Journal articles on the topic 'Julia olefination'

To see the other types of publications on this topic, follow the link: Julia olefination.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Julia olefination.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gueyrard, David. "Extension of the Modified Julia Olefination on Carboxylic Acid Derivatives: Scope and Applications." Synlett 29, no. 01 (October 16, 2017): 34–45. http://dx.doi.org/10.1055/s-0036-1590916.

Full text
Abstract:
This account relates our work in the field of modified Julia olefination to extend this very useful olefination method to carboxylic acid derivatives. Since our preliminary results on lactones in 2005, the reaction has been extended to a large range of derivatives (lactams, imides and anhydrides) through an intra- or intermolecular process leading to a great variety of structures (enol ethers, enamides and exo enol esters). This article will also focus on the application of this methodology for the preparation of biologically interesting compounds and/or total syntheses of natural products such as C-disaccharide, bistramide A, jaspine B and maculalactone B.1 Introduction2 Modified Julia Olefination on Lactones2.1 Methylene Enol Ether Synthesis2.2 Substituted Enol Ether Synthesis2.3 Monofluorinated Enol Ether Synthesis2.4 Difluorinated Enol Ether Synthesis3 Applications3.1 Spiroketal Synthesis3.2 Spirocompound Synthesis3.3 Pseudodisaccharide Synthesis3.4 Total Synthesis of Jaspine B4 Modified Julia Olefination on Other Carboxylic Acid Derivatives4.1 Lactam Olefination and Spiroaminal Synthesis4.2 Bicyclic Enamide Synthesis by Intramolecular Modified Julia Olefination on Imides4.3 Modified Julia Olefination on Anhydrides5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

Pfund, Emmanuel, Thierry Lequeux, and David Gueyrard. "Synthesis of Fluorinated and Trifluoromethyl-Substituted Alkenes through the Modified Julia Olefination: An Update." Synthesis 47, no. 11 (April 16, 2015): 1534–46. http://dx.doi.org/10.1055/s-0034-1380548.

Full text
Abstract:
The modified Julia olefination is now a powerful tool for the synthesis of a large range of functionalized alkenes. This short review covers the last five years and provides an overview of the synthesis of mono-, difluoro-, and trifluoromethyl-substituted alkenes via the modified Julia olefination focusing on the novel scope of this reaction.1 Introduction2 Monofluoroalkenes2.1 Disubstituted α- and β-Monofluoroalkenes2.2 Bis(trifluoromethyl)phenyl Sulfones2.3 Conjugated Monofluoroalkenes2.4 Intramolecular Julia Olefination2.5 Smiles Rearrangement from Fluorinated Keto Sulfones2.6 Fluoroallylamines2.7 Fluorinated exo-Glycals2.8 Monofluoroalkenes with an α-Stereocenter at the Allylic Position3 1,1-Difluoroalkenes4 Trifluoromethyl-Substituted Alkenes5 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar, Jayprakash Narayan, and Biswanath Das. "Enantioselective first total synthesis of eujavanoic acid B through organocatalyzed IMDA reaction." RSC Advances 5, no. 19 (2015): 14465–69. http://dx.doi.org/10.1039/c4ra16136j.

Full text
Abstract:
The first total synthesis of the polyketide eujavanoic acid B has been accomplished using 1,3-propane diol as the starting material and involving Maruoka asymmetric allylation, Julia olefination, HWE olefination and organocatalyzed IMDA reaction as the key steps.
APA, Harvard, Vancouver, ISO, and other styles
4

Peddikotla, Prabhakar, Amar G. Chittiboyina, and Ikhlas A. Khan. "Synthesis of Pterostilbene by Julia Olefination." Synthetic Communications 43, no. 23 (September 4, 2013): 3217–23. http://dx.doi.org/10.1080/00397911.2013.775308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yao, Chuan-Zhi, Qiang-Qiang Li, Mei-Mei Wang, Xiao-Shan Ning, and Yan-Biao Kang. "(E)-Specific direct Julia-olefination of aryl alcohols without extra reducing agents promoted by bases." Chemical Communications 51, no. 36 (2015): 7729–32. http://dx.doi.org/10.1039/c5cc01965f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Uraguchi, Daisuke, Shinji Nakamura, Hitoshi Sasaki, Yuki Konakade, and Takashi Ooi. "Enantioselective formal α-allylation of nitroalkanes through a chiral iminophosphorane-catalyzed Michael reaction–Julia–Kocienski olefination sequence." Chem. Commun. 50, no. 26 (2014): 3491–93. http://dx.doi.org/10.1039/c3cc49477b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Řehová, Lucie, Martin Dračínský, and Ullrich Jahn. "A general approach to iridoids by applying a new Julia olefination and a tandem anion-radical-carbocation crossover reaction." Organic & Biomolecular Chemistry 14, no. 40 (2016): 9612–21. http://dx.doi.org/10.1039/c6ob01599a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zajc, Barbara, and Rakesh Kumar. "Synthesis of Fluoroolefins via Julia-Kocienski Olefination." Synthesis 2010, no. 11 (May 18, 2010): 1822–36. http://dx.doi.org/10.1055/s-0029-1218789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lebrun, Marie-Eve, Paul Le Marquand, and Carl Berthelette. "Stereoselective Synthesis ofZAlkenyl Halides via Julia Olefination." Journal of Organic Chemistry 71, no. 5 (March 2006): 2009–13. http://dx.doi.org/10.1021/jo052370h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mandal, Samir, Apurba Sarkar, Puskin Chakraborty, and Ashoke Chattopadhyay. "Synthetic Studies Towards the Synthesis of 6-Substituted 3-Fluoro-5,6-dihydropyran-2-ones." Synlett 29, no. 01 (August 17, 2017): 75–78. http://dx.doi.org/10.1055/s-0036-1588534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Le-Le, Jin-Ying Ding, Lian-Xun Gao, and Fu-She Han. "The development of a complementary pathway for the synthesis of aliskiren." Organic & Biomolecular Chemistry 13, no. 4 (2015): 1133–40. http://dx.doi.org/10.1039/c4ob01963f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kranthikumar, Ramagonolla. "Toward the synthesis of the hypoxia selective anticancer agent BE-43547 A2." Organic & Biomolecular Chemistry 19, no. 45 (2021): 9833–39. http://dx.doi.org/10.1039/d1ob01824h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kim, Dahye, Mohammad Shariful Alam, Wook-Jin Chung, and Sangho Koo. "Bromoacetate Olefination Protocol for Norbixin and Julia–Kocienski Olefination for Its Ester Syntheses." ACS Omega 4, no. 6 (June 7, 2019): 10019–24. http://dx.doi.org/10.1021/acsomega.9b00900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Blakemore, Paul R. "The Modified Julia Olefination in Vitamin D2 Synthesis." Synthesis 1999, no. 07 (July 1999): 1209–15. http://dx.doi.org/10.1055/s-1999-3530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Landge, Vinod G., Reshma Babu, Vinita Yadav, Murugan Subaramanian, Virendrakumar Gupta, and Ekambaram Balaraman. "Iron-Catalyzed Direct Julia-Type Olefination of Alcohols." Journal of Organic Chemistry 85, no. 15 (June 30, 2020): 9876–86. http://dx.doi.org/10.1021/acs.joc.0c01173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bräse, Stefan, Nadine Allendörfer, Mazen Es-Sayed, and Martin Nieger. "Novel Aromatic Fluoroolefins via Fluoro-Julia-Kocienski Olefination." Synthesis 2010, no. 20 (August 5, 2010): 3439–48. http://dx.doi.org/10.1055/s-0030-1258198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Habib, Samuel, Florent Larnaud, Emmanuel Pfund, Thierry Lequeux, Bernard Fenet, Peter G. Goekjian, and David Gueyrard. "Synthesis of Fluorinatedexo-Glycals through Modified Julia Olefination." European Journal of Organic Chemistry 2013, no. 10 (February 18, 2013): 1872–75. http://dx.doi.org/10.1002/ejoc.201201719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Habib, Samuel, Florent Larnaud, Emmanuel Pfund, Thierry Lequeux, Bernard Fenet, Peter G. Goekjian, and David Gueyrard. "Synthesis of Fluorinatedexo-Glycals through Modified Julia Olefination." European Journal of Organic Chemistry 2013, no. 22 (July 4, 2013): 4986. http://dx.doi.org/10.1002/ejoc.201300865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Peddikotla, Prabhakar, Amar G. Chittiboyina, and Ikhlas A. Khan. "ChemInform Abstract: Synthesis of Pterostilbene by Julia Olefination." ChemInform 45, no. 8 (February 7, 2014): no. http://dx.doi.org/10.1002/chin.201408101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nookaraju, U., Eeshwaraiah Begari, and Pradeep Kumar. "Total synthesis of (+)-monocerin via tandem dihydroxylation-SN2 cyclization and a copper mediated tandem cyanation–lactonization approach." Org. Biomol. Chem. 12, no. 31 (2014): 5973–80. http://dx.doi.org/10.1039/c4ob00965g.

Full text
Abstract:
A simple and novel synthesis of (+)-monocerin was achieved from 3-buten-1-ol employing HKR, Julia olefination, intramolecular tandem Sharpless asymmetric dihydroxylation-SN2 cyclization and a novel copper mediated tandem cyanation–cyclization as the key steps.
APA, Harvard, Vancouver, ISO, and other styles
21

Takamura, Hiroyoshi, Takayuki Fujiwara, Isao Kadota, and Daisuke Uemura. "Stereoselective synthesis of the C79–C97 fragment of symbiodinolide." Beilstein Journal of Organic Chemistry 9 (September 25, 2013): 1931–35. http://dx.doi.org/10.3762/bjoc.9.228.

Full text
Abstract:
Symbiodinolide is a polyol marine natural product with a molecular weight of 2860. Herein, a streamlined synthesis of the C79–C97 fragment of symbiodinolide is described. In the synthetic route, a spiroacetalization, a Julia–Kocienski olefination, and a Sharpless asymmetric dihydroxylation were utilized as the key transformations.
APA, Harvard, Vancouver, ISO, and other styles
22

Baikadi, Karunakar, Anil Talakokkula, and A. Narsaiah. "Stereoselective Total Synthesis of Macrolide Sch-725674 and C-7-epi-Sch-725674." SynOpen 03, no. 01 (January 2019): 26–35. http://dx.doi.org/10.1055/s-0037-1611665.

Full text
Abstract:
The stereoselective total synthesis of Sch-725674 in 14 ­linear synthetic steps with 10.3% overall yield is described. The synthesis started from commercially available starting materials, d-ribose and (R)-benzyl glycidol. The key reactions involved CBS reduction, Julia–­Kocienski olefination, Horner–Wadsworth–Emmons reaction, and ­Shiina macrolactonization.
APA, Harvard, Vancouver, ISO, and other styles
23

Gueyrard, David, Rose Haddoub, Amine Salem, Nassib Said Bacar, and Peter G. Goekjian. "Synthesis of Methylene Exoglycals Using a Modified Julia Olefination." Synlett, no. 3 (2005): 520–22. http://dx.doi.org/10.1055/s-2005-862364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kumar, Atul, Siddharth Sharma, Vishwa Deepak Tripathi, and Suman Srivastava. "Synthesis of chalcones and flavanones using Julia–Kocienski olefination." Tetrahedron 66, no. 48 (November 2010): 9445–49. http://dx.doi.org/10.1016/j.tet.2010.09.089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, G. "An Efficient Julia Olefination Mediated by Magnesium in Ethanol." Tetrahedron Letters 36, no. 31 (July 31, 1995): 5607–8. http://dx.doi.org/10.1016/00404-0399(50)1073q-.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zajc, Barbara, and Rakesh Kumar. "ChemInform Abstract: Synthesis of Fluoroolefins via Julia-Kocienski Olefination." ChemInform 41, no. 33 (July 24, 2010): no. http://dx.doi.org/10.1002/chin.201033244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Xiao-Ping, Jin-Hong Lin, Ji-Chang Xiao, and Xing Zheng. "Decarboxylative Julia-Kocienskigem-Difluoro-Olefination of 2-Pyridinyl Sulfonyldifluoroacetate." European Journal of Organic Chemistry 2014, no. 5 (January 14, 2014): 928–32. http://dx.doi.org/10.1002/ejoc.201301654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Simlandy, Amit K., and Santanu Mukherjee. "Catalytic asymmetric formal γ-allylation of deconjugated butenolides." Organic & Biomolecular Chemistry 14, no. 24 (2016): 5659–64. http://dx.doi.org/10.1039/c5ob02362a.

Full text
Abstract:
A formalγ-allylation of deconjugated butenolides is reported based on a two-step sequence consisting of a catalytic diastereo- and enantioselective vinylogous nucleophilic addition to vinyl sulfones and Julia–Kocienski olefination. This highly modular approach delivers densely functionalized butenolides containing a quaternary stereogenic centre in excellent yield with high enantioselectivity.
APA, Harvard, Vancouver, ISO, and other styles
29

Park, Sooyoung, Seok-Ho Kim, Jin-Hyun Jeong, and Dongyun Shin. "Total synthesis of giffonin H by fluoride-catalyzed macrocyclization." Organic Chemistry Frontiers 6, no. 5 (2019): 704–8. http://dx.doi.org/10.1039/c8qo01303a.

Full text
Abstract:
First total synthesis of giffonin H, a highly strained 15-membered macrocyclic diaryl ether, has been achieved. Key steps include Ullmann cross coupling, (Z)-selective Julia–Kocienski olefination, and fluoride-mediated macrocyclization of TMS-alkyne and aldehyde. The strategy used for macrocyclization is an unprecedented and unique synthetic approach for cyclic diarylheptanoids.
APA, Harvard, Vancouver, ISO, and other styles
30

Wu, Fusong, Tao Zhang, Jie Yu, Yian Guo, and Tao Ye. "Total Synthesis and Structural Reassignment of Laingolide A." Marine Drugs 19, no. 5 (April 27, 2021): 247. http://dx.doi.org/10.3390/md19050247.

Full text
Abstract:
The asymmetric total synthesis of four diastereomers of laingolide A was achieved, which led to the unambiguous assignment of the stereochemistry of the natural product. The salient features of the convergent, fully stereocontrolled approach were a copper-catalysed stereospecific Kumada-type coupling, a Julia-Kocienski olefination and an RCM/alkene migration sequence to access the desired macrocyclic enamide.
APA, Harvard, Vancouver, ISO, and other styles
31

Millius, Lapointe, and Renaud. "Two-Step Azidoalkenylation of Terminal Alkenes Using Iodomethyl Sulfones." Molecules 24, no. 22 (November 18, 2019): 4184. http://dx.doi.org/10.3390/molecules24224184.

Full text
Abstract:
The radical azidoalkylation of alkenes that was initially developed with α-iodoesters and α-iodoketones was extended to other activated iodomethyl derivatives. By using iodomethyl aryl sulfones, the preparation of γ-azidosulfones was easily achieved. Facile conversion of these azidosulfones to homoallylic azides using a Julia–Kocienski olefination reaction is reported, making the whole process equivalent to the azidoalkenylation of terminal alkenes.
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Wenyi, and Binghe Wang. "Esterase-sensitive sulfur dioxide prodrugs inspired by modified Julia olefination." Chemical Communications 53, no. 73 (2017): 10124–27. http://dx.doi.org/10.1039/c7cc05392d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Surprenant, Simon, Wing Yan Chan, and Carl Berthelette. "Efficient Synthesis of Substituted Vinyl Ethers Using the Julia Olefination." Organic Letters 5, no. 25 (December 2003): 4851–54. http://dx.doi.org/10.1021/ol035918k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Izgu, Enver Cagri, Aaron C. Burns, and Thomas R. Hoye. "Access to Functionalized Steroid Side Chains via Modified Julia Olefination." Organic Letters 13, no. 4 (February 18, 2011): 703–5. http://dx.doi.org/10.1021/ol102936z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Allendoerfer, Nadine, Mazen Es-Sayed, Martin Nieger, and Stefan Braese. "ChemInform Abstract: Novel Aromatic Fluoroolefins via Fluoro-Julia-Kocienski Olefination." ChemInform 42, no. 6 (January 13, 2011): no. http://dx.doi.org/10.1002/chin.201106067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pospíšil, Jiří, Tomáš Pospíšil, and István E. Markó. "Sulfoxide-Modified Julia-Lythgoe Olefination: Highly Stereoselective Di-, Tri-, and Tetrasubstituted Double Bond Formation." Collection of Czechoslovak Chemical Communications 70, no. 11 (2005): 1953–69. http://dx.doi.org/10.1135/cccc20051953.

Full text
Abstract:
A novel modification of the classical Julia-Lythgoe olefination, using sulfoxides instead of sulfones, affords, after in situ benzoylation and SmI2/HMPA or SmI2/DMPU-mediated reductive elimination, 1,2-di-, tri- and tetrasubstituted olefins in moderate to good yields and E/Z selectivity. The conditions are mild and the procedure is widely applicable. The reaction mechanism was studied and a general model, describing the reaction selectivity, is proposed.
APA, Harvard, Vancouver, ISO, and other styles
37

Okumura, Satoshi, Takayuki Kajikawa, Koki Yano, Kazuhiko Sakaguchi, Daisuke Kosumi, Hideki Hashimoto, and Shigeo Katsumura. "Straightforward synthesis of fucoxanthin short-chain derivatives via modified-Julia olefination." Tetrahedron Letters 55, no. 2 (January 2014): 407–10. http://dx.doi.org/10.1016/j.tetlet.2013.11.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Charette, André B., Carl Berthelette, and David St-Martin. "An expedient approach to E,Z-dienes using the Julia olefination." Tetrahedron Letters 42, no. 31 (July 2001): 5149–53. http://dx.doi.org/10.1016/s0040-4039(01)00941-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chatterjee, Bhaskar, Smritilekha Bera, and Dhananjoy Mondal. "Julia–Kocienski olefination: a key reaction for the synthesis of macrolides." Tetrahedron: Asymmetry 25, no. 1 (January 2014): 1–55. http://dx.doi.org/10.1016/j.tetasy.2013.09.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Allen, Joanne V., Anthony P. Green, Simon Hardy, Nicola M. Heron, Alan T. L. Lee, and Eric J. Thomas. "On the use of the modified Julia olefination for bryostatin synthesis." Tetrahedron Letters 49, no. 44 (October 2008): 6352–55. http://dx.doi.org/10.1016/j.tetlet.2008.08.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Alonso, Diego A., Mónica Fuensanta, Carmen Nájera, and Montserrat Varea. "3,5-Bis(trifluoromethyl)phenyl Sulfones in the Direct Julia−Kocienski Olefination." Journal of Organic Chemistry 70, no. 16 (August 2005): 6404–16. http://dx.doi.org/10.1021/jo050852n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kumar, Atul, Siddharth Sharma, Vishwa Deepak Tripathi, and Suman Srivastava. "ChemInform Abstract: Synthesis of Chalcones and Flavanones Using Julia-Kocienski Olefination." ChemInform 42, no. 12 (February 24, 2011): no. http://dx.doi.org/10.1002/chin.201112085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

LEE, G. H., H. K. LEE, E. B. CHOI, B. T. KIM, and C. S. PAK. "ChemInform Abstract: An Efficient Julia Olefination Mediated by Magnesium in Ethanol." ChemInform 26, no. 46 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199546083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Habib, Samuel, Florent Larnaud, Emmanuel Pfund, Thierry Lequeux, Bernard Fenet, Peter G. Goekjian, and David Gueyrard. "ChemInform Abstract: Synthesis of Fluorinated exo-Glycals Through Modified Julia Olefination." ChemInform 44, no. 35 (August 8, 2013): no. http://dx.doi.org/10.1002/chin.201335181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rizos, Stergios R., Zisis V. Peitsinis, and Alexandros E. Koumbis. "Total Synthesis of Enantiopure Chabrolonaphthoquinone B Via a Stereoselective Julia-Kocienski Olefination." Journal of Organic Chemistry 86, no. 15 (July 12, 2021): 10440–54. http://dx.doi.org/10.1021/acs.joc.1c01106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zajc, Barbara, Maggie He, and Arun Ghosh. "Julia Olefination as a General Route to Phenyl (α-Fluoro)vinyl Sulfones." Synlett 2008, no. 07 (March 28, 2008): 999–1004. http://dx.doi.org/10.1055/s-2008-1072513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhu, Jieping, Daniela Mirk, and Jean-Marie Grassot. "Synthesis of 4-Nitrophenyl Sulfones and Application in the Modified Julia Olefination." Synlett 2006, no. 08 (May 5, 2006): 1255–59. http://dx.doi.org/10.1055/s-2006-939682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rodrigo, Eduardo, José Luis García Ruano, and M. Belén Cid. "Organocatalytic Michael Addition/Intramolecular Julia–Kocienski Olefination for the Preparation of Nitrocyclohexenes." Journal of Organic Chemistry 78, no. 21 (October 18, 2013): 10737–46. http://dx.doi.org/10.1021/jo401686u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Meruva, Suresh Babu, Raghavendra Rao K., Aaseef Mohammed, Vilas H. Dahanukar, U. K. Syam Kumar, and P. K. Dubey. "Asymmetric synthesis of (–)-leiocarpin A via (–)-(S)-goniothalamin employing Julia–Kocienski olefination." Synthetic Communications 46, no. 2 (January 17, 2016): 187–96. http://dx.doi.org/10.1080/00397911.2015.1128546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Izgu, Enver Cagri, Aaron C. Burns, and Thomas R. Hoye. "ChemInform Abstract: Access to Functionalized Steroid Side Chains via Modified Julia Olefination." ChemInform 42, no. 22 (May 5, 2011): no. http://dx.doi.org/10.1002/chin.201122204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography