Academic literature on the topic 'Jet turbulence'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jet turbulence.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Jet turbulence"

1

Khorsandi, B., S. Gaskin, and L. Mydlarski. "Effect of background turbulence on an axisymmetric turbulent jet." Journal of Fluid Mechanics 736 (November 4, 2013): 250–86. http://dx.doi.org/10.1017/jfm.2013.465.

Full text
Abstract:
AbstractThe effect of different levels of background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers has been investigated. Approximately homogeneous and isotropic background turbulence was generated by a random jet array and had a negligible mean flow (${\langle {U}_{\alpha } \rangle }/ {u}_{\alpha \mathit{rms}} \ll 1$). Velocity measurements of a jet issuing into two different levels of background turbulence were conducted for three different jet Reynolds numbers. The results showed that the mean axial velocities decay faster with increasing level of background turbulence (compared with a jet in quiescent surroundings), while the mean radial velocities increase, especially close to the edges of the jet. Furthermore, the axial root-mean-square velocities of the jet increased in the presence of background turbulence, as did the jet’s width. However, the mass flow rate of the jet decreased, from which it can be inferred that the entrainment into the jet is reduced in a turbulent background. The effect of background turbulence on the entrainment mechanisms is discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Sherif, S. A., and R. H. Pletcher. "Measurements of the Flow and Turbulence Characteristics of Round Jets in Crossflow." Journal of Fluids Engineering 111, no. 2 (June 1, 1989): 165–71. http://dx.doi.org/10.1115/1.3243618.

Full text
Abstract:
Measurements of the velocity and turbulence characteristics of a round turbulent jet in crossflow are reported. The experiments were conducted in a water channel, 8.53 m long, 0.61 m wide, and 1.067 m deep, of the recirculation type. Water was injected vertically upward from a circular pipe located near the channel bottom to simulate the turbulent jet. Normal and 45 deg-slanted fiber-film probes along with appropriate anemomenters and bridges were operated in the constant temperature mode to measure mean velocities, turbulence intensities, Reynolds stresses, structural parameters, correlation coefficients, and the turbulent kinetic energy. The measurements were carried out in the jet and its wake both in and outside the jet plane of symmetry. Details of the jet-wake cross section (including the vortex region) were revealed at a number of downstream locations using constant velocity and turbulence intensity contours.
APA, Harvard, Vancouver, ISO, and other styles
3

Kamm, R. D., E. T. Bullister, and C. Keramidas. "The Effect of a Turbulent Jet on Gas Transport During Oscillatory Flow." Journal of Biomechanical Engineering 108, no. 3 (August 1, 1986): 266–72. http://dx.doi.org/10.1115/1.3138613.

Full text
Abstract:
Axial mass transport due to the combined effects of flow oscillation and a turbulent jet was studied both experimentally and with a simple theoretical model. The experiments show that the distance over which turbulence enhances transport is greatly increased by flow oscillation, and is particularly sensitive to tidal volume. The jet flow rate and jet configuration are relatively less important. To analyze the results, the region influenced by the jet is divided into two zones: a near field in which the time-mean flow velocities are larger than the turbulent fluctuations, and a far field where the time-mean flow is essentially zero. In the far field, axial mass transport is increased due to the turbulence which decays in strength away from the jet. When oscillatory flow is superimposed upon the steady jet flow, the turbulence in the far field interacts with the flow oscillations to augment the transport of turbulence energy and of mass. This transport enhancement is modeled by introducing an effective axial diffusivity analogous to that used in laminar oscillatory flow.
APA, Harvard, Vancouver, ISO, and other styles
4

SEO, YONGWON, HAENG SIK KO, and SANGYOUNG SON. "MULTIFRACTAL CHARACTERISTICS OF AXISYMMETRIC JET TURBULENCE INTENSITY FROM RANS NUMERICAL SIMULATION." Fractals 26, no. 01 (February 2018): 1850008. http://dx.doi.org/10.1142/s0218348x18500081.

Full text
Abstract:
A turbulent jet bears diverse physical characteristics that have been unveiled yet. Of particular interest is to analyze the turbulent intensity, which has been a key factor to assess and determine turbulent jet performance since diffusive and mixing conditions are largely dependent on it. Multifractal measures are useful in terms of identifying characteristics of a physical quantity distributed over a spatial domain. This study examines the multifractal exponents of jet turbulence intensities obtained through numerical simulation. We acquired the turbulence intensities from numerical jet discharge experiments, where two types of nozzle geometry were tested based on a Reynolds-Averaged Navier–Stokes (RANS) equations. The [Formula: see text]-[Formula: see text] model and [Formula: see text]-[Formula: see text] model were used for turbulence closure models. The results showed that the RANS model successfully regenerates transversal velocity profile, which is almost identical to an analytical solution. The RANS model also shows the decay of turbulence intensity in the longitudinal direction but it depends on the outfall nozzle lengths. The result indicates the existence of a common multifractal spectrum for turbulence intensity obtained from numerical simulation. Although the transverse velocity profiles are similar for two different turbulence models, the minimum Lipschitz–Hölder exponent [Formula: see text] and entropy dimension [Formula: see text] are different. These results suggest that the multifractal exponents capture the difference in turbulence structures of hierarchical turbulence intensities produced by different turbulence models.
APA, Harvard, Vancouver, ISO, and other styles
5

VARIANO, EVAN A., and EDWIN A. COWEN. "A random-jet-stirred turbulence tank." Journal of Fluid Mechanics 604 (May 14, 2008): 1–32. http://dx.doi.org/10.1017/s0022112008000645.

Full text
Abstract:
We report measurements of the flow above a planar array of synthetic jets, firing upwards in a spatiotemporally random pattern to create turbulence at an air–water interface. The flow generated by this randomly actuated synthetic jet array (RASJA) is turbulent, with a large Reynolds number and a weak secondary (mean) flow. The turbulence is homogeneous over a large region and has similar isotropy characteristics to those of grid turbulence. These properties make the RASJA an ideal facility for studying the behaviour of turbulence at boundaries, which we do by measuring one-point statistics approaching the air–water interface (via particle image velocimetry). We explore the effects of different spatiotemporally random driving patterns, highlighting design conditions relevant to all randomly forced facilities. We find that the number of jets firing at a given instant, and the distribution of the duration for which each jet fires, greatly affect the resulting flow. We identify and study the driving pattern that is optimal given our tank geometry. In this optimal configuration, the flow is statistically highly repeatable and rapidly reaches steady state. With increasing distance from the jets, there is a jet merging region followed by a planar homogeneous region with a power-law decay of turbulent kinetic energy. In this homogeneous region, we find a Reynolds number of 314 based on the Taylor microscale. We measure all components of mean flow velocity to be less than 10% of the turbulent velocity fluctuation magnitude. The tank width includes roughly 10 integral length scales, and because wall effects persist for one to two integral length scales, there is sizable core region in which turbulent flow is unaffected by the walls. We determine the dissipation rate of turbulent kinetic energy via three methods, the most robust using the velocity structure function. Having a precise value of dissipation and low mean flow allows us to measure the empirical constant in an existing model of the Eulerian velocity power spectrum. This model provides a method for determining the dissipation rate from velocity time series recorded at a single point, even when Taylor's frozen turbulence hypothesis does not hold. Because the jet array offers a high degree of flow control, we can quantify the effects of the mean flow in stirred tanks by intentionally forcing a mean flow and varying its strength. We demonstrate this technique with measurements of gas transfer across the free surface, and find a threshold below which mean flow no longer contributes significantly to the gas transfer velocity.
APA, Harvard, Vancouver, ISO, and other styles
6

Sato, Hiroshi, Hirofumi Hattori, and Yasutaka Nagano. "TURBULENCE MODEL FOR PREDICTING HEAT TRANSFER IN IMPINGING JET(Impinging Jet)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 117–22. http://dx.doi.org/10.1299/jsmeicjwsf.2005.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tam, Christopher K. W. "Physics and Prediction of Supersonic Jet Noise." Applied Mechanics Reviews 47, no. 6S (June 1, 1994): S184—S187. http://dx.doi.org/10.1115/1.3124402.

Full text
Abstract:
Both the large turbulence structures and the fine scale turbulence of the flows of supersonic jets are sources of turbulent mixing noise. At moderately high supersonic Mach numbers especially for hot jets, the dominant part of the noise is generated directly by the large turbulence structures. The large turbulence structures propagate downstream at supersonic velocities relative to the ambient sound speed. They generate strong Mach wave radiation analogous to a supersonically travelling wavy wall. A stochastic instability wave model theory of the large turbulence structures and noise of supersonic jets has recently been developed. The theory can predict both the spectrum and directivity of the dominant part of supersonic jet noise up to a multiplicative empirical constant. Calculated results agree well with measurements.
APA, Harvard, Vancouver, ISO, and other styles
8

Polezhaev, Yu V., A. V. Korshunov, and G. V. Gabbasova. "Turbulence and turbulent viscosity in jet flows." High Temperature 45, no. 3 (June 2007): 334–38. http://dx.doi.org/10.1134/s0018151x07030091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Farrell, Brian F., and Petros J. Ioannou. "Formation of Jets by Baroclinic Turbulence." Journal of the Atmospheric Sciences 65, no. 11 (November 1, 2008): 3353–75. http://dx.doi.org/10.1175/2008jas2611.1.

Full text
Abstract:
Abstract Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets; geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet. These relatively steady large-scale jets arise from and are maintained by the smaller spatial- and temporal-scale turbulence with which they coexist. Frequently these jets are found to be adjusted into marginally stable states that support large transient growth. In this work, a comprehensive theory for the interaction of jets with turbulence, stochastic structural stability theory (SSST), is applied to the two-layer baroclinic model with the object of elucidating the physical mechanism producing and maintaining baroclinic jets, understanding how jet amplitude, structure, and spacing is controlled, understanding the role of parameters such as the temperature gradient and static stability in determining jet structure, understanding the phenomenon of abrupt reorganization of jet structure as a function of parameter change, and understanding the general mechanism by which turbulent jets adjust to marginally stable states supporting large transient growth. When the mean thermal forcing is weak so that the mean jet is stable in the absence of turbulence, jets emerge as an instability of the coupled system consisting of the mean jet dynamics and the ensemble mean eddy dynamics. Destabilization of this SSST coupled system occurs as a critical turbulence level is exceeded. At supercritical turbulence levels the unstable jet grows, at first exponentially, but eventually equilibrates nonlinearly into stable states of mutual adjustment between the mean flow and turbulence. The jet structure, amplitude, and spacing can be inferred from these equilibria. With weak mean thermal forcing and weak but supercritical turbulence levels, the equilibrium jet structure is nearly barotropic. Under strong mean thermal forcing, so that the mean jet is unstable in the absence of turbulence, marginally stable highly nonnormal equilibria emerge that support high transient growth and produce power-law relations between, for example, heat flux and temperature gradient. The origin of this power-law behavior can be traced to the nonnormality of the adjusted states. As the stochastic excitation, mean baroclinic forcing, or the static stability are changed, meridionally confined jets that are in equilibrium at a given meridional wavenumber abruptly reorganize to another meridional wavenumber at critical values of these parameters. The equilibrium jets obtained with this theory are in remarkable agreement with equilibrium jets obtained in simulations of baroclinic turbulence, and the phenomenon of discontinuous reorganization of confined jets has important implications for storm-track reorganization and abrupt climate change.
APA, Harvard, Vancouver, ISO, and other styles
10

Herricos, Stapountzis, Charalampous Georgios, Tziourtzioumis Dimitrios, and Stamatelos Anastasios. "1202 DIFFUSION IN SYNTHETIC JET GENERATED TURBULENCE." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1202–1_—_1202–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1202-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Jet turbulence"

1

Khorsandi, Babak. "Effect of background turbulence on an axisymmetric turbulent jet." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104661.

Full text
Abstract:
The effect of background turbulence on a turbulent jet was investigated experimentally. The primary objective of this work was to study the effect of different levels of the background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers. The secondary objective, which arose during the experiments, was to improve the acoustic Doppler velocimetry measurements which were found to be inaccurate when measuring turbulence statistics. In addition to acoustic Doppler velocimetry (ADV), flying hot-film anemometry was employed in this study. To move the hot-film probe at constant speeds, a high precision traversing mechanism was designed and built. A data acquisition system and LabVIEW programs were also developed to acquire data and control the traversing mechanism. The experiments started by benchmarking the two measurement techniques in an axisymmetric turbulent jet. Comparing the results with those of the other studies validated the use of flying hot-film anemometry to estimate the mean and the root-mean square (RMS) velocities. The experiments also validated the use of ADV for measurement of the mean velocities (measured in three Cartesian directions) and the RMS velocity (measured in the z-direction only). RMS velocities measured by the ADV along the x- and y-direction of the probe were overestimated.Attempts to improve the turbulence statistics measured by the ADV using the post-processing and noise-reduction methods presented in the literature were undertaken. However, the RMS velocities remained higher than the accepted values. In addition, a noise-reduction method was presented in this study which reduced the RMS velocities down to the accepted values. It was also attempted to relate Doppler noise to current velocity, and thus improve the results by subtracting the Doppler noise from the measured RMS velocities in the jet. However, no relationship was found between the Doppler noise and the mean velocity. The effect of different levels of background turbulence on the dynamics and mixing of an axisymmetric turbulent jet at different Reynolds numbers was then investigated. The background turbulence was generated by a random jet array. To confirm that the turbulence is approximately homogeneous and isotropic and has a low mean flow, the background flow was first characterized. Velocity measurements in an axisymmetric jet issuing into two different levels of background turbulence were then conducted. Three different jet Reynolds numbers were tested (Re = UJD/ν, where UJ is the jet exit velocity, D is the exit diameter of the jet, and ν is the kinematic viscosity). The results showed that (compared to the jet in a quiescent ambient) the mean axial velocities decay faster in the presence of background turbulence, while the mean radial velocities increase, especially close to the edges of the jet. At lower Reynolds numbers, the jet structure was destroyed in the near-field of the jet. The increase in the level of the background turbulence resulted in a faster decay of the mean axial velocities. The RMS velocity of the jet issuing into the turbulent background also increased, indicating that the level of turbulence in the jet increases. In addition, the jet's width increased in the presence of the background turbulence. The mass flow rate of the jet decreased in the presence of the background turbulence from which it can be inferred that the entrainment into the jet is reduced. The effect of background turbulence on entrainment mechanisms – large-scale engulfment and small-scale nibbling – is discussed. It is concluded that in the presence of background turbulence, engulfment is expected to be the main entrainment mechanism.
L'effet de la turbulence ambiante sur l'évolution d'un jet turbulent est étudié dans le cadre de cette recherche expérimentale. L'objectif primaire de ce travail est l'étude de l'effet de l'intensité de la turbulence ambiante sur l'évolution d'un jet turbulent, à trois nombres de Reynolds différents. L'objectif secondaire est l'amélioration des mesures de vélocimétrie acoustique Doppler qui se sont avérées inexactes au cours de ce travail. Un dispositif à anémométrie à fil chaud volant a aussi été développé pour effectuer des mesures dans le cadre de cette étude. A cette fin, un mécanisme de translation a été conçu pour déplacer la sonde à vitesse constante. Un système d'acquisition de données et des programmes LabVIEW ont été développés pour enregistrer les données et contrôler le mécanisme. De premières expériences (dans un jet turbulent axisymétrique en milieu tranquille) ont prouvé le bien-fondé i) des mesures de vitesses moyenne et moyenne quadratique par anémométrie à fil chaud volant, et ii) des mesures de vitesse moyenne (dans tous le sens) et de vitesse moyenne quadratique (dans le sens z) par vélocimétrie acoustique Doppler. Les mesures par vélocimétrie acoustique Doppler dans les sens x et y étaient surestimées. L'amélioration des mesures de vitesse moyenne quadratique par vélocimétrie acoustique Doppler a été tentée par moyen de techniques de réduction de bruit existantes. Néanmoins, les vitesses moyennes quadratiques restaient surestimées. Une nouvelle technique de réduction de bruit (qui avait pour résultat des vitesses moyennes quadratiques précises) a été proposée dans le cadre de cette étude. En outre, des expériences ayant pour but de quantifier le rapport entre le bruit Doppler et la vitesse de l'écoulement ont été entreprises (pour pouvoir soustraire le bruit Doppler des mesures de vitesses moyennes quadratiques). Cependant, celles-ci n'ont trouvé aucun rapport entre ces deux quantités. Par la suite, l'effet de l'intensité de la turbulence ambiante sur l'évolution d'un jet turbulent axisymétrique, à trois nombres de Reynolds différents, a été étudié. La turbulence ambiante a été produite par moyen d'une maille de jets aléatoires. La turbulence ambiante s'est avérée, par moyen de mesures d'anémométrie à fil chaud volant et de vélocimétrie acoustique Doppler, homogène est isotrope. L'évolution d'un jet turbulent (à trois nombres de Reynolds) émis en milieux turbulents (de deux intensités différentes) a ensuite été étudiée. Les mesures ont démontré que la turbulence ambiante i) réduisait la vitesse axiale moyenne du jet (en augmentant le taux de décroissance), et ii) augmentait la vitesse radiale moyenne du jet (surtout prés du bord du jet). Pour les jets à nombre de Reynolds bas, la structure du jet a été détruite dans le champ proche du jet. Les vitesses moyennes quadratiques du jet émis en milieu turbulent étaient plus grandes, indiquant une croissance du niveau de turbulence dans le jet. En outre, la demi-largeur du jet augmentait en milieu turbulent. Par contre, en environnement turbulent, le débit massique du jet émis a diminué, ce qui implique que le taux d'entraînement du jet est aussi réduit. L'effet de la turbulence ambiante sur les mécanismes de l'entraînement (par engloutissement à grande échelle ou par grignotage) est examiné. Il est conclu que, en environnement turbulent, l'engloutissement est le mécanisme d'entraînement principal.
APA, Harvard, Vancouver, ISO, and other styles
2

Mergheni, Mohamed Ali. "Interactions particules - turbulence dans un jet axisymétrique diphasique turbulent." Rouen, 2008. http://www.theses.fr/2008ROUES067.

Full text
Abstract:
Ce travail de thèse s'inscrit dans le cadre des études sur les écoulements turbulents gaz-solide et porte sur une étude numérique et une étude expérimentale de jets ronds coaxiaux diphasiques où le rapport des vitesses entre les jets externe et interne est supérieur et inférieur à un. Le but est de contribuer à la caractérisation des interactions entre la phase porteuse gazeuse et la phase dispersée et leur effet sur la modification de l'écoulement porteur. Le premier travail s'appuie sur une simulation de type Eulérienne / Lagrangienne qui résout les équations moyennées de Navier Stokes par la méthode des volumes finis. La turbulence du fluide est traitée par le modèle k-E standard. Le traitement de la phase dispersée consiste à un suivi Lagrangien de particules au sein de l'écoulement d'air. Le chargement en particules est suffisamment important pour que les particules influent sur la phase gazeuse (couplage) mais suffisamment faible pour pouvoir négliger les collisions interparticulaires. Le second travail consiste à réaliser un dispositif expérimental de jet gazeux ensemencé de particules solides (dp=100-212γm) issu d'un injecteur coaxial. L'écoulement diphasique est obtenu en utilisant un système d'ensemencement de particules assurant une injection régulière et homogène des particules dans le jet central. L'originalité de l'expérience consiste à mesurer simultanément les vitesses des particules et du fluide par une méthode optique non intrusive afin d'analyser le couplage entre deux phases. Ces résultats ont été obtenus à l'aide d'une chaîne de mesures optique PDA (Phase Doppler Anémométrie). L'analyse des caractéristiques dynamiques du fluide diphasique dans la zone proche de l'injecteur coaxial met en évidence que la vitesse de l'écoulement chargé est inférieure à la vitesse du fluide sans particules et que la présence des particules amplifie la turbulence du fluide lorsque la vitesse du jet centrale est supérieure à la vitesse du jet annulaire (ru>1). Ainsi, on note un décalage du pic de turbulence vers l'intérieur du jet central. Plus loin la vitesse moyenne du fluide en présence de particules devient supérieure à celle du jet monophasique à cause des transferts de quantité de mouvement des particules vers le fluide et on remarque une atténuation de la turbulence. Par contre, lorsque la vitesse du jet annulaire est supérieure à la vitesse du jet central (ru<1) on remarque une atténuation de la turbulence par la présence des particules et un décalage du pic de turbulence vers l'extérieur du jet central. On peut dire que la présence de particules solides permet à la turbulence de s'installer plus rapidement au sein du fluide pour ru>1. Lorsque ru<1, les particules ont tendance à calmer l'écoulement. Pour examiner l'approche numérique, les comparaisons avec mes travaux expérimentaux ont été réalisés. Les effets observés dans la partie expérimentale ont été reproduits dans deux cas différents (ru>1 et ru<1).
APA, Harvard, Vancouver, ISO, and other styles
3

Maurel, Agnès. "Instabilité d'un jet confiné." Paris 6, 1994. http://www.theses.fr/1994PA066771.

Full text
Abstract:
Une etude experimentale et numerique est menee sur l'oscillation auto-entretenue d'un jet bidimensionnel dans une cavite rectangulaire. L'etude experimentale permet de preciser les differents regimes observes lorsque la vitesse d'entree du jet et la longueur de la cavite varient. Une etude plus detaillee du regime d'oscillations auto-entretenues est presentee. Elle met en evidence l'existence de modes (stages), caracterises par une longueur d'onde constante verifiant l=(n+1/4), ou l est la longueur de la cavite ; la valeur n selectionnee depend de la largeur d'entree du jet et de la vitesse d'entree du jet. Le mecanisme d'amplification presume est fonde sur un modele de synchronisation entre l'oscillation a la sortie de la cavite et les perturbations declenchees a l'entree du jet. L'etude numerique est menee sur une cavite carree (les simulations 2d sont effectuees avec le code de calcul nekton, fonde sur une methode d'elements finis spectraux) et s'attache a decrire l'instabilite proche du seuil. Une frequence fondamentale est degagee en regime lineaire et les non-linearites font apparaitre l'harmonique 2 et un mode stationnaire de frequence nulle ; elle modifie le motif de l'ecoulement moyen. Le developpement de cet ecoulement moyen est le mecanisme de saturation de l'instabilite oscillante: il stabilise les profils de vitesse. Une methode d'analyse en modes est presentee, qui tente de degager des grandeurs caracteristiques de l'instabilite. Les methodes d'exploitation des resultats des simulations sont applicables dans d'autres geometries et, en particulier, les resultats presentes dans cette these sont comparables a ceux mis en evidence dans des etudes numeriques du sillage
APA, Harvard, Vancouver, ISO, and other styles
4

Papageorge, Michael. "A study of scalar mixing in gas phase turbulent jets using high repetition rate imaging." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1482094751398442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amielh, Muriel. "Etude expérimentale d'un dilueur de jet chaud." Aix-Marseille 2, 1989. http://www.theses.fr/1989AIX22068.

Full text
Abstract:
Cette etude presente l'evolution et l'interaction de deux ecoulements confines, axisymetriques, turbulents, se developpant dans un diffuseur horizontal, court. En faisant evoluer le rapport de debiats massiques des deux ecoulements, a froid, l'existence d'une zone de recirculation dans la partie aval du diffuseur est mise en evidence. En presence d'une telle zone, 4 cas de fonctionnement avec ou sans chauffage du jet central sont realises, l'ecoulement annulaire etant a temperature ambiante. Pour le jet central, le nombre de mach est maintenu a 0,15 et sa temperature maximale atteint 673 k. Dans ces conditions, les profils de pression, vitesse et temperature sont etablis. A froid, on effectue des mesures de correlations, de spectres et d'intensites de turbulence sur la vitesse. A chaud, les profils d'intensites de turbulence de temperature sont obtenus. Les tensions de reynolds et les densites de flux de chaleur sont evaluees a partir des champs macroscopiques. La viscosite et la diffusivite de la turbilence en sont deduites, elles permettent de donner une valeur du nombre de prandtl de la turbulence. Ce dernier est plus eleve pour le cas du fort chauffage, mais reste inferieur a la valeur de 0,9 generalement indiquee pour la modelisation des jets confines. L'ensemble de ces resultats experimentaux constitue une base pour la validation d'un code numerique developpe par l'aerospatiale/dh
APA, Harvard, Vancouver, ISO, and other styles
6

Fouari, Aziz. "Contribution à l'étude de la diffusion de la chaleur en aval d'une source linéaire placée dans un jet plan turbulent." Rouen, 1986. http://www.theses.fr/1986ROUES013.

Full text
Abstract:
Etude expérimentale du champ de vitesse moyenne et des fluctuations de vitesse, des champs de température moyenne et de fluctuations de température. Comparaison avec d'autres écoulements turbulents (couche limite turbulente, turbulence de grille, écoulement de conduite). Modèle physique basé sur le comportement relatif du sillage instantané et du sillage moyen décrivant les deux zones du processus de diffusion dans le cas de la couche limite turbulente et le jet plan turbulent
APA, Harvard, Vancouver, ISO, and other styles
7

Chan, Hau-cheung. "Investigation of a round jet into a counterflow /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20294116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eriksson, Jan. "Experimental studies of the plane turbulent wall jet." Doctoral thesis, KTH, Mechanics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Song Giang. "Physique et modélisation d'un jet d'impact turbulent." Toulouse, INPT, 1998. http://www.theses.fr/1998INPT040H.

Full text
Abstract:
Cette thèse présente une étude de la physique et de la modélisation des jets d'impact turbulent. Un code numérique original pour calculer l'écoulement incompressible, instationnaire a été développé. Il est implicite de 2ème ordre de précision en espace et en temps, basé sur la méthode aux volumes finis avec le maillage non-décalé. Les équations de quantité de mouvement sont résolues par la méthode ADI pour le champ de vitesse, pendant que la pression est obtenue en résolvant l'équation de Poisson avec les conditions aux limites de type Neumann par la méthode multigrille. La condition de compatibilité est respectée pour que la solution de l'équation de Poisson existe. Les équations de transfert des grandeurs de la turbulence sont résolues par la même méthode ADI. Toutes les équations sont découplées. Le jet d'impact plan, turbulent avec le nombre de Reynolds Re=6000 et la hauteur H/B=10 de Tsubokura et al. (1997) a été calculé par la méthode Semi-Déterministe avec quatre modèles de turbulence k-epsilon : STD, RNG, LS et LB. Bien que les résultats de calcul soient comparables assez bien avec ceux de l'expérience, cette étude a montré une faiblesse majeure des modèles : ils ne peuvent pas bien décrire les effets de faible nombre de Reynolds turbulent dans un écoulement ayant une configuration complexe. Cette insuffisance a été surmontée en utilisant le nouveau modèle proposé. A la différence de la plupart des modèles, les fonctions d'amortissement du nouveau modèle n'exigent pas la présence de paroi. Avec l'aide du nouveau modèle, la prédiction de la turbulence a été sensiblement améliorée. Les résultats de prédétermination des grandeurs moyennes (temporelles ou d'ensemble) d'un jet d'impact se trouvent aussi améliorés.
APA, Harvard, Vancouver, ISO, and other styles
10

Nance, Donald Kirby. "Separating contributions of small-scale turbulence, large-scale turbulence, and core noise from far-field exhaust noise measurements." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19768.

Full text
Abstract:
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Ahuja, Krishan K.; Committee Member: Cunefare, Kenneth; Committee Member: Lieuwen, Tim C.; Committee Member: Mendoza, Jeff; Committee Member: Sankar, Lakshmi.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Jet turbulence"

1

Rubel, A. Jet, wake and wall jet solutions using a k-e turbulence model. New York: American Institute of Aeronautics and Astronautics, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mankbadi, R. R. Effects of core turbulence on jet excitability. [Washington, DC]: National Aeronautics and Space Administration, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mankbadi, Reda R. Effects of core turbulence on jet excitability. Cleveland, Ohio: Institute for Computational Mechanics in Propulsion, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raman, G. Initial turbulence effect on jet evolution with and without tonal excitation. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pergament, Harold S. Hybrid two-equation turbulence model for high speed propulsive jets. New York: AIAA, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eichhorst, Thomas E. Military airlift: Turbulence, evolution, and promise for the future. Maxwell Air Force Base, Ala: Air University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Farokhi, Saeed. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet. [Washington, DC]: National Aeronautics and Space Administration, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pitts, William M. Large- and small-scale structures and their interactions in an axisymmetric jet. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pitts, William M. Large- and small-scale structures and their interactions in an axisymmetric jet. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pitts, William M. Large- and small-scale structures and their interactions in an axisymmetric jet. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Jet turbulence"

1

Banerjee, Robi, Susanne Horn, and Ralf S. Klessen. "Jet Driven Turbulence?" In Protostellar Jets in Context, 421–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00576-3_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Drummond, Phil. "Group Summary: Counter-Jet Diffusion Flames." In Transition, Turbulence and Combustion, 199–201. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1034-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Srinivas, T., B. Vasudevan, and A. Prabhu. "Performance of Fluidically Controlled Oscillating Jet." In Turbulence Management and Relaminarisation, 485–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83281-9_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raghu, S., B. Lehmann, and P. A. Monkewitz. "On the Mechanism of ‘Side-jet’ Generation in Periodically Excited Axisymmetric Jets." In Advances in Turbulence 3, 221–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84399-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Atassi, N., J. Borée, and G. Charnay. "Transient Behavior of an Axisymmetric Turbulent Jet." In Advances in Turbulence IV, 137–42. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1689-3_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kit, E., A. Tsinober, and T. Dracos. "Velocity Gradients in a Turbulent Jet Flow." In Advances in Turbulence IV, 185–90. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1689-3_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussain, A. K. M. Fazle, and H. S. Husain. "Passive and Active Control of Jet Turbulence." In Turbulence Management and Relaminarisation, 445–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83281-9_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Warhaft, Z. "Some Preliminary Experiments Concerning Thermal Dispersion in a Jet." In Studies in Turbulence, 412–27. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2792-2_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Panigrahi, Pradipta Kumar. "Turbulence Control (Microflap, Microballoon, Microsynthetic Jet)." In Encyclopedia of Microfluidics and Nanofluidics, 3373–84. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Panigrahi, Pradipta Kumar. "Turbulence Control (Microflap, Microballoon, Microsynthetic Jet)." In Encyclopedia of Microfluidics and Nanofluidics, 1–14. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-3-642-27758-0_1633-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Jet turbulence"

1

Berman, C., G. Gordon, G. Karniadakis, and S. Orszag. "Jet turbulence noise computations." In 15th Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-4365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harper-Bourne, Marcus. "Jet Noise Turbulence Measurements." In 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KIBENS, V. "Jet flows and turbulence control." In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Favre-Marinet, Michel, and Andrzej Boguslawski. "JET CONTROL BY COUNTERFLOW." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.1060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CHILDS, ROBERT, LAURA RODMAN, PETER BRADSHAW, DONALD BOTT, and WILLIAM SHOEMAKER. "Turbulence modeling for impinging jet flows." In 10th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alekseenko, Sergey, Arthur V. Bilsky, Dmitriy M. Markovich, and Vladimir I. Semenov. "TURBULENCE MODIFICATION IN BUBBLE IMPINGING JET." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mehta, Ranjan S., Michael F. Modest, and Daniel C. Haworth. "Radiation Characteristics and Turbulence-Radiation Interactions in Sooting Turbulent Jet Flames." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88078.

Full text
Abstract:
The transported PDF method coupled with a detailed gas-phase chemistry, soot model and radiative transfer equation solver is applied to various turbulent jet flames with Reynolds numbers varying from ∼ 6700 to 15100. Two ethylene–air flames and four flames with a blend of methane–ethylene and enhanced oxygen concentration are simulated. A Lagrangian particle Monte Carlo method is used to solve the transported joint probability density function (PDF) equations, as it can accommodate the high dimensionality of the problem with relative ease. Detailed kinetics are used to accurately model the gas-phase chemistry coupled with a detailed soot model. Radiation is calculated using a particle-based photon Monte Carlo method, which is coupled with the PDF method and the soot model to accurately account for both emission and absorption turbulence–radiation interactions (TRI), using line-by-line databases for radiative properties of CO2 and H2O; soot radiative properties are also modeled as nongray. Turbulence–radiation interactions can have a strong effect on the net radiative heat loss from sooting flames. For a given temperature, species and soot distribution, TRI increases emission from the flames by 30–60%. Absorption also increases, but primarily due to the increase in emission. The net heat loss from the flame increases by 45–90% when accounting for TRI. This ixs much higher than the corresponding increase due to TRI in nonsooting flames. Absorption TRI was found to be negligible in the laboratory scale sooting flames with soot levels on the order of a few ppm, but may be important in larger industrial scale flames.
APA, Harvard, Vancouver, ISO, and other styles
8

Takeuchi, Shintaro, Yutaka Miyake, and Takeo Kajishima. "Decay of a round jet." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.1880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Papp, J., D. Kenzakowski, and S. Dash. "Modeling turbulence anisotropy for jet noise prediction." In 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

BERMAN, C., and J. RAMOS. "Simultaneous computation of jet turbulence and noise." In 12th Aeroacoustic Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1091.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Jet turbulence"

1

Krishnamurthy, L. Fast-Algorithm Development for Large-Eddy Simulation of Circular-Jet Turbulence. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Beer, M. A., R. V. Budny, C. D. Challis, and G. Conway. Turbulence suppression by E x B shear in JET optimized shear pulses. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

DeSpirito, James. Turbulence Model Effects on Cold-Gas Lateral Jet Interaction in a Supersonic Crossflow. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada606669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

DeSpirito, James. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada619525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jones, S. C., F. Sotiropoulos, and M. J. Sale. Large-eddy simulation of turbulent circular jet flows. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/1218155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

J.C. Lin and D. Rockwell. Oscillations of a Turbulent Jet Incident Upon an Edge. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/821367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

George, William K. Experimental Data Acquisition and Quantitative Visualization of Turbulent Jet Mixing Layers. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Hai, Sanghoon Kook, Jeffrey Doom, Joseph Charles Oefelein, Jiayao Zhang, Christopher R. Shaddix, Robert W. Schefer, and Lyle M. Pickett. Understanding and predicting soot generation in turbulent non-premixed jet flames. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/1011219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Saif, A. A. Numerical calculation of two-phase turbulent jets. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/90229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naughton, J., D. Stanescu, S. Heinz, R. Semaan, M. Stoellinger, and C. Zemtsop. Integrated Computational/Experimental Study of Turbulence Modification and Mixing Enhancement in Swirling Jets. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada495159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography