To see the other types of publications on this topic, follow the link: K-Systems.

Journal articles on the topic 'K-Systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'K-Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Li, Jinjin, and Shou Lin. "k-systems, k-networks and k-covers." Czechoslovak Mathematical Journal 56, no. 1 (March 2006): 239–45. http://dx.doi.org/10.1007/s10587-006-0014-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Narnhofer, H., and W. Thirring. "Algebraic K-systems." Letters in Mathematical Physics 20, no. 3 (October 1990): 231–50. http://dx.doi.org/10.1007/bf00398366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bilalov, B. T., and Z. G. Guseinov. "K-bessel and K-hilbert systems and K-bases." Doklady Mathematics 80, no. 3 (December 2009): 826–28. http://dx.doi.org/10.1134/s1064562409060118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JONES, BUSH. "K-SYSTEMS VERSUS CLASSICAL MULTIVARIATE SYSTEMS." International Journal of General Systems 12, no. 1 (February 1986): 1–6. http://dx.doi.org/10.1080/03081078608934924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rustamov, G. A. "K∞-Robust Control Systems." MEHATRONIKA, AVTOMATIZACIA, UPRAVLENIE 16, no. 7 (July 2015): 435–43. http://dx.doi.org/10.17587/mau.16.435-443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warnock, David G., and Jill Eveloff. "K-Cl cotransport systems." Kidney International 36, no. 3 (September 1989): 412–17. http://dx.doi.org/10.1038/ki.1989.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hwang, F. K., and Shi Dinghua. "Redundant consecutive-k systems." Operations Research Letters 6, no. 6 (December 1987): 293–96. http://dx.doi.org/10.1016/0167-6377(87)90046-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Rong-si, and Xiao-feng Guo. "k-coverable coronoid systems." Journal of Mathematical Chemistry 12, no. 1 (1993): 147–62. http://dx.doi.org/10.1007/bf01164632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Serag, Hassan M., Abd-Allah Hyder, Mahmoud El-Badawy, and Areej A. Almoneef. "Optimal Control for k × k Cooperative Fractional Systems." Fractal and Fractional 6, no. 10 (October 2, 2022): 559. http://dx.doi.org/10.3390/fractalfract6100559.

Full text
Abstract:
This paper discusses the optimal control issue for elliptic k×k cooperative fractional systems. The fractional operators are proposed in the Laplace sense. Because of the nonlocality of the Laplace fractional operators, we reformulate the issue as an extended issue on a semi-infinite cylinder in Rk+1. The weak solution for these fractional systems is then proven to exist and be unique. Moreover, the existence and optimality conditions can be inferred as a consequence.
APA, Harvard, Vancouver, ISO, and other styles
10

Boland, Philip J., and Stavros Papastavridis. "Consecutive k out of systems with Cycle k." Statistics & Probability Letters 44, no. 2 (August 1999): 155–60. http://dx.doi.org/10.1016/s0167-7152(99)00003-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, L., and H. Cao. "Almost resolvable k -cycle systems with k≡2(mod4)." Journal of Combinatorial Designs 26, no. 10 (May 28, 2018): 480–86. http://dx.doi.org/10.1002/jcd.21608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Grussler, Christian, Thiago Burghi, and Somayeh Sojoudi. "Internally Hankel $k$-Positive Systems." SIAM Journal on Control and Optimization 60, no. 4 (August 2022): 2373–92. http://dx.doi.org/10.1137/21m1404685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Golodets, Valentin Y., and Sergey V. Neshveyev. "Non-Bernoullian Quantum K-Systems." Communications in Mathematical Physics 195, no. 1 (July 1, 1998): 213–32. http://dx.doi.org/10.1007/s002200050386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Daly, Charles, Jonah Gaster, Max Lahn, Aisha Mechery, and Simran Nayak. "Algebraic k-systems of curves." Geometriae Dedicata 209, no. 1 (March 21, 2020): 125–34. http://dx.doi.org/10.1007/s10711-020-00526-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Trivedi, Sudhir, Bush Jones, and Sitharama Iyengar. "Why k-Systems Methodology Works." Systems Analysis Modelling Simulation 42, no. 1 (January 2002): 23–31. http://dx.doi.org/10.1080/02329290212170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zheng, Maolin. "The K-resonant benzenoid systems." Journal of Molecular Structure: THEOCHEM 231 (June 1991): 321–34. http://dx.doi.org/10.1016/0166-1280(91)85230-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zinoviev, V. A., and D. V. Zinoviev. "Steiner systems S(v, k, k − 1): Components and rank." Problems of Information Transmission 47, no. 2 (June 2011): 130–48. http://dx.doi.org/10.1134/s0032946011020050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Trollier, T., J. Tanchon, J. Lacapere, and P. Camus. "30 K to 2 K vibration free remote cooling systems." IOP Conference Series: Materials Science and Engineering 755 (June 30, 2020): 012041. http://dx.doi.org/10.1088/1757-899x/755/1/012041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Haggar, F. A., G. B. Byrnes, G. R. W. Quispel, and H. W. Capel. "k-integrals and k-Lie symmetries in discrete dynamical systems." Physica A: Statistical Mechanics and its Applications 233, no. 1-2 (November 1996): 379–94. http://dx.doi.org/10.1016/s0378-4371(96)00142-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Komninos, Theodoros, Michael Paraskevas, Zacharoula Smyrnaiou, and Dimitrios Serpanos. "Cyberphysical Systems in K–12 Education." Computer 55, no. 5 (May 2022): 81–84. http://dx.doi.org/10.1109/mc.2022.3158165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Alseidi, Rola, Michael Margaliot, and Jurgen Garloff. "Discrete-Time $k$-Positive Linear Systems." IEEE Transactions on Automatic Control 66, no. 1 (January 2021): 399–405. http://dx.doi.org/10.1109/tac.2020.2987285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Fangfei, Di Wang, and Yang Tang. "Pinning Controllability of $k$-ValuedLogical Systems." IEEE Transactions on Control of Network Systems 7, no. 3 (September 2020): 1523–33. http://dx.doi.org/10.1109/tcns.2020.2984699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de León, Manuel, Eugenio Merino, José A. Oubiña, Paulo R. Rodrigues, and Modesto R. Salgado. "Hamiltonian systems on k-cosymplectic manifolds." Journal of Mathematical Physics 39, no. 2 (February 1998): 876–93. http://dx.doi.org/10.1063/1.532358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Dickson, Mark. "Coastal systems - By Simon K. Haslett." New Zealand Geographer 66, no. 1 (April 2010): 94. http://dx.doi.org/10.1111/j.1745-7939.2010.01176_5.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Narnhofer, H. "Time reversibility for modular K-systems." Reports on Mathematical Physics 45, no. 1 (February 2000): 107–20. http://dx.doi.org/10.1016/s0034-4877(00)88874-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cohen, Stephen D., and Nikolai N. Kuzjurin. "On (n, k, l, Δ)-systems." Proceedings of the Edinburgh Mathematical Society 38, no. 1 (February 1995): 53–62. http://dx.doi.org/10.1017/s0013091500006192.

Full text
Abstract:
The paper is devoted to studying one generalization of Steiner systems S(n, k, l) closely related to packings and coverings of l-tuples by k-tuples of an n-set. One necessary and one sufficient condition for the existence of such designs are obtained.
APA, Harvard, Vancouver, ISO, and other styles
27

Chernov, N. I., and C. Haskell. "Nonuniformly hyperbolic K-systems are Bernoulli." Ergodic Theory and Dynamical Systems 16, no. 1 (February 1996): 19–44. http://dx.doi.org/10.1017/s0143385700008695.

Full text
Abstract:
AbstractWe prove that those non-uniformly hyperbolic maps and flows (with singularities) that enjoy the K-property are also Bernoulli. In particular, many billiard systems, including those systems of hard balls and stadia that have the K-property, and hyperbolic billiards, such as the Lorentz gas in any dimension, are Bernoulli. We obtain the Bernoulli property for both the billiard flows and the associated maps on the boundary of the phase space.
APA, Harvard, Vancouver, ISO, and other styles
28

Aougab, Tarik. "Constructing large k-systems on surfaces." Topology and its Applications 176 (October 2014): 1–9. http://dx.doi.org/10.1016/j.topol.2014.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chang, Gerard J., Lirong Cui, and Frank K. Hwang. "Reliabilities for (n,f,k) systems." Statistics & Probability Letters 43, no. 3 (July 1999): 237–42. http://dx.doi.org/10.1016/s0167-7152(98)00263-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lamb, J. S. W., and G. R. W. Quispel. "Reversing k-symmetries in dynamical systems." Physica D: Nonlinear Phenomena 73, no. 4 (June 1994): 277–304. http://dx.doi.org/10.1016/0167-2789(94)90101-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Van Daele, A. "K-theory for finite covariant systems." K-Theory 6, no. 5 (September 1992): 465–85. http://dx.doi.org/10.1007/bf00961340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

KAMALJA, KIRTEE K. "BIRNBAUM IMPORTANCE FOR CONSECUTIVE-k SYSTEMS." International Journal of Reliability, Quality and Safety Engineering 19, no. 04 (August 2012): 1250016. http://dx.doi.org/10.1142/s0218539312500167.

Full text
Abstract:
Reliability importance of components of various systems is an important part in the reliability study. In this paper Birnbaum-reliability importance (B-importance) of components of three popular consecutive-type systems as consecutive-k-out-of-n: F-system, m-consecutive-k-out-of-n: F system and r-within-consecutive-k-out-of-n: F system is studied. The B-importance is studied when the survival probabilities of components of the system are Markov dependent. This study is based on conditional distribution of number of occurrences of failure runs of length k and number of occurrences of scanning windows of length k containing r failures in the sequence of Markov Bernoulli trials. Simplified formulae for calculation of B-importance of each component of the three consecutive-type systems are developed in terms of survival probabilities. To demonstrate the simplicity of the derived results, numerical study is also included.
APA, Harvard, Vancouver, ISO, and other styles
33

Ramsay, Colin, Ian T. Roberts, and Frank Ruskey. "Completely separating systems of k-sets." Discrete Mathematics 183, no. 1-3 (March 1998): 265–75. http://dx.doi.org/10.1016/s0012-365x(97)00059-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Łoziński, A., A. Buchleitner, K. Życzkowski, and T. Wellens. "Entanglement of 2× K quantum systems." Europhysics Letters (EPL) 62, no. 2 (April 2003): 168–74. http://dx.doi.org/10.1209/epl/i2003-00342-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abouammoh, A. M., and M. A. Al-Kadi. "Multistate coherent systems of order k." Microelectronics Reliability 35, no. 11 (November 1995): 1415–21. http://dx.doi.org/10.1016/0026-2714(94)00157-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bermudo, Sergio, Robinson A. Higuita, and Juan Rada. "$ k $-domination and total $ k $-domination numbers in catacondensed hexagonal systems." Mathematical Biosciences and Engineering 19, no. 7 (2022): 7138–55. http://dx.doi.org/10.3934/mbe.2022337.

Full text
Abstract:
<abstract><p>In this paper we study the $ k $-domination and total $ k $-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the $ 2 $-domination number and the total $ 2 $-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the $ 3 $-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of $ k $-domination and total $ k $-domination of catacondensed hexagonal systems for all possible values of $ k $.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
37

Fujita, Satoshi. "A quorum based k-mutual exclusion by weighted k-quorum systems." Information Processing Letters 67, no. 4 (August 1998): 191–97. http://dx.doi.org/10.1016/s0020-0190(98)00109-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Guo, Xiaofeng, and Fuji Zhang. "ChemInform Abstract: k-Resonant Benzenoid Systems and k-Cycle Resonant Graphs." ChemInform 32, no. 33 (May 25, 2010): no. http://dx.doi.org/10.1002/chin.200133261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Smith, J. F., and K. J. Lee. "The K−V (Potassium-Vanadium) and K−Nb (Potassium-Niobium) systems." Bulletin of Alloy Phase Diagrams 9, no. 4 (August 1988): 469–74. http://dx.doi.org/10.1007/bf02881869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rodionova, T. V., Yu A. Dyadin, K. A. Udachin, Ya Lipkowski, and K. Suwinska. "Clathrate formation in (i-C5H11)4−k (C4H9) k NF−H2O (k=1,2,3) binary systems." Journal of Structural Chemistry 36, no. 3 (May 1995): 458–64. http://dx.doi.org/10.1007/bf02578533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Spreafico, Elen Viviani Pereira, Paula Catarino, and Paulo Vasco. "On Hybrid Hyper k-Pell, k-Pell–Lucas, and Modified k-Pell Numbers." Axioms 12, no. 11 (November 11, 2023): 1047. http://dx.doi.org/10.3390/axioms12111047.

Full text
Abstract:
Many different number systems have been the topic of research. One of the recently studied number systems is that of hybrid numbers, which are generalizations of other number systems. In this work, we introduce and study the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell numbers. In order to study these new sequences, we established new properties, generating functions, and the Binet formula of the hyper k-Pell, hyper k-Pell–Lucas, and hyper Modified k-Pell sequences. Thus, we present some algebraic properties, recurrence relations, generating functions, the Binet formulas, and some identities for the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell numbers.
APA, Harvard, Vancouver, ISO, and other styles
42

I. Ismailov, Migdad. "On uncountable $K$-Bessel and $K$-Hilbert systems in nonseparable Banach spaces." Azerbaijan Journal of Educational Studies 45, 2, no. 45, 2 (2019): 192–204. http://dx.doi.org/10.29228/edu.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

I. Ismailov, Migdad. "On uncountable $K$-Bessel and $K$-Hilbert systems in nonseparable Banach spaces." Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan 45, no. 45 (2019): 192–204. http://dx.doi.org/10.29228/proc.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bai, Shuangshuang, Xuemei Zhang, and Meiqiang Feng. "Entire positive $ k $-convex solutions to $ k $-Hessian type equations and systems." Electronic Research Archive 30, no. 2 (2022): 481–91. http://dx.doi.org/10.3934/era.2022025.

Full text
Abstract:
<abstract><p>In this paper, we study the existence of entire positive solutions for the $ k $-Hessian type equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(u), \ \ x\in \mathbb{R}^n $\end{document} </tex-math></disp-formula></p> <p>and system</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{cases} {\rm S}_k(D^2u+\alpha I) = p(|x|)f^k(v), \ \ x\in \mathbb{R}^n, \\ {\rm S}_k(D^2v+\alpha I) = q(|x|)g^k(u), \ \ x\in \mathbb{R}^n, \end{cases} $\end{document} </tex-math></disp-formula></p> <p>where $ D^2u $ is the Hessian of $ u $ and $ I $ denotes unit matrix. The arguments are based upon a new monotone iteration scheme.</p></abstract>
APA, Harvard, Vancouver, ISO, and other styles
45

Kochkarov, Zh A., and R. A. Zhizhuev. "Ternary reciprocal systems Na,K||BO2,CO3 and Na,K||BO2,Cl." Russian Journal of Inorganic Chemistry 61, no. 7 (July 2016): 896–902. http://dx.doi.org/10.1134/s003602361607010x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kamalja, K. K., and R. L. Shinde. "On the Reliability of (n,f,k) and 〈n,f,k〉 Systems." Communications in Statistics - Theory and Methods 43, no. 8 (March 28, 2014): 1649–65. http://dx.doi.org/10.1080/03610926.2012.673674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Poon, Yiu Tung. "A K-Theoretic Invariant For Dynamical Systems." Transactions of the American Mathematical Society 311, no. 2 (February 1989): 515. http://dx.doi.org/10.2307/2001140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Skau, Christian. "Ordered K-theoryand minimal symbolic dynamical systems." Colloquium Mathematicum 84, no. 1 (2000): 203–27. http://dx.doi.org/10.4064/cm-84/85-1-203-227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Gràcia, Xavier, Xavier Rivas, and Narciso Román-Roy. "Skinner–Rusk formalism for k-contact systems." Journal of Geometry and Physics 172 (February 2022): 104429. http://dx.doi.org/10.1016/j.geomphys.2021.104429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Xiulong, Keqiu Li, Song Guo, Alex X. Liu, Peng Li, Kun Wang, and Jie Wu. "Top- $k$ Queries for Categorized RFID Systems." IEEE/ACM Transactions on Networking 25, no. 5 (October 2017): 2587–600. http://dx.doi.org/10.1109/tnet.2017.2722480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography