Dissertations / Theses on the topic 'K-théorie des algèbres de Banach'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'K-théorie des algèbres de Banach.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mahzouli, Houssame. "Vecteurs cycliques, opérateurs de Toeplitz généralisés et régularité des algèbres de Banach." Lyon 1, 2005. http://www.theses.fr/2005LYO10241.
Full textHubert-Coulin, Catherine. "Factorisation d'opérateurs sur une algèbre d'observables (JB*-algèbres) et théorème de Grothendieck." Montpellier 2, 1990. http://www.theses.fr/1990MON20308.
Full textChalendar, Isabelle. "Autour du problème du sous-espace invariant et théorie des algèbres duales." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10659.
Full textPlût, Jérôme. "Espaces de Banach analytiques p-adiques et espaces de Banach-Colmez." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00448628.
Full textZarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Full textA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Gomez, Aparicio Maria. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Paris 7, 2007. http://www.theses.fr/2007PA077189.
Full textIn my thesis I defined a twisting of Kazhdan's property (T) and of the Baum-Connes conjecture by some non-unitary finite dimensional representations. Let G be a locally compact group and (p,V) be a finite dimensional representation of G. In Chapter 1, when p is irreducible, we consider tensor products of p by irreducible unitary representations of G to define a twisting of property (T). We introduce two Banach algebras, A(p,G) and A_r(p,G), analogous to the C*-group algebras C*(G) and C*_r(G), and we define property (T) twisted by p in terms of A(p, G). We then show that most of real semi-simple Lie groups verifying property (T) have property (T) twisted by any irreducible finite dimensional representation. In Chapter 2 and 3 we compute the K-theory of these "twisted" group algebras. To do these we define an assembly map defined on the left part of the Baum-Connes morphism, KAtop(G), and with image in the K-theory of A_r(p,G). We then prove that these twisted Baum-Connes map is an isomorphism for a large class of groups verifying the Baum-Connes conjecture. Finally, in Chapter 4 we show that the tensor product by p defines a morphism from A(p,G) to the tensor product of C*_r(G) and End(V) and that these induces a group morphism between K(A(p,G)) and K(C*_r(G)). We then define an action of the finite dimensional representation ring of G on KAtop(G) that is compatible with the tensor product by p and with the twisted Baum-Connes map. This enables us to compute the above morphism on the image of the twisted assembly map
Gomez, Aparicio Maria Paula. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Phd thesis, Université Paris-Diderot - Paris VII, 2007. http://tel.archives-ouvertes.fr/tel-00274378.
Full textSoit G un groupe localement compact et (rho,V) une représentation de dimension finie non nécessairement unitaire de G.
Dans le Chapitre 1, nous avons défini un renforcement de la propriété (T) en considérant des produits tensoriels par rho de représentations unitaires de G. Nous avons alors défini deux algèbres de Banach de groupe tordues, Amax(rho) et A(rho), analogues aux C*-algèbres de groupe, C*(G) et C*r(G), et nous avons défini la propriété (T) tordue par rho en termes de Amax(rho). Nous avons ensuite montrer que la plupart des groupes de Lie semi-simples réels ayant la propriété (T) ont la propriété (T) tordue par n'importe quelle représentation irréductible de dimension finie.
Les Chapitres 2 et 3 sont consacrés au calcul de la K-théorie des algèbres tordues. Pour ceci, Nous avons défini deux applications d'assemblage tordues du membre de gauche du morphisme de Baum-Connes, noté Ktop(G), dans la K-théorie des algèbres tordues. Nous avons ensuite montrer, dans le Chapitre 3, que ce morphisme de Baum-Connes tordu est bijectif pour une large classe de groupes vérifiant la conjecture de Baum-Connes.
Dans le Chapitre 4, nous avons montré que le domaine de définition naturel d'un analogue en K-théorie du produit tensoriel par une représentation de dimension finie est la K-théorie des algèbres tordues et non pas la K-théorie des C*-algèbres de groupe.
Bel, Hadj Fredj Olfa. "Ascente essentielle, descente essentielle et problème de perturbations." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-2.pdf.
Full textMartin, Florent. "Constructibilité dans les espaces de Berkovich." Paris 6, 2013. http://www.theses.fr/2013PA066221.
Full textIn this thesis, we study constructibility problems in non-Archimedean analytic geometry over a non-Archimedean field k. We study some subsets (semianalytic, subanalytic. . . ) in the framework of k-analytic spaces, whereas until now they had only been consider as subsets of rigid k-spaces. \par We especially study subanalytic (and overconvergent subanalytic) sets using non-rigid points of Berkovich spaces. With this, we give new proofs of prior results, establish some new properties and clarify a mistake concerning the local behaviour of overconvergent subanalytic sets which had not been noticed until now. \par We also give finiteness results for compactly supported cohomology of germs H^q_c((\X^\an,S) , \Q_l) where S is a locally closed semi-algebraic subset of the analytification of some algebraic k-variety \X. Finally, we generalize some results about tropicalization maps of compactk-analytic spaces
Tzanev, Kroum. "C*-algèbres de Hecke et K-théorie." Paris 7, 2000. http://www.theses.fr/2000PA077229.
Full textPrudhon, Nicolas. "C*-algèbres de Sp(n,1) et K-théorie." Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13085.
Full textThis thesis is devoted to K-theory for groups C*-algebras, maximal and reduced. We are interested in isomerty groups of quaternionic hyperbolic spaces, Sp(n,1). We describe explicitely the K-theory of the maximal C*-algebra of these groups in terms of some of their unitary irreducible representations, called isolated series. These results are then used to compute the range of the Baum-Connes assembly map, which in this case associates to each representation of a maximal compact subgroup an element of the K-theory namely the index of a Dirac operator acting on the hyperbolic space. Using universality property of these operators, we are then able to compute the index of another operator defined by Wong that is related to the geometric construction by cohomological induction of isolated series. We also completely describe the structure of the maximal C*-algebra of the groups Sp(n,1)
Collin, Pierre-Henry. "K-théorie pour les C*-algèbres de pavages de Penrose hyperboliques." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0319/document.
Full textGiven a one dimensional substitution $\sigma$, one can define the continuous hull $\Omega_\sigma$ for the $\R$-action given by translations and so we obtain a dynamical system $(\Omega_\sigma,\sigma)$. If the substitution we choose is primitive, then we can construct an hyperbolic tiling on Poincaré's half-plane equiped with its standard metric $\frac{\mathrm d x +\mathrm d y}{y^2}$. By analogy of the standard case, we can define two continuous hulls, denoted $X_P ^ N $ and $X_{P(c)}^G$, where $P(c)$ is a colored tiling (in such fashion that the action of $G$ is free), and the groups are denoted respectively $N= \{ \mathbb{H}_2 \to \mathbb{H}_2, z \mapsto z +t, t\in \R\}$ and $G = \{ \mathbb{H}_2 \to \mathbb{H}_2, z \mapsto a z +b,(a,b) \in \R_+ ^* \times \R\}$.\par Using Jean Renault's construction of the reduced $C^*$-algebra of a groupoid , the results of Ian Putnam and Jared Anderson and the Morita equivalence between $C((\Xi\times \R)/\As)$ and $C(\Xi) \rtimes \Z$, we describe the $C^*$-algebra of the hyperbolic tiling using generators and relations. Finally we obtain for the Fibonacci, Thue-Morse and Tribonacci substitutions the full description of the generators of $K_* (C(X_{P(c)}^G ) \rtimes G)$
Sc̆arl̆atescu, Murea Silvia. "Etude de fibrés topologiques : Représentations sectionnelles des C*(C star)- algèbres locales." Mulhouse, 2005. http://www.theses.fr/2005MULH0806.
Full textThe work presented here is divided in two parts. The first one (Chapter 1) is focused on some particulars aspects of problems linked up to the non-archimedian analysis. As concerns the second part (Chapters 2 and 3), we are here interested in the theory of sectionals representations of complex algebras. One of our primary concerns has been to study the locally m-convex algebras (over a non-archimedianfield or over C) and theirs applications to the theory of fibre bundles
Popescu, Radu. "E-théorie équivariante et groupoïdes." Lyon 1, 2000. http://www.theses.fr/2000LYO10037.
Full textMohamed, Moutuou El-Kaïoum. "Twisted groupoid KR-theory." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0042/document.
Full textIn his 1966's paper "Ktheory and Reality", Atiyah introduced a variant of Ktheory of complex vector bundles called KRtheory, which, in some sense, is a mixture of complex Ktheory KU, real Ktheory (also called orthogonal Ktheory) KO, and Anderson's selfconjugate Ktheory KSc. The main purpose of this thesis is to generalize that theory to the noncommutative framework of twisted groupoid Ktheory. We then introduce twisted groupoid KRtheory by using the powerful machineries of Kasparov's "real" KKtheory. Specifically, we deal with the Ktheory of graded C*algebras associated with groupoid dynamical systems endowed with involutions. Such dynamical systems are classified by the Real graded Brauer group to be defined and computed in terms of Cech cohomology classes. In this new Ktheory, we give the analogues of the fundamental results in Ktheory such as the MayerVietoris exact sequences, the Bott periodicity and the Thom isomorphism theorem
Lassagne, Ivan. "K-théorie équivariante et groupoïdes." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0359/document.
Full textThe etale groupoid are the central subject of this thesis. We first study the proper action of a discrete group on a locally compact and Hausdorff space, which gives an example of proper etale groupoid and we find some conditions for which the group of equivariant K-theory defined by phillips is completely described by equivariant complex bundles of finite dimension. In the second part of the thesis, we consider locally compact, sigma-compact and Hausdorff etale groupoid and we give a definition of amenability at infinity of such groupoid. We study in some cases the relation between the exactness of the reduced C*-algebra of the groupoid and the amenability at infinity. In the last part of the thesis, we consider K oriented immersion between etales groupoids and we associate a morphism between group of K-theory of the reduced C* algebras of this etales groupoids. We study the functoriality of such morphism. This part contains a proof of a conjecture of Hilsum and Skandalis
Fieux, Etienne. "Classes caractéristiques en KK-théorie de C*-algèbres avec opérateurs." Toulouse 3, 1990. http://www.theses.fr/1990TOU30225.
Full textDell'Aiera, Clément. "Controlled K-theory for groupoids and applications." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0114/document.
Full textIn their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
Ferenczi, Valentin. "Quelques propriétés des espaces de Banach héréditairement indécomposables." Paris 1, 1995. http://www.theses.fr/1995PA010073.
Full textSarr, Abdoulaye Djidiack. "KK-théorie de certains produits libres amalgamés et extensions HNN de C*-algèbres." Caen, 2015. http://www.theses.fr/2015CAEN2056.
Full textThis thesis deals with the study of KK-theory of C*-algebras focus in particular on amalgamated free products and HNN extensions. We generalize in it the Kasparov's theorem of absorption for the representations on Hilbert modules on C*-algebra of finite dimensional. We generalize then the Germain's method to show the K-equivalence between the full and reduced amalgamated free products when amalgams are over a C*-algebra of finite dimensional. From the relationship between amalgamated free products and HNN extensions, highlighted by Ueda, we deduce the K-equivalence between the full and reduced HHN extensions
Ginot, Grégory. "Caractère de Chern et opérations d'Adams en homologie cyclique, algèbres de Gerstenhaber et théorème de formalité." Université Louis Pasteur (Strasbourg) (1971-2008), 2002. http://www.theses.fr/2002STR13109.
Full textThis thesis deals with some issues in homological algebra linked to Connes non-commutative geometry, Kontsevich's work on deformation quantization and geometry of Poisson manifolds. In the first part we give an explicit formula for the algebraic Chern character. We then apply the formula to various elements in algebraic k-theory. That also leads us to new proof of a few classical results in cyclic homology. The second part is about the construction of Adams operations on the topological Hochschild and cyclic homology of a "ring up to homotopy" and their properties. The third part is devoted to an explicit description of the minimal model of Gerstenhaber algebra and their homology as given by the theory of operads. The last part is about a generalization of the formality theorem prooved by Tamarkin to the case of a Poisson manifold
Poineau, Jérôme. "Espaces de Berkovich sur Z." Phd thesis, Université Rennes 1, 2007. http://tel.archives-ouvertes.fr/tel-00193626.
Full textLa majeure partie de notre travail est consacrée à la droite analytique. Elle jouit de propriétés semblables à celles des espaces analytiques complexes d'un point de vue topologique, mais également algébrique, son faisceau structural étant cohérent. En outre, en termes cohomologiques, ses disques se comportent comme des espaces de Stein.
Pour finir, nous exposons quelques applications des résultats géométriques énoncés auparavant. Nous obtenons ainsi quelques propriétés de classes de fonctions particulières, telles les fonctions holomorphes sur un disque contenu dans C et dont le développement en un point est à coefficients entiers.
Ricka, Nicolas. "Sous-algèbres de l'algèbre de Steenrod équivariante et une propriété de détection pour la K-théorie d'Atiyah." Phd thesis, Université Paris-Nord - Paris XIII, 2013. http://tel.archives-ouvertes.fr/tel-00953049.
Full textAounil, Ismail. "Classes caractéristiques d'une opération en homologie cyclique." Toulouse 3, 1992. http://www.theses.fr/1992TOU30020.
Full textMoustafa, Haïja. "Gap-labeling des pavages de type pinwheel." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2009. http://tel.archives-ouvertes.fr/tel-00509886.
Full textAngles, Bruno. "Modules de Drinfeld sur les corps finis." Toulouse 3, 1994. http://www.theses.fr/1994TOU30238.
Full textNguyen, Le Chi Quyet. "Une description fonctorielle des K-théories de Morava des 2-groupes abéliens élémentaires." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0032/document.
Full textThe aim of this PhD thesis is to study, from a functorial point of view, the mod 2 Morava K-theories of elementary abelian 2-groups. Namely, we study the covariant functors $V \mapsto K(n)^*(BV^{\sharp})$ for the prime p=2 and n a positive integer.The case n=1, which follows directly from the work of Atiyah on topological K-theory, gives us a coanalytic functor which contains no non-constant polynomial sub-functor. This is very different from the case n>1, where the above-mentioned functors are analytic.The theory of Henn-Lannes-Schwartz provides a correspondence between analytic functors and unstable modules over the Steenrod algebra. We determine the unstable module corresponding to the analytic functor $V \mapsto K(2)^*(BV^{\sharp})$, by studying the relation between this functor and the Hopf ring structure of the homology of the omega-spectrum associated to the theory K(2)
Bouamama, Widad. "Opérateur pseudo-Fredholm et opérateur de Riesz." Lille 1, 2003. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2003/50376-2003-267.pdf.
Full textDoray, Franck. "Calculs explicites dans les groupes de Grotendieck et de Chow des variétés homogènes projectives." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00120949.
Full textont une géométrie assez simple. La décomposition de Bruhat fournit, en
effet, une décomposition cellulaire de ces variétés. Il en résulte que
l'anneau de Chow de telles variétés admet une base formée des classes
des adhérences de ces cellules, appelées variétés de Schubert.
Il en est de même pour l'anneau de Grothendieck de telles variétés.
Cela entraîne en particulier que ces deux anneaux sont sans torsion.
Plus précisément, la base ainsi obtenue pour l'anneau de Grothendieck
fournit la filtration topologique de cette anneau et redonne
la base de l'anneau de Chow par passage au gradué. D'autre part,
il existe une seconde base due à Pittie et Steinberg de l'anneau
de Grothendieck de ces variétés, invariante sous l'action du groupe de Galois.
Le Chapitre II de la thèse revient, dans le cas des drapeaux complets
associés à un espace vectoriel, sur les résultats connus concernant
la combinatoire donnant les expressions des faisceaux structuraux des
variétés de Schubert dans l'anneau de Grothendieck, ce qui permet, en
suivant les travaux de Lascoux notamment, d'exprimer combinatoirement
la matrice de changement de bases entre les deux bases ci-dessus. Dans
le cas de la variété de drapeaux complets d'un espace vectoriel de
dimension trois, nous donnons des résolutions explicites des faisceaux
structuraux des variétés de Schubert en termes des fibrés de la base
de Pittie.
Les groupes de Chow sont connus en codimension un et ont été étudiés
en codimension deux par Karpenko dans le cas des variétés de
Severi-Brauer. Le calcul des motifs des varietés homogènes projectives
sous le groupe projectif linéaire d'une algébre simple centrale sur un
corps se ramène sous certaines conditions au calcul de motifs de
variétés de Severi-Brauer généralisées, formes de grassmaniennes,
comme l'ont montré Calmès, Petros, Semenov et Zainouline. Dans le
chapitre II, nous construisons des isomorphismes de variétés
explicites qui permettent de ramener le calcul des groupes de Chow de
ces variétés au calcul de groupes de Chow de variétés de Severi-Brauer
généralisées.
Les techniques décrites dans le chapitre III sont réutilisées au
chapitre IV pour redémontrer un résultat de Karpenko sur la
décomposition du motif de Chow de variétés de Severi-Brauer associée
à une algèbre de matrices à coefficients dans une algèbre simple
centrale.