Academic literature on the topic 'K-theory of banach algebra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'K-theory of banach algebra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "K-theory of banach algebra"
PHILLIPS, N. CHRISTOPHER. "K-THEORY FOR FRÉCHET ALGEBRAS." International Journal of Mathematics 02, no. 01 (February 1991): 77–129. http://dx.doi.org/10.1142/s0129167x91000077.
Full textMartinez-Moreno, J., and A. Rodriguez-Palacios. "Imbedding elements whose numerical range has a vertex at zero in holomorphic semigroups." Proceedings of the Edinburgh Mathematical Society 28, no. 1 (February 1985): 91–95. http://dx.doi.org/10.1017/s0013091500003229.
Full textGourdeau, Frédéric. "Amenability of Banach algebras." Mathematical Proceedings of the Cambridge Philosophical Society 105, no. 2 (March 1989): 351–55. http://dx.doi.org/10.1017/s0305004100067840.
Full textHadwin, Don, and Mehmet Orhon. "A noncommutative theory of Bade functionals." Glasgow Mathematical Journal 33, no. 1 (January 1991): 73–81. http://dx.doi.org/10.1017/s0017089500008053.
Full textKubota, Yosuke. "Notes on twisted equivariant K-theory for C*-algebras." International Journal of Mathematics 27, no. 06 (June 2016): 1650058. http://dx.doi.org/10.1142/s0129167x16500580.
Full textFeeman, Timothy G. "The Bourgain algebra of a nest algebra." Proceedings of the Edinburgh Mathematical Society 40, no. 1 (February 1997): 151–66. http://dx.doi.org/10.1017/s0013091500023518.
Full textLudkovsky, S., and B. Diarra. "Spectral integration and spectral theory for non-Archimedean Banach spaces." International Journal of Mathematics and Mathematical Sciences 31, no. 7 (2002): 421–42. http://dx.doi.org/10.1155/s016117120201150x.
Full textNoreldeen, Alaa Hassan. "On the Homology Theory of Operator Algebras." International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/368527.
Full textPfaffenberger, W. E., and J. Phillips. "Commutative Gelfand Theory for Real Banach Algebras: Representations as Sections of Bundles." Canadian Journal of Mathematics 44, no. 2 (April 1, 1992): 342–56. http://dx.doi.org/10.4153/cjm-1992-023-4.
Full textRupp, R., and A. Sasane. "Reducibility in Aℝ(K), Cℝ(K), and A(K)." Canadian Journal of Mathematics 62, no. 3 (June 1, 2010): 646–67. http://dx.doi.org/10.4153/cjm-2010-025-9.
Full textDissertations / Theses on the topic "K-theory of banach algebra"
Seidel, Markus. "On some Banach Algebra Tools in Operator Theory." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83750.
Full textMendoza, Quispe Wilfredo. "K-teoría de C*-álgebras." Master's thesis, Universidad Nacional Mayor de San Marcos, 2014. https://hdl.handle.net/20.500.12672/3780.
Full textTesis
Knapper, Andrew. "Derivations on certain banach algebras." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368411.
Full textZabroda, Olga Nikolaievna. "Generalized convolution operators and asymptotic spectral theory." Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200602061.
Full textSeidel, Markus [Verfasser], Peter [Akademischer Betreuer] Junghanns, Peter [Gutachter] Junghanns, Bernd [Akademischer Betreuer] Silbermann, and Vladimir S. [Gutachter] Rabinovich. "On some Banach Algebra Tools in Operator Theory / Markus Seidel ; Gutachter: Peter Junghanns, Vladimir S. Rabinovich ; Peter Junghanns, Bernd Silbermann." Chemnitz : Universitätsbibliothek Chemnitz, 2012. http://d-nb.info/1214243320/34.
Full textZarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Full textA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Heymann, Retha. "Fredholm theory in general Banach algebras." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4265.
Full textENGLISH ABSTRACT: This thesis is a study of a generalisation, due to R. Harte (see [9]), of Fredholm theory in the context of bounded linear operators on Banach spaces to a theory in a Banach algebra setting. A bounded linear operator T on a Banach space X is Fredholm if it has closed range and the dimension of its kernel as well as the dimension of the quotient space X/T(X) are finite. The index of a Fredholm operator is the integer dim T−1(0)−dimX/T(X). Weyl operators are those Fredholm operators of which the index is zero. Browder operators are Fredholm operators with finite ascent and descent. Harte’s generalisation is motivated by Atkinson’s theorem, according to which a bounded linear operator on a Banach space is Fredholm if and only if its coset is invertible in the Banach algebra L(X) /K(X), where L(X) is the Banach algebra of bounded linear operators on X and K(X) the two-sided ideal of compact linear operators in L(X). By Harte’s definition, an element a of a Banach algebra A is Fredholm relative to a Banach algebra homomorphism T : A ! B if Ta is invertible in B. Furthermore, an element of the form a + b where a is invertible in A and b is in the kernel of T is called Weyl relative to T and if ab = ba as well, the element is called Browder. Harte consequently introduced spectra corresponding to the sets of Fredholm, Weyl and Browder elements, respectively. He obtained several interesting inclusion results of these sets and their spectra as well as some spectral mapping and inclusion results. We also convey a related result due to Harte which was obtained by using the exponential spectrum. We show what H. du T. Mouton and H. Raubenheimer found when they considered two homomorphisms. They also introduced Ruston and almost Ruston elements which led to an interesting result related to work by B. Aupetit. Finally, we introduce the notions of upper and lower semi-regularities – concepts due to V. M¨uller. M¨uller obtained spectral inclusion results for spectra corresponding to upper and lower semi-regularities. We could use them to recover certain spectral mapping and inclusion results obtained earlier in the thesis, and some could even be improved.
AFRIKAANSE OPSOMMING: Hierdie tesis is ‘n studie van ’n veralgemening deur R. Harte (sien [9]) van Fredholm-teorie in die konteks van begrensde lineˆere operatore op Banachruimtes tot ’n teorie in die konteks van Banach-algebras. ’n Begrensde lineˆere operator T op ’n Banach-ruimte X is Fredholm as sy waardeversameling geslote is en die dimensie van sy kern, sowel as di´e van die kwosi¨entruimte X/T(X), eindig is. Die indeks van ’n Fredholm-operator is die heelgetal dim T−1(0) − dimX/T(X). Weyl-operatore is daardie Fredholm-operatore waarvan die indeks gelyk is aan nul. Fredholm-operatore met eindige styging en daling word Browder-operatore genoem. Harte se veralgemening is gemotiveer deur Atkinson se stelling, waarvolgens ’n begrensde lineˆere operator op ’n Banach-ruimte Fredholm is as en slegs as sy neweklas inverteerbaar is in die Banach-algebra L(X) /K(X), waar L(X) die Banach-algebra van begrensde lineˆere operatore op X is en K(X) die twee-sydige ideaal van kompakte lineˆere operatore in L(X) is. Volgens Harte se definisie is ’n element a van ’n Banach-algebra A Fredholm relatief tot ’n Banach-algebrahomomorfisme T : A ! B as Ta inverteerbaar is in B. Verder word ’n Weyl-element relatief tot ’n Banach-algebrahomomorfisme T : A ! B gedefinieer as ’n element met die vorm a + b, waar a inverteerbaar in A is en b in die kern van T is. As ab = ba met a en b soos in die definisie van ’n Weyl-element, dan word die element Browder relatief tot T genoem. Harte het vervolgens spektra gedefinieer in ooreenstemming met die versamelings van Fredholm-, Weylen Browder-elemente, onderskeidelik. Hy het heelparty interessante resultate met betrekking tot insluitings van die verskillende versamelings en hulle spektra verkry, asook ’n paar spektrale-afbeeldingsresultate en spektraleinsluitingsresultate. Ons dra ook ’n verwante resultaat te danke aan Harte oor, wat verkry is deur van die eksponensi¨ele-spektrum gebruik te maak. Ons wys wat H. du T. Mouton en H. Raubenheimer verkry het deur twee homomorfismes gelyktydig te beskou. Hulle het ook Ruston- en byna Rustonelemente gedefinieer, wat tot ’n interessante resultaat, verwant aan werk van B. Aupetit, gelei het. Ten slotte stel ons nog twee begrippe bekend, naamlik ’n onder-semi-regulariteit en ’n bo-semi-regulariteit – konsepte te danke aan V. M¨uller. M¨uller het spektrale-insluitingsresultate verkry vir spektra wat ooreenstem met bo- en onder-semi-regulariteite. Ons kon dit gebruik om sekere spektrale-afbeeldingsresultate en spektrale-insluitingsresultate wat vroe¨er in hierdie tesis verkry is, te herwin, en sommige kon selfs verbeter word.
Muzundu, Kelvin. "Spectral theory in commutatively ordered banach algebras." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71619.
Full textAlbuquerque, Philipe Thadeo Lima Ferreira [UNESP]. "Ponto fixo: uma introdução no ensino médio." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/110607.
Full textO principal objetivo deste trabalho consiste na produção de um referencial teórico relacionado aos conceitos de ponto fixo, que possibilite, aos alunos do Ensino Médio, o desenvolvimento de habilidades e competências relacionadas à Matemática. Neste trabalho são colocadas abordagens contextualizadas e proposições referentes às noções de ponto fixo nas principais funções reais (afim, quadrática, modular, dentre outras) e sua interpretação geométrica. São abordados de maneira introdutória os conceitos do teorema do ponto fixo de Brouwer, o teorema do ponto fixo de Banach e o método de resolução de equações por aproximações sucessivas
The main objective of this work is to produce a theoretical concepts related to fixed point, enabling, for high school students, the development of skills and competencies related to Mathematics. This work placed contextualized approaches and proposals relating to notions of fixed point in the main real functions (affine, quadratic, modular, among others) and its geometric interpretation. Are approached introductory concepts of the fixed point theorem of Brouwer's, fixed point theorem of Banach and the method of solving equations by successive approximations
Lafforgue, Vincent. "K-theorie bivariante pour les algebres de banach et conjecture de baum-connes." Paris 11, 1999. http://www.theses.fr/1999PA112062.
Full textBooks on the topic "K-theory of banach algebra"
Palmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge [England]: Cambridge University Press, 1994.
Find full textPalmer, Theodore W. Banach algebras and the general theory of *-algebras. Cambridge: Cambridge University Press, 2001.
Find full textDouglas, Ronald G. Banach Algebra Techniques in Operator Theory. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1656-8.
Full textDouglas, Ronald G. Banach algebra techniques in operator theory. 2nd ed. New York: Springer, 1998.
Find full textAbramovich, Y. A. Banach C(K)-modules and operators preserving disjointness. Harlow, Essex, England: Longman, 1992.
Find full textHarmand, P. M-ideals in Banach spaces and Banach algebras. Berlin: Springer-Verlag, 1993.
Find full textLocal and analytic cyclic homology. Zürich: European Mathematical Society, 2007.
Find full textPerturbations of Banach algebras. Berlin: Springer-Verlag, 1985.
Find full textK, Kitover A., ed. Inverses of disjointness preserving operators. Providence, R.I: American Mathematical Society, 2000.
Find full textTomczak-Jaegerman, Nicole. Banach-Mazur distances and finite-dimensional operator ideals. Harlow: Longman Scientific & Technical, 1989.
Find full textBook chapters on the topic "K-theory of banach algebra"
Rosenberg, Jonathan. "Comparison Between Algebraic and Topological K-Theory for Banach Algebras and C*-Algebras." In Handbook of K-Theory, 843–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27855-9_16.
Full textBerdikulov, M. A. "Order Unit Space of Type I n with Banach Ball Property." In Algebra and Operator Theory, 183–86. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5072-9_16.
Full textBridges, Douglas S., and Robin S. Havea. "Square Roots and Powers in Constructive Banach Algebra Theory." In Lecture Notes in Computer Science, 68–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30870-3_8.
Full textDas, Anupam, and Bipan Hazarika. "Measure of Noncompactness in Banach Algebra and Its Application on Integral Equations of Two Variables." In Advances in Metric Fixed Point Theory and Applications, 311–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6647-3_13.
Full textAupetit, Bernard. "Banach Algebras." In A Primer on Spectral Theory, 30–68. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4612-3048-9_3.
Full textKadison, Richard V., and John R. Ringrose. "Banach Algebras." In Fundamentals of the Theory of Operator Algebras, 84–138. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-3212-4_3.
Full textKadison, Richard, and John Ringrose. "Banach algebras." In Fundamentals of the Theory of Operator Algebras. Volume I, 173–235. Providence, Rhode Island: American Mathematical Society, 1997. http://dx.doi.org/10.1090/gsm/015/03.
Full textMüller, Vladimir. "Banach Algebras." In Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, 1–79. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7788-6_1.
Full textKrupnik, Naum Yakovlevich. "Banach Algebras with Symbol." In Operator Theory: Advances and Applications, 91–119. Basel: Birkhäuser Basel, 1987. http://dx.doi.org/10.1007/978-3-0348-5463-4_4.
Full textStrung, Karen R. "Banach algebras and spectral theory." In Advanced Courses in Mathematics - CRM Barcelona, 1–13. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47465-2_1.
Full textConference papers on the topic "K-theory of banach algebra"
González, Manuel. "Banach spaces with small Calkin algebras." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-10.
Full textChangping Xiong, Jun Zhu, and Jinping Zhao. "K-stable subsets of extended derivations on Banach algebras." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002508.
Full textMelo, Severino T., Ryszard Nest, and Elmar Schrohe. "K-theory of Boutet de Monvel's algebra." In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-10.
Full textAuwalu, Abba, and Ali Denker. "Chatterjea-type fixed point theorem on cone rectangular metric spaces with banach algebras." In INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040595.
Full textBUNKE, ULRICH, MICHAEL JOACHIM, and STEPHAN STOLZ. "CLASSIFYING SPACES AND SPECTRA REPRESENTING THE K-THEORY OF A GRADED C*-ALGEBRA." In Proceedings of the School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704443_0003.
Full text