Contents
Academic literature on the topic 'K-théorie des algèbres de Banach'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'K-théorie des algèbres de Banach.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "K-théorie des algèbres de Banach"
Gomez-Aparicio, Maria Paula. "Morphisme de Baum-Connes tordu par une représentation non unitaire." Journal of K-Theory 6, no. 1 (December 8, 2009): 23–68. http://dx.doi.org/10.1017/is009012003jkt078.
Full textLafforgue, Vincent. "K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes." Inventiones mathematicae 149, no. 1 (July 2002): 1–95. http://dx.doi.org/10.1007/s002220200213.
Full textDiarra, Bertin. "Remarques sur les {$k((X))$}-algèbres de Banach." Bulletin of the Belgian Mathematical Society - Simon Stevin 2, no. 3 (1995): 241–52. http://dx.doi.org/10.36045/bbms/1103408717.
Full textLafforgue, Vincent. "K-THÉORIE BIVARIANTE POUR LES ALGÈBRES DE BANACH, GROUPOÏDES ET CONJECTURE DE BAUM–CONNES. AVEC UN APPENDICE D’HERVÉ OYONO-OYONO." Journal of the Institute of Mathematics of Jussieu 6, no. 03 (November 28, 2006): 415. http://dx.doi.org/10.1017/s1474748007000084.
Full textTouraille, Alain. "Théories d'algèbres de Boole munies d'idéaux distingués. II." Journal of Symbolic Logic 55, no. 3 (September 1990): 1192–212. http://dx.doi.org/10.2307/2274482.
Full textSchiffmann, Olivier. "Algèbres affines quantiques aux racines de l’unité et K-théorie équivariante." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 327, no. 5 (September 1998): 433–38. http://dx.doi.org/10.1016/s0764-4442(99)80018-4.
Full textGuin, Daniel. "Cohomologie des algèbres de Lie croisées et $K$-théorie de Milnor additive." Annales de l’institut Fourier 45, no. 1 (1995): 93–118. http://dx.doi.org/10.5802/aif.1449.
Full textToën, Bertrand, and Gabriele Vezzosi. "Algèbres simplicialesS1-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs." Compositio Mathematica 147, no. 6 (July 29, 2011): 1979–2000. http://dx.doi.org/10.1112/s0010437x11005501.
Full textDissertations / Theses on the topic "K-théorie des algèbres de Banach"
Mahzouli, Houssame. "Vecteurs cycliques, opérateurs de Toeplitz généralisés et régularité des algèbres de Banach." Lyon 1, 2005. http://www.theses.fr/2005LYO10241.
Full textHubert-Coulin, Catherine. "Factorisation d'opérateurs sur une algèbre d'observables (JB*-algèbres) et théorème de Grothendieck." Montpellier 2, 1990. http://www.theses.fr/1990MON20308.
Full textChalendar, Isabelle. "Autour du problème du sous-espace invariant et théorie des algèbres duales." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10659.
Full textPlût, Jérôme. "Espaces de Banach analytiques p-adiques et espaces de Banach-Colmez." Phd thesis, Université Paris Sud - Paris XI, 2009. http://tel.archives-ouvertes.fr/tel-00448628.
Full textZarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.
Full textA finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Gomez, Aparicio Maria. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Paris 7, 2007. http://www.theses.fr/2007PA077189.
Full textIn my thesis I defined a twisting of Kazhdan's property (T) and of the Baum-Connes conjecture by some non-unitary finite dimensional representations. Let G be a locally compact group and (p,V) be a finite dimensional representation of G. In Chapter 1, when p is irreducible, we consider tensor products of p by irreducible unitary representations of G to define a twisting of property (T). We introduce two Banach algebras, A(p,G) and A_r(p,G), analogous to the C*-group algebras C*(G) and C*_r(G), and we define property (T) twisted by p in terms of A(p, G). We then show that most of real semi-simple Lie groups verifying property (T) have property (T) twisted by any irreducible finite dimensional representation. In Chapter 2 and 3 we compute the K-theory of these "twisted" group algebras. To do these we define an assembly map defined on the left part of the Baum-Connes morphism, KAtop(G), and with image in the K-theory of A_r(p,G). We then prove that these twisted Baum-Connes map is an isomorphism for a large class of groups verifying the Baum-Connes conjecture. Finally, in Chapter 4 we show that the tensor product by p defines a morphism from A(p,G) to the tensor product of C*_r(G) and End(V) and that these induces a group morphism between K(A(p,G)) and K(C*_r(G)). We then define an action of the finite dimensional representation ring of G on KAtop(G) that is compatible with the tensor product by p and with the twisted Baum-Connes map. This enables us to compute the above morphism on the image of the twisted assembly map
Gomez, Aparicio Maria Paula. "Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire." Phd thesis, Université Paris-Diderot - Paris VII, 2007. http://tel.archives-ouvertes.fr/tel-00274378.
Full textSoit G un groupe localement compact et (rho,V) une représentation de dimension finie non nécessairement unitaire de G.
Dans le Chapitre 1, nous avons défini un renforcement de la propriété (T) en considérant des produits tensoriels par rho de représentations unitaires de G. Nous avons alors défini deux algèbres de Banach de groupe tordues, Amax(rho) et A(rho), analogues aux C*-algèbres de groupe, C*(G) et C*r(G), et nous avons défini la propriété (T) tordue par rho en termes de Amax(rho). Nous avons ensuite montrer que la plupart des groupes de Lie semi-simples réels ayant la propriété (T) ont la propriété (T) tordue par n'importe quelle représentation irréductible de dimension finie.
Les Chapitres 2 et 3 sont consacrés au calcul de la K-théorie des algèbres tordues. Pour ceci, Nous avons défini deux applications d'assemblage tordues du membre de gauche du morphisme de Baum-Connes, noté Ktop(G), dans la K-théorie des algèbres tordues. Nous avons ensuite montrer, dans le Chapitre 3, que ce morphisme de Baum-Connes tordu est bijectif pour une large classe de groupes vérifiant la conjecture de Baum-Connes.
Dans le Chapitre 4, nous avons montré que le domaine de définition naturel d'un analogue en K-théorie du produit tensoriel par une représentation de dimension finie est la K-théorie des algèbres tordues et non pas la K-théorie des C*-algèbres de groupe.
Bel, Hadj Fredj Olfa. "Ascente essentielle, descente essentielle et problème de perturbations." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-2.pdf.
Full textMartin, Florent. "Constructibilité dans les espaces de Berkovich." Paris 6, 2013. http://www.theses.fr/2013PA066221.
Full textIn this thesis, we study constructibility problems in non-Archimedean analytic geometry over a non-Archimedean field k. We study some subsets (semianalytic, subanalytic. . . ) in the framework of k-analytic spaces, whereas until now they had only been consider as subsets of rigid k-spaces. \par We especially study subanalytic (and overconvergent subanalytic) sets using non-rigid points of Berkovich spaces. With this, we give new proofs of prior results, establish some new properties and clarify a mistake concerning the local behaviour of overconvergent subanalytic sets which had not been noticed until now. \par We also give finiteness results for compactly supported cohomology of germs H^q_c((\X^\an,S) , \Q_l) where S is a locally closed semi-algebraic subset of the analytification of some algebraic k-variety \X. Finally, we generalize some results about tropicalization maps of compactk-analytic spaces
Tzanev, Kroum. "C*-algèbres de Hecke et K-théorie." Paris 7, 2000. http://www.theses.fr/2000PA077229.
Full textBooks on the topic "K-théorie des algèbres de Banach"
I, Li͡ubich I͡U. Introduction to the theory of Banach representations of groups. Basel: Birkhäuser Verlag, 1988.
Find full textLectures on amenability. Berlin: Springer, 2002.
Find full textDales, H. G. Introduction to Banach algebras, operators, and harmonic analysis. Cambridge, U.K: Cambridge University Press, 2003.
Find full textLocal and analytic cyclic homology. Zürich: European Mathematical Society, 2007.
Find full textSakai, Shôichirô. Operator algebras in dynamical systems: The theory of unbounded derivations in C*-algebras. Cambridge [England]: Cambridge University Press, 1991.
Find full textPhillips, N. Christopher. Equivariant K-theory and freeness of group actions on C*-algebras. Berlin: Springer-Verlag, 1987.
Find full textRunde, Volker. Lectures on Amenability. Springer London, Limited, 2004.
Find full text