Academic literature on the topic 'Joint species distribution models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Joint species distribution models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Joint species distribution models"
Zurell, Damaris, Niklaus E. Zimmermann, Helge Gross, Andri Baltensweiler, Thomas Sattler, and Rafael O. Wüest. "Testing species assemblage predictions from stacked and joint species distribution models." Journal of Biogeography 47, no. 1 (June 5, 2019): 101–13. http://dx.doi.org/10.1111/jbi.13608.
Full textWilkinson, David P., Nick Golding, Gurutzeta Guillera‐Arroita, Reid Tingley, and Michael A. McCarthy. "A comparison of joint species distribution models for presence–absence data." Methods in Ecology and Evolution 10, no. 2 (November 3, 2018): 198–211. http://dx.doi.org/10.1111/2041-210x.13106.
Full textYong, Juan, Guangshuang Duan, Shaozhi Chen, and Xiangdong Lei. "Environmental Response of Tree Species Distribution in Northeast China with the Joint Species Distribution Model." Forests 15, no. 6 (June 13, 2024): 1026. http://dx.doi.org/10.3390/f15061026.
Full textOvaskainen, Otso, David B. Roy, Richard Fox, and Barbara J. Anderson. "Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models." Methods in Ecology and Evolution 7, no. 4 (December 18, 2015): 428–36. http://dx.doi.org/10.1111/2041-210x.12502.
Full textD’Acunto, Laura E., Leonard Pearlstine, and Stephanie S. Romañach. "Joint species distribution models of Everglades wading birds to inform restoration planning." PLOS ONE 16, no. 1 (January 28, 2021): e0245973. http://dx.doi.org/10.1371/journal.pone.0245973.
Full textHogg, Stephanie Elizabeth, Yan Wang, and Lewi Stone. "Effectiveness of joint species distribution models in the presence of imperfect detection." Methods in Ecology and Evolution 12, no. 8 (July 9, 2021): 1458–74. http://dx.doi.org/10.1111/2041-210x.13614.
Full textKönig, Christian, Rafael O. Wüest, Catherine H. Graham, Dirk Nikolaus Karger, Thomas Sattler, Niklaus E. Zimmermann, and Damaris Zurell. "Scale dependency of joint species distribution models challenges interpretation of biotic interactions." Journal of Biogeography 48, no. 7 (April 2021): 1541–51. http://dx.doi.org/10.1111/jbi.14106.
Full textGavin, Daniel G., Matthew C. Fitzpatrick, Paul F. Gugger, Katy D. Heath, Francisco Rodríguez-Sánchez, Solomon Z. Dobrowski, Arndt Hampe, et al. "Climate refugia: joint inference from fossil records, species distribution models and phylogeography." New Phytologist 204, no. 1 (July 16, 2014): 37–54. http://dx.doi.org/10.1111/nph.12929.
Full textTikhonov, Gleb, Nerea Abrego, David Dunson, and Otso Ovaskainen. "Using joint species distribution models for evaluating how species‐to‐species associations depend on the environmental context." Methods in Ecology and Evolution 8, no. 4 (April 2017): 443–52. http://dx.doi.org/10.1111/2041-210x.12723.
Full textWagner, Tyler, Gretchen J. A. Hansen, Erin M. Schliep, Bethany J. Bethke, Andrew E. Honsey, Peter C. Jacobson, Benjamen C. Kline, and Shannon L. White. "Improved understanding and prediction of freshwater fish communities through the use of joint species distribution models." Canadian Journal of Fisheries and Aquatic Sciences 77, no. 9 (September 2020): 1540–51. http://dx.doi.org/10.1139/cjfas-2019-0348.
Full textDissertations / Theses on the topic "Joint species distribution models"
Valiquette, Samuel. "Sur les données de comptage dans le cadre des valeurs extrêmes et la modélisation multivariée." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS028.
Full textThis thesis focuses on certain theoretical aspects of counting data modeling. Two distinct frameworks are addressed: extreme values and multivariate modeling. Our first contribution explores, in terms of extreme behaviors, the existing connections between the Poisson mixture and its mixing distribution. This work allows us to characterize and discriminate several families of Poisson mixture according to their tail behavior. Although this work is theoretical, we discuss its practical utility, particularly regarding the choice of the mixing distribution. Our second contribution focuses on a new class of multivariate models called Tree Pólya Splitting. This class is based on hierarchical modeling and assumes that a random quantity is successively divided according to a Pólya distribution through a partition tree structure. In this work, we characterize univariate and multivariate marginal distributions, factorial moments, as well as the resulting dependency structures (covariance/correlation). Using a dataset corresponding to the abundance of Trichoptera, we highlight the interest of this class of models by comparing our results to those obtained, for example, with multivariate Poisson-lognormal models. We conclude this thesis by presenting various perspectives
Venne, Simon. "Can Species Distribution Models Predict Colonizations and Extinctions?" Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38465.
Full textMugodo, James, and n/a. "Plant species rarity and data restriction influence the prediction success of species distribution models." University of Canberra. Resource, Environmental & Heritage Sciences, 2002. http://erl.canberra.edu.au./public/adt-AUC20050530.112801.
Full textRapacciuolo, Giovanni. "Predicting species' range shifts under global change : when can species distribution models be useful?" Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18025.
Full textMarshall, Charlotte Emily. "Species distribution modelling to support marine conservation planning." Thesis, University of Plymouth, 2012. http://hdl.handle.net/10026.1/1176.
Full textONGARO, SILVIA. "Ecology of Mediterranean lichens and plants: application of species distribution models." Doctoral thesis, Università degli Studi di Trieste, 2019. http://hdl.handle.net/11368/2962383.
Full textWong, Po-shing, and 黃寶誠. "Some mixture models for the joint distribution of stock's return and trading volume." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31210065.
Full textWong, Po-shing. "Some mixture models for the joint distribution of stock's return and trading volume /." [Hong Kong] : University of Hong Kong, 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13009485.
Full textScott-Hayward, Lindesay Alexandra Sarah. "Novel methods for species distribution mapping including spatial models in complex regions." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4514.
Full textGalaiduk, Ronen. "Spatial ecology and ontogeny: incorporating fish size-classes into species distribution models." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/51887.
Full textBooks on the topic "Joint species distribution models"
Guidolin, Massimo. An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns. [St. Louis, Mo.]: Federal Reserve Bank of St. Louis, 2005.
Find full textFlood, Robert P. A model of the joint distribution of banking and exchange-rate crises. [Washington, D.C.]: International Monetary Fund, Research Department, 2001.
Find full textBio, Ana M. F. Does vegetation suit our models?: Data and model assumption and the assessment of species distribution in space. Utrecht: Royal Dutch Geographical Society, 2000.
Find full textBio, Ana M. F. Does vegetation suit our models?: Data and model assumptions and the assessment of species distribution in space. Utrecht: The Royal Dutch Geographical Society, 2000.
Find full textPeters, Matthew P. Integrating fine-scale soil data into species distribution models: Preparing soil survey geographic (SSURGO) data from multiple counties. Newtown Square, PA: U.S. Dept. of Agriculture, Forest Service, Northern Research Station, 2013.
Find full textBorooah, Vani K. Was there a regional dimension to changes in income inequality in the UK over 1982-92?: An analysis based on a joint decomposition of income inequality by region and by employment status. [Cambridge]: [University of Cambridge, Department of Applied Economics], 1995.
Find full textBodenheimer, Peter. Numerical studies of collapsing interstellar clouds: NASA/Ames-University of California, Santa Cruz, Joint Research Interchange NAG 2-368 : final technical report, May 1, 1987. [Washington, D.C: National Aeronautics and Space Administration, 1987.
Find full textKam-Pui, Lee, Gupta Roop N, and Langley Research Center, eds. Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Find full textC, Bridger Alison F., Haberle Robert M, and United States. National Aeronautics and Space Administration., eds. Mars Global Surveyor: Aerobraking and observations support using a Mars global circulation model : a NASA Ames Research Center Joint Research Interchange, final report : university consortium agreement NCC2-5148; project duration, 25 July 1995-24 October 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textC, Bridger Alison F., Haberle Robert M, and United States. National Aeronautics and Space Administration., eds. Mars Global Surveyor: Aerobraking and observations support using a Mars global circulation model : a NASA Ames Research Center Joint Research Interchange, final report : university consortium agreement NCC2-5148; project duration, 25 July 1995-24 October 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Find full textBook chapters on the topic "Joint species distribution models"
Ovaskainen, Otso. "Species distribution models." In Handbook of Environmental and Ecological Statistics, 275–98. Boca Raton : Taylor & Francis, 2018.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9781315152509-12.
Full textMiller, Jennifer A., and Janet Franklin. "Incorporating Spatial Autocorrelation in Species Distribution Models." In Handbook of Applied Spatial Analysis, 685–702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03647-7_32.
Full textWu, Ximing, Andreas Savvides, and Thanasis Stengos. "The Global Joint Distribution of Income and Health." In Recent Advances in Estimating Nonlinear Models, 249–79. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8060-0_12.
Full textLawler, Josh J., Yolanda F. Wiersma, and Falk Huettmann. "Using Species Distribution Models for Conservation Planning and Ecological Forecasting." In Predictive Species and Habitat Modeling in Landscape Ecology, 271–90. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7390-0_14.
Full textBorba, Cleverton, and Pedro Luiz Pizzigatti Correa. "Application of Metadata Standards for Interoperability Between Species Distribution Models." In Communications in Computer and Information Science, 113–18. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24129-6_10.
Full textDeneu, Benjamin, Maximilien Servajean, Christophe Botella, and Alexis Joly. "Evaluation of Deep Species Distribution Models Using Environment and Co-occurrences." In Lecture Notes in Computer Science, 213–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28577-7_18.
Full textEckstein, Felix, Beat Merz, and Christopher R. Jacobs. "Basis for the Design of the Computer Models." In Effects of Joint Incongruity on Articular Pressure Distribution and Subchondral Bone Remodeling, 7–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57184-8_2.
Full textHudson, Irene L., Susan W. Kim, and Marie R. Keatley. "Modelling the Flowering of Four Eucalypt Species Using New Mixture Transition Distribution Models." In Phenological Research, 299–320. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3335-2_14.
Full textJohnson, Chris J., Michael Hurley, Eric Rapaport, and Michael Pullinger. "Using Expert Knowledge Effectively: Lessons from Species Distribution Models for Wildlife Conservation and Management." In Expert Knowledge and Its Application in Landscape Ecology, 153–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1034-8_8.
Full textPinto-Ledezma, Jesús N., and Jeannine Cavender-Bares. "Using Remote Sensing for Modeling and Monitoring Species Distributions." In Remote Sensing of Plant Biodiversity, 199–223. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33157-3_9.
Full textConference papers on the topic "Joint species distribution models"
Chen, Di, Yexiang Xue, Daniel Fink, Shuo Chen, and Carla P. Gomes. "Deep Multi-species Embedding." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/509.
Full textKong, Shufeng, Junwen Bai, Jae Hee Lee, Di Chen, Andrew Allyn, Michelle Stuart, Malin Pinsky, Katherine Mills, and Carla Gomes. "Deep Hurdle Networks for Zero-Inflated Multi-Target Regression: Application to Multiple Species Abundance Estimation." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/603.
Full textEngdar, Ulf, Per Nilsson, and Jens Klingmann. "Investigation of Turbulence Models Applied to Premixed Combustion Using a Level-Set Flamelet Library Approach." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38331.
Full textAbyaneh, M. H. J., and M. H. Saidi. "Velocity Distributions in (r,θ) Directions for Laminar Flow of a Film Around Horizontal Circular Tube." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98087.
Full textChen, Lu, and Francine Battaglia. "Computational Study Comparing Reduced Chemical Mechanisms With the PDF Method in Non-Premixed Flames." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7543.
Full textArai, Norio, Takahisa Yamamoto, and Tomohiko Furuhata. "Numerical Simulation of Low Heating Value Fuel Turbulent Diffusion Combustion." In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26113.
Full textIgi, Satoshi, Takahiro Kubo, and Masayoshi Kurihara. "Ductile Fracture Evaluation of Welded Joints With a Surface Flaw Under Large Deformation." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71521.
Full textHayashi, Kosuke, and Akio Tomiyama. "Interface Tracking Simulation of Mass Transfer From a Dissolving Bubble." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04007.
Full textFede, P., O. Simonin, and I. Ghouila. "3D Numerical Simulation of Polydisperse Pressurized Gas-Solid Fluidized Bed." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12016.
Full textLeung, Wallace Woon-Fong, and Yong Ren. "A Numerical Model on Secondary Flow and Mixing in Rotating Microfluidics." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31060.
Full textReports on the topic "Joint species distribution models"
Aiello-Lammens, Matthew E., Robert Anderson, Mary E. Blair, Bethany A. Johnson, Jamie Kass, Sarah I. Meenan, Andrea Paz, Richard Pearson, and Gonzalo E. Pinilla-Buitrago. Species Distribution Modeling for Conservation Educators and Practitioners. American Museum of Natural History, 2023. http://dx.doi.org/10.5531/cbc.ncep.0184.
Full textKenchington, E., L. Beazley, C. Lirette, F. J. Murillo, and J. Guijarro. Delineation of significant benthic areas in eastern Canada using kernel density analysis and species distribution models. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2017. http://dx.doi.org/10.4095/305872.
Full textRiordan, Erin C., Arlee M. Montalvo, and Jan L. Beyers. Using species distribution models with climate change scenarios to aid ecological restoration decisionmaking for southern California shrublands. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2018. http://dx.doi.org/10.2737/psw-rp-270.
Full textRiordan, Erin C., Arlee M. Montalvo, and Jan L. Beyers. Using species distribution models with climate change scenarios to aid ecological restoration decisionmaking for southern California shrublands. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, 2018. http://dx.doi.org/10.2737/psw-rp-270.
Full textPeters, Matthew P., Louis R. Iverson, Anantha M. Prasad, and Steve N. Matthews. Integrating fine-scale soil data into species distribution models: preparing Soil Survey Geographic (SSURGO) data from multiple counties. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station, 2013. http://dx.doi.org/10.2737/nrs-gtr-122.
Full textWeldon, James, and Carlotta Meriggi. Modelling the risks of invasive aquatic species spread in Swedish lakes. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.r68r25qcb1.
Full textGuilfoyle, Michael, Ruth Beck, Bill Williams, Shannon Reinheimer, Lyle Burgoon, Samuel Jackson, Sherwin Beck, Burton Suedel, and Richard Fischer. Birds of the Craney Island Dredged Material Management Area, Portsmouth, Virginia, 2008-2020. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45604.
Full textMéndez-Vizcaíno, Juan C., Alexander Guarín, César Anzola-Bravo, and Anderson Grajales-Olarte. Characterizing and Communicating the Balance of Risks of Macroeconomic Forecasts: A Predictive Density Approach for Colombia. Banco de la República, October 2021. http://dx.doi.org/10.32468/be.1178.
Full textBrandt, Leslie A., Cait Rottler, Wendy S. Gordon, Stacey L. Clark, Lisa O'Donnell, April Rose, Annamarie Rutledge, and Emily King. Vulnerability of Austin’s urban forest and natural areas: A report from the Urban Forestry Climate Change Response Framework. U.S. Department of Agriculture, Northern Forests Climate Hub, October 2020. http://dx.doi.org/10.32747/2020.7204069.ch.
Full textbell, Matthew, Marcel P. Huijser, and David Kack. Exploring Apex Predator Effects on Wildlife-Vehicle Collisions: A Case Study on Wolf Reintroductions in Yellowstone. Western Transportation Institute, September 2024. http://dx.doi.org/10.15788/1727735675.
Full text