designs of four rotary systems (One Curve, 2Shape, K3-i File, E3 Azure), on distortion resistance of the metal surfaces of these files in simulated resin blocks under controlled conditions with five repeated usages, using scanning electron microscope (SEM). Materials &amp; Methods: Four rotary file systems: (1) One Curve, (2) 2Shape, (3) K3-i File, and (4) E3 Azure, were tested in simulated J-shaped root canal resin blocks with a 45 ̊ angle of curvature. Ten files from each system, each one of the
APA, Harvard, Vancouver, ISO, and other styles
2

Zechmeister, M. J., R. D. Reinheimer, D. P. Jones, and T. M. Damiani. "Thermal Fatigue Testing and Analysis of Stainless Steel Girth Butt Weld Piping." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-58024.

Full text
Abstract:
A piping thermal fatigue test loop has been constructed at the Bettis Laboratory and is being used by the Bechtel Marine Propulsion Corporation (BMPC) to obtain thermal fatigue data on 304 Stainless Steel (304SS) piping and piping girth butt welds. These specimens were subjected to alternating hot and cold forced flow, low oxygenated water every three minutes so that rapid changes in water temperature impart a thermal shock event to the inner wall of the girth butt welds. Thermal and structural piping analyses were conducted using the ASME Boiler and Pressure Vessel Code Section III NB-3600 pi
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!