Dissertations / Theses on the topic 'Jet engine inlet'

To see the other types of publications on this topic, follow the link: Jet engine inlet.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'Jet engine inlet.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hoopes, Kevin M. "A New Method for Generating Swirl Inlet Distortion for Jet Engine Research." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/49545.

Full text
Abstract:
Jet engines operate by ingesting incoming air, adding momentum to it, and exhausting it through a nozzle to produce thrust. Because of their reliance on an inlet stream, jet engines are very sensitive to inlet flow nonuniformities. This makes the study of the effects of inlet nonuniformities essential to improving jet engine performance. Swirl distortion is the presence of flow angle nonuniformity in the inlet stream of a jet engine. Although several attempts have been made to accurately reproduce swirl distortion profiles in a testing environment, there has yet to be a proven method to do so.

A new method capable of recreating any arbitrary swirl distortion profile is needed in order to expand the capabilities of inlet distortion testing. This will allow designers to explore how an engine would react to a particular engine airframe combination as well as methods for creating swirl distortion tolerant engines. The following material will present such a method as well as experimental validation of its effectiveness.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Abhinav. "Flow control optimization in a jet engine serpentine inlet duct." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tichenor, Nathan Ryan. "Particle image velocimetry in an advanced, serpentine jet engine inlet duct." Thesis, [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kirk, Aaron Michael. "Active flow control in an advanced serpentine jet engine inlet duct." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Reilly, Daniel. "An Investigation into Jet Engine Inlet Flow Characteristics for Turbine-Powered Helicopters." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429608968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yarlagadda, Santosh. "Performance Analysis of J85 Turbojet Engine Matching Thrust with Reduced Inlet Pressure to the Compressor." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1271367584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giuliani, James Edward. "Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468564279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sivapragasam, M. "Numerical and experimental investigations on multiple air jets in counterflow for generating aircraft gas turbine engine inlet flow distortion patterns." Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/0ad1d0c2-6693-4c6e-9224-5a2237862074/1.

Full text
Abstract:
The performance of an aircraft gas turbine engine is adversely affected by the non-uniform or distorted flow in the inlet duct. Inlet flow distortion lowers the surge margin of the engine‟s compression system with surge occurring at much lower pressure ratios at all engine speeds. The compressor and/or engine are subjected to ground tests in the presence of inlet distortion to evaluate its performance. The simplest method of simulating inlet distortion during these tests is by installing a distortion screen ahead of the engine on the test bed. The uniform inlet flow to the compressor becomes nonuniform with total pressure loss after passing through the distortion screen. Though the distortion screens offer a number of significant advantages, they have some disadvantages. The air jet distortion system can alleviate many of the operational disadvantages encountered with the conventional distortion screens. The system consists of a number of air jets arranged in a circumferential array in a plane and issuing opposite to the primary air flow entering the engine. The jets interact with the primary stream and cause a local total pressure loss due to momentum exchange. The individual mass flow rates from the jets can be varied to obtain a required total pressure pattern ahead of the compressor at the Aerodynamic Interface Plane (AIP). A systematic study of the flow field of confined, turbulent, incompressible, axisymmetric jet issuing into counterflow is covered in this research programme. The jet penetration length and the jet width are reduced compared to unconfined counterflow and a linear relationship between the velocity ratio and the jet length ceases to be valid. The flow field of a circular compressible turbulent jet and then a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. For the four jet system the mass flow rates in the four jets were equal in the first part of the study and in the second part they were unequal. The loss in total pressure due to the jet(s) interacting with the counterflow was quantified by a total pressure loss parameter λp0. The total pressure loss increased with increasing mass flow ratio. The total pressure loss distribution was evaluated at several locations behind the jet injector(s). The total pressure non-uniformity quantified by Distortion Index (DI) was found to be highest at a location just downstream of the jet injector and at far downstream locations low values of DI were observed. From the understanding gained with a single jet and four jets in counterflow a methodology was developed to generate a given total pressure distortion pattern at the AIP. The methodology employs computations to obtain the total pressure distortion at the AIP with quasi-one-dimensional inviscid analysis used as a starting point to estimate the mass flow rate in the jets. The inviscid analysis also provides a direction to the iterative procedure to vary the mass flow rate in the jets at the end of each computational step. The methodology is demonstrated to generate a given total pressure distortion pattern using four jets and is further extended to a larger number of jets, twelve and later twenty jets. The total pressure distortion patterns typical of use in aircraft gas turbine engine testing are generated accurately with a smaller number of jets than reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
9

Clark, Adam. "Predicting the Crosswind Performance of High Bypass Ratio Turbofan Engine Inlets." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1476265135449178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lambie, David. "Inlet distortion and turbofan engines." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mathison, Randall Melson. "Experimental and Computational Investigation of Inlet Temperature Profile and Cooling Effects on a One and One-Half Stage High-Pressure Turbine Operating at Design-Corrected Conditions." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250281163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Babinec, Viktor. "Návrh sacího kanálu turbínového motoru v provedení NACA vstup." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-377522.

Full text
Abstract:
This master thesis is focused on design and aerodynamic analysis of subsonic turbine engine inlet in NACA duct configuration for unmanned aircraft. The first part of this paper is methodics for design considerations for NACA duct, which is based on theoretical analysis of this type of inlet. The acquired knowledge is used to design an inlet for the specified unmanned aircraft that is subject of CFD analysis. The impact of deflectors is considered in the evaluation and the solution is compared to the S-duct inlet. The proposed inlet with deflectors meets DC60 distortion criterion for all specified cases and the pressure losses requirements are met for lower velocities. Based on the results, the recommended application is for aircraft that flies in optimal design conditions for most of the mission.
APA, Harvard, Vancouver, ISO, and other styles
13

Abdullah, Abu Hasan. "The application of high inlet swirl angles for broad operating range turbocharger compressor." Thesis, University of Bath, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Malo-Molina, Faure Joel. "Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixture." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33906.

Full text
Abstract:
To advance the design of hypersonic vehicles, high-fidelity multi-physics CFD is used to characterize 3-D scramjet flow-fields in two novel streamline traced configurations. The two inlets, Jaws and Scoop, are analyzed and compared to a traditional rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected are Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa). Analysis of these hypersonic inlets is performed to investigate distortion effects downstream with multiple single cavity combustors acting as flame holders, and several fuel injection strategies. The best integrated scramjet inlet/combustor design is identified. The flow physics is investigated and the integrated performance impact of the two innovative scramjet inlet designs is quantified. Frozen and finite rate chemistry is simulated with 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. In addition, URANS and LES modeling are compared to explore overall flow structure and to contrast individual numerical methods. The flow distortion in Jaws and Scoop is similar to some of the distortion in the traditional rectangular inlet, despite design differences. The baseline and Jaws performance attributes are stronger than Scoop, but Jaws accomplishes this while eradicating the cowl lip interaction, and lessening the total drag and spillage penalties. The innovative inlets work best on-design, whereas for off-design, the traditional inlet is best. Early pressure losses and flow distortions in the isolator aid the mixing of air and fuel, and improve the overall efficiency of the system. Although the trends observed with and without chemical reactions are similar, the former yields roughly 10% higher mixing efficiency and upstream reactions are present. These show a significant impact on downstream development. Unsteadiness in the combustor increases the mixing efficiency, varying the flame anchoring and combustion pressure effects upstream of the step.
APA, Harvard, Vancouver, ISO, and other styles
15

Baig, Saood Saeed. "A simple moving boundary technique and its application to supersonic inlet starting /." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112555.

Full text
Abstract:
In this thesis, a simple moving boundary technique has been suggested, implemented and verified. The technique may be considered as a generalization of the well-known "ghost" cell approach for boundary condition implementation. According to the proposed idea, the moving body does not appear on the computational grid and is allowed to move over the grid. The impermeable wall boundary condition is enforced by assigning proper gasdynamic values at the grid nodes located inside the moving body close to its boundaries (ghost nodes). The reflection principle taking into account the velocity of the boundaries assigns values at the ghost nodes. The new method does not impose any particular restrictions on the geometry, deformation and law of motion of the moving body.
The developed technique is rather general and can be used with virtually any finite-volume or finite-difference scheme, since the modifications of the schemes themselves are not required. In the present study the proposed technique has been incorporated into a one-dimensional non-adaptive Euler code and a two-dimensional locally adaptive unstructured Euler code.
It is shown that the new approach is conservative with the order of approximation near the moving boundaries. To reduce the conservation error, it is beneficial to use the method in conjunction with local grid adaptation.
The technique is verified for a number of one and two dimensional test cases with analytical solutions. It is applied to the problem of supersonic inlet starting via variable geometry approach. At first, a classical starting technique of changing exit area by a moving wedge is numerically simulated. Then, the feasibility of some novel ideas such as a collapsing frontal body and "tractor-rocket" are explored.
APA, Harvard, Vancouver, ISO, and other styles
16

Eisemann, Kevin Michael. "A Computational Study of Compressor Inlet Boundary Conditions with Total Temperature Distortions." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/35969.

Full text
Abstract:
A three-dimensional CFD program was used to predict the flow field that would enter a downstream fan or compressor rotor under the influence of an upstream thermal distortion. Two distortion generation techniques were implemented in the model; (1) a thermal source and (2) a heated flow injection method. Results from the investigation indicate that both total pressure and velocity boundary conditions at the compressor face are made non-uniform by the upstream thermal distortion, while static pressure remains nearly constant. Total pressure at the compressor face was found to vary on the order of 10%, while velocity varies from 50-65%. Therefore, in modeling such flows, neither of these latter two boundary conditions can be assumed constant under these conditions. The computational model results for the two distortion generation techniques were compared to one another and evaluations of the physical practicality of the thermal distortion generation methods are presented. Both thermal distortion methods create total temperature distortion magnitudes at the compressor face that may affect rotor blade vibration. Both analyses show that holding static pressure constant is an appropriate boundary condition for flow modeling at the compressor inlet. The analyses indicate that in addition to the introduction of a thermal distortion, there is a potential to generate distortion in total pressure, Mach number, and velocity. Depending on the method of thermally distorting the inlet flow, the flow entering the compressor face may be significantly non-uniform. The compressor face boundary condition results are compared to the assumptions of a previous analysis (Kenyon et al., 2004) in which a 25 R total temperature distortion was applied to a computational fluid dynamics (CFD) model of a fan geometry to obtain unsteady blade pressure loading. Results from the present CFD analyses predict similar total temperature distortion magnitudes corresponding to the total temperature variation used in the Kenyon analyses. However, the results indicate that the total pressure and circumferential velocity boundary conditions assumed uniform in the Kenyon analyses could vary by the order of 2% in total pressure and approximately 8% in velocity distortion. This supports the previously stated finding that assuming a uniform total pressure profile at the compressor inlet may be an appropriate approximation with the presence of a weak thermal distortion, while assuming a constant circumferential velocity boundary condition is likely not sufficiently accurate for any thermal distortion. In this work, the referenced Kenyon investigation and others related to the investigation of distortion-induced aeromechanical effects in this compressor rotor have assumed no aerodynamic coupling between the duct flow and the rotor. A full computational model incorporating the interaction between the duct flow and the fan rotor would serve to alleviate the need for assuming boundary conditions at the compressor inlet.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
17

Mahapatra, Debabrata. "Investigation Of Ramp/Cowl Shock Interaction Processes Near A Generic Scramjet Inlet At Hypersonic Mach Number." Thesis, 2008. http://hdl.handle.net/2005/807.

Full text
Abstract:
One of the major technological innovations that are necessary for faster and cheaper access-to-space will be the commercial realization of supersonic combustion jet engines (SCRAMJET). The establishment of the flow through the inlet is one the prime requirement for the success of a SCRAMJET engine. The flow through a SCRAMJET inlet is dominated by inviscid /viscous coupling, transition, shock-shock interaction, shock boundary layer interaction, blunt leading edge effects and flow profile effects. Although the literature is exhaustive on various aspects of flow features associated with SCRAMJET engines, very little is known on the fundamental gasdynamic features dictating the flow establishment in the SCRAMJET inlet. On one hand we need the reduction of flight Mach number to manageable supersonic values inside the SCRAMJET combustor, but on the other hand we have to achieve this with minimum total pressure loss. Hence the dynamics of ramp/cowl shock interaction process ahead of the inlet has a direct bearing on the quality and type of flow inside the SCRAMJET engine. There is virtually no data base in the open literature focusing specifically on the cowl/ramp shock interactions at hypersonic Mach numbers. Hence in this backdrop, the main aim of the present investigation is to systematically understand the ramp/cowl shock interaction processes in front of a generic inlet model. Since we are primarily concerned with the shock interaction process ahead of the cowl all the investigations are carried out without any fuel injection. Variable geometry is necessary if we want to operate the inlet for a wide range of Mach numbers in actual flight. The investigation mainly comprises of three variable geometry configurations; namely, variation of contraction ratios at 00 cowl (CR 8.4, 5.0 and 4.3), variation of cowl length for a given chamber height (four lengths of cowls at 10 mm chamber height) and variation of cowl angle (three angles cowl each for two chamber heights). The change in cowl configuration results in different ramp/cowl shock interaction processes affecting the performance of the inlet. Experiments are performed in IISc hypersonic shock tunnel HST 2 (test time ~ 1 ms) at two nominal Mach numbers 8.0 and 5.74 for design and off-design testing conditions. Exhaustive numerical simulations are also performed to compliment the experiments. Further the effect of concentrated energy deposition on forebody /cowl shock interactions has also been investigated. A 2D, planar, single ramp scramjet inlet model has been designed and fabricated along with various cowl geometries and tested in a hypersonic shock tunnel to characterize the forebody/cowl shock interaction process for different inlet configurations. Further a DC plasma power unit and a plasma torch have been designed, developed and fabricated to serve as energy source for conducting flow-alteration experiments in the inlet model. The V-I characteristics of the plasma torch is studied and an estimation of plasma temperature is also performed as a part of characterizing the plasma flame. Initial standardization experiments of blunt body flow field alteration using the plasma torch and hence its drag reduction, are performed to check the torch’s suitability to be used as a flow-altering device in a shock tunnel. The plasma torch is integrated successfully with the inlet model in a shock tunnel to perform experiments with plasma jet as the energy source. The above experiments are first of its kind to be conducted in a shock tunnel. They are performed at various pressure ratios and supply currents. Time resolved schlieren flow visualization using Phantom 7.1 (Ms Vision Research USA) high speed camera, surface static pressure measurements inside a generic inlet using miniature kulite transducer and surface convective heat transfer rate measurements inside a generic inlet using platinum thin film sensors deposited on Macor substrate are some of the shock tunnel flow diagnostics that have been used in this study. Some of the important conclusions from the study are: • Experiments performed at different contraction ratios show different shock patterns. At CR 8.4, the SOL condition is satisfied, but the flow gets choked due to over contraction and flow through inlet is not established. For CR 5.0, formation of a small Mach stem before the chamber is observed with the reflection point on the cowl and the weak reflected shock entering inside the chamber. The Mach stem grows with time. For CR 4.3, the forebody/cowl shock interference created an Edney’s Type II shock interaction pattern. However, at off-design conditions, for CR 5 the shock reflection is regular and at CR 4.3, the Edney’s Type II pattern lasts for a short time. • For all lengths of cowl tested, 131mm and 141mm showed Edney’s Type II shock interference where as 151mm showed Edney’s Type I pattern at design condition. In all cases the flow is choked for high contraction ratio. At off-design condition these shock patterns do not last for the entire test time but rather it becomes a lambda pattern with the normal shock before the inlet. • For inlet configurations with cowl angle other than 00, the flow is found to be established for all cases at designed condition and except for 100 cowl at off-design condition. • For CR 8.4 the peak value of pressure (~1.7x104 Pa) occurs at a location of 151mm, where as for CR 5.0 and 4.3 they occur at 188mm and 206mm having values ~1.6x104 Pa and ~1.4x104 Pa respectively. These locations indicate the likely locations of shock impingements inside the chamber. • For cowl angle of 00 for a 10 mm chamber the maximum pressure value recorded is ~1.7x104 Pa whereas for 100 and 200 cowl it is ~1.1x104 Pa and 1.2 x104 Pa respectively. This is because in the first case the inlet is choked because of over contraction whereas in the other two cases the CR is less and flow is established inside the inlet. • The average heat transfer rates of last four heat transfer gauges (180 mm, 190 mm, 200 mm and 210 mm from the forebody tip) for all lengths of cowls tested are found to be almost same (~ 20 W/cm2). This is because the flow is choked in all these cases. The numerical simulation also shows uniform distribution here, consistent with the experimental findings. • The locations of heat transfer peaks for 100 cowl at design condition can be observed to be occurring at 170 mm and 200 mm from the forebody tip having values ~44 W/cm2 and ~39 W/cm2 respectively. For a 200 cowl they seem to be occurring at 170 mm and 180 mm from the forebody tip having values ~50 W/cm2 and ~30 W/cm2. These locations indicate the likely locations of shock impingements inside the chamber. With the evolution of concept of upstream fuel injection in recent times these may the most appropriate locations for fuel injection. • At higher jet pressure ratios the plasma jet/ramp shock interaction results in a lambda shock pattern with the triple point forming vertically above the cowl level. This means the normal shock stands in front of the inlet making a part of the flow entering the inlet subsonic. The reflected shock from the triple point also separates the ramp boundary layer. • At lower jet pressure ratios the triple point is formed below the cowl level and the flow entering inside the inlet is supersonic. The reflected shock interacts with the cowl shock and a weak separation shock is seen. • Experiments are performed with concentrated DC electric discharge as energy source. Even though the amount of energy dumped here is less than 0.25% of the total energy it creates a perceptible disturbance in the flow. • Experiments are also performed to see the effect of electric discharge as energy source on height of Mach stem for a given inlet configuration. Deposition of energy in the present location does not seem to alter the Mach stem height. However more experiments need to be performed by varying the energy location to see its effect. Non-intrusive energy sources like microwave and lasers can be thought of as options for depositing energy to study its effect on Mach stem height. Since they provide more flexibility on varying the location of energy the optimum location of energy can be found out for highest reduction of Mach stem height.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography