Academic literature on the topic 'Jacobi manifolds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Jacobi manifolds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Jacobi manifolds"
GATSE, Servais Cyr. "Jacobi Manifolds, Contact Manifolds and Contactomorphism." Journal of Mathematics Research 13, no. 4 (July 29, 2021): 85. http://dx.doi.org/10.5539/jmr.v13n4p85.
Full textChen, Bang-Yen, Sharief Deshmukh, and Amira A. Ishan. "On Jacobi-Type Vector Fields on Riemannian Manifolds." Mathematics 7, no. 12 (November 21, 2019): 1139. http://dx.doi.org/10.3390/math7121139.
Full textOkassa, Eugène. "Symplectic Lie–Rinehart–Jacobi Algebras and Contact Manifolds." Canadian Mathematical Bulletin 54, no. 4 (December 1, 2011): 716–25. http://dx.doi.org/10.4153/cmb-2011-033-6.
Full textBlažić, Novica, Neda Bokan, and Zoran Rakić. "Osserman pseudo-Riemannian manifolds of signature (2,2)." Journal of the Australian Mathematical Society 71, no. 3 (December 2001): 367–96. http://dx.doi.org/10.1017/s1446788700003001.
Full textVitagliano, Luca, and Aïssa Wade. "Holomorphic Jacobi manifolds." International Journal of Mathematics 31, no. 03 (February 14, 2020): 2050024. http://dx.doi.org/10.1142/s0129167x2050024x.
Full textHaji-Badali, Ali, and Amirhesam Zaeim. "Commutative curvature operators over four-dimensional homogeneous manifolds." International Journal of Geometric Methods in Modern Physics 12, no. 10 (October 25, 2015): 1550123. http://dx.doi.org/10.1142/s0219887815501236.
Full textBascone, Francesco, Franco Pezzella, and Patrizia Vitale. "Topological and Dynamical Aspects of Jacobi Sigma Models." Symmetry 13, no. 7 (July 5, 2021): 1205. http://dx.doi.org/10.3390/sym13071205.
Full textIbáñez, Raul, Manuel de León, Juan C. Marrero, and Edith Padrón. "Nambu-Jacobi and generalized Jacobi manifolds." Journal of Physics A: Mathematical and General 31, no. 4 (January 30, 1998): 1267–86. http://dx.doi.org/10.1088/0305-4470/31/4/015.
Full textGilkey, Peter, and Veselin Videv. "Jacobi–Jacobi Commuting Models and Manifolds." Journal of Geometry 92, no. 1-2 (January 24, 2009): 60–68. http://dx.doi.org/10.1007/s00022-008-2061-9.
Full textCariñena, J. F., X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda, and N. Román-Roy. "Structural aspects of Hamilton–Jacobi theory." International Journal of Geometric Methods in Modern Physics 13, no. 02 (January 26, 2016): 1650017. http://dx.doi.org/10.1142/s0219887816500171.
Full textDissertations / Theses on the topic "Jacobi manifolds"
Arias, Marco Teresa. "Study of homogeneous DÀtri spaces, of the Jacobi operator on g.o. spaces and the locally homogeneous connections on 2-dimensional manifolds with the help of Mathematica." Doctoral thesis, Universitat de València, 2007. http://hdl.handle.net/10803/9954.
Full textEn esta tesis, se consideran dos tipos bien diferenciados de homogeneidad: la de las variedades riemannianas y la de las variedades afines. El primer tipo de homogeneidad se define como aquel que tiene la propiedad de que el grupo de isometrías actúa transitivamente sobre la variedad. La Parte I, recoge todos los resultados que hemos obtenido en esta dirección. Sin embargo, en la Parte II se presentan los resultados obtenidos sobre conexiones afines homogéneas. Una conexión afín se dice homogénea si para cada par de puntos de la variedad existe un difeomorfismo afín que envía un punto en otro. En este caso, se considera una versión local de homogeneidad. Más específicamente, la Parte I de esta tesis está dedicada a probar que "las familias 3-paramétricas de variedades bandera construidas por Wallach son espacios de D'Atri si y sólo si son espacios naturalmente reductivos". Más aún, en el segundo Capítulo, se obtiene la clasificación completa de los espacios homogéneos de tipo A cuatro dimensionales que permite probar correctamente que todo espacio de D'Atri homogéneo de dimensión cuatro es naturalmente reductivo.Finalmente, en el tercer Capítulo se prueba que en cualquier g.o. espacio el operador curvatura tiene rango osculador constante y, como consecuencia, se presenta un método para resolver la ecuación de Jacobi sobre cualquier g.o. espacio. La Parte II se destina a clasificar (localmente) todas las conexiones afines localmente homogéneas con torsión arbitraria sobre variedades 2-dimensionales. Para finalizar el cuarto Capítulo, se prueban algunos resultados interesantes sobre conexiones llanas con torsión.En general, el estudio de estos problemas requiere a veces, un gran número de cálculos simbólicos aunque sencillos. En dichas ocasiones, realizarlos correctamente a mano es una tarea ardua que requiere mucho tiempo. Por ello, se intenta organizar todos estos cálculos de la manera más sistemática posible de forma que el procedimiento no resulte excesivamente largo. Este tipo de investigación es ideal para utilizar la ayuda del ordenador; así, cuando resulta conveniente, utilizamos la ayuda del software MATHEMATICA para desarrollar con total transparencia el método de resolución que más se adecua a cada uno de los problemas a resolver.
Figalli, Alessio. "Optimal transportation and action-minimizing measures." Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85683.
Full textFigalli, Alessio. "Optimal transportation and action-minimizing measures." Doctoral thesis, Lyon, École normale supérieure (sciences), 2007. http://www.theses.fr/2007ENSL0422.
Full textLarsson, Agnes. "Automatic Mesh Repair." Thesis, Linköpings universitet, Informationskodning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-98734.
Full textSakamoto, Noboru, and der Schaft Arjan J. van. "An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory." IEEE, 2007. http://hdl.handle.net/2237/9430.
Full textPrieto, Martínez Pere Daniel. "Geometrical structures of higher-order dynamical systems and field theories." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284215.
Full textLa física geomètrica és una branca relativament jove de la matemàtica aplicada que es va iniciar als anys 60 i 70 qua A. Lichnerowicz, W.M. Tulczyjew and J.M. Souriau, entre molts altres, van començar a estudiar diversos problemes en física usant mètodes de geometria diferencial. Aquesta "geometrització" proporciona una manera d'analitzar les característiques dels sistemes físics des d'una perspectiva global, obtenint així propietats qualitatives que faciliten la integració de les equacions que els descriuen. D'ençà s'ha produït un fort desenvolupamewnt en el tractament intrínsic d'una gran varietat de problemes en física teòrica, matemàtica aplicada i teoria de control usant mètodes de geometria diferencial. Gran part del treball realitzat en la física geomètrica des dels seus primers dies s'ha dedicat a l'estudi de teories de primer ordre, és a dir, teories tals que la informació física depèn en, com a molt, derivades de primer ordre de les coordenades de posició generalitzades (velocitats). Tanmateix, hi ha teories en física en les que la informació física depèn de manera explícita en acceleracions o derivades d'ordre superior de les coordenades de posició generalitzades, requerint, per tant, d'eines geomètriques més sofisticades per a modelar-les de manera acurada. En aquesta Tesi Doctoral ens proposem donar una descripció geomètrica d'algunes d'aquestes teories. En particular, estudiarem sistemes dinàmics i teories de camps tals que la seva informació dinàmica ve donada en termes d'una funció lagrangiana, o d'un hamiltonià que prové d'un sitema lagrangià. Per a ser més precisos emprarem la formulació unificada Lagrangiana-Hamiltoniana per tal de desenvolupar marcs geomètrics per a sistemes dinàmics d'ordre superior autònoms i no autònoms, i per a teories de camps de segon ordre. Amb aquest marc geomètric estudiarem alguns exemples físics rellevants i algunes aplicacions, com la teoria de Hamilton-Jacobi per a sistemes mecànics d'ordre superior, partícules relativístiques amb spin i problemes de deformació en mecànica, i l'equació de Korteweg-de Vries i altres sistemes en teories de camps.
Rizziolli, Elíris Cristina. ""Variedades de Thom-Boardman, ideais Jacobianos e singularidades de aplicações diferenciáveis"." Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27082003-095607/.
Full textIn this work we study the relation between the Thom-Boardman manifolds and the iterated jacobian ideals associate to these manifolds. First, we study the Thom-Boardman singularities associate to analitic map germs with the objective to introduce Thom-Boardman manifolds in the jet space. After, we study the extended jacobians ideals, following Morin's construction. We give the definition of the mulitiplicity c_i(f) associate to a Boadman symbol i=(i_1,...,i_k) and the stratum (Sigma)^i(f).
TORTORELLA, ALFONSO GIUSEPPE. "Deformations of coisotropic submanifolds in Jacobi manifolds." Doctoral thesis, 2017. http://hdl.handle.net/2158/1077777.
Full textBooks on the topic "Jacobi manifolds"
Southeast Geometry Seminar (15th 2009 University of Alabama at Birmingham). Geometric analysis, mathematical relativity, and nonlinear partial differential equations: Southeast Geometry Seminars Emory University, Georgia Institute of Technology, University of Alabama, Birmingham, and the University of Tennessee, 2009-2011. Edited by Ghomi Mohammad 1969-. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textTopology and geometry in dimension three: Triangulations, invariants, and geometric structures : conference in honor of William Jaco's 70th birthday, June 4-6, 2010, Oklahoma State University, Stillwater, OK. Providence, R.I: American Mathematical Society, 2011.
Find full textCarlson, James. Period Domains and Period Mappings. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0004.
Full textMann, Peter. The Hamiltonian & Phase Space. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0014.
Full textBook chapters on the topic "Jacobi manifolds"
Marle, Charles-Michel. "On Jacobi Manifolds and Jacobi Bundles." In Mathematical Sciences Research Institute Publications, 227–46. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_16.
Full textYang, Jae-Hyun. "Geometry and Arithmetic on the Siegel–Jacobi Space." In Geometry and Analysis on Manifolds, 275–325. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11523-8_10.
Full textBerceanu, Stefan. "A Useful Parametrization of Siegel–Jacobi Manifolds." In Geometric Methods in Physics, 99–108. Basel: Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0645-9_8.
Full textBerceanu, Stefan. "Classical and Quantum Evolution on the Siegel-Jacobi Manifolds." In Geometric Methods in Physics, 43–52. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0448-6_3.
Full textJackson, David M., and Iain Moffatt. "Jacobi Diagrams on a 1-Manifold." In CMS Books in Mathematics, 293–308. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05213-3_16.
Full textCaseiro, R., and J. M. Nunes da Costa. "Integrable Systems and Recursion Operators on Symplectic and Jacobi Manifolds." In Encyclopedia of Mathematical Physics, 87–93. Elsevier, 2006. http://dx.doi.org/10.1016/b0-12-512666-2/00466-1.
Full textBeris, Antony N., and Brian J. Edwards. "Introduction." In Thermodynamics of Flowing Systems: with Internal Microstructure. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195076943.003.0005.
Full textEhrenschwendtner, Marie-Luise. "Devoted Episcopalians, Reluctant Jacobites? George and James Garden and their Spiritual Environment." In Scottish Liturgical Traditions and Religious Politics, 138–53. Edinburgh University Press, 2021. http://dx.doi.org/10.3366/edinburgh/9781474483056.003.0010.
Full text"The Patriarch and His Manifold Descendants: Jacob as Visionary between Jews and Christians in the Apocryphal Ladder of Jacob." In The Embroidered Bible: Studies in Biblical Apocrypha and Pseudepigrapha in Honour of Michael E. Stone, 237–49. BRILL, 2017. http://dx.doi.org/10.1163/9789004357211_016.
Full text"Construction of Jacobian functions of a given type. Theta functions and Abelian functions. Abelian and Picard manifolds." In Translations of Mathematical Monographs, 115–52. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/mmono/096/04.
Full textConference papers on the topic "Jacobi manifolds"
Xu, Xiaoqiang, Shikui Chen, Xianfeng David Gu, and Michael Yu Wang. "Conformal Topology Optimization of Heat Conduction Problems on Manifolds Using an Extended Level Set Method (X-LSM)." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-67819.
Full textVIDEV, VESELIN, and MARIA VANOVA. "CHARACTERIZATION OF A FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH COMMUTING STANILOV CURVATURE OPERATOR WITH RESPECT TO ORTHOGONAL PLANE." In INTERNATIONAL SCIENTIFIC CONFERENCE MATHTECH 2022. Konstantin Preslavsky University Press, 2022. http://dx.doi.org/10.46687/lqcr1576.
Full textWang, Deshi, Renbin Xiao, and Ming Yang. "The Attitude Stability for Longitudinal Motion of Underwater Vehicle." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21607.
Full textNusawardhana, Antonius, and Stanislaw H. Zak. "Optimality of Synergetic Controllers." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14839.
Full textYe, Qian, Yang Guo, Shikui Chen, Xianfeng David Gu, and Na Lei. "Topology Optimization of Conformal Structures Using Extended Level Set Methods and Conformal Geometry Theory." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85655.
Full textBaron, Luc, and Ghislain Bernier. "The Design of Parallel Manipulators of Star Topology Under Isotropic Constraint." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dac-21025.
Full textAbdel-Malek, K., Walter Seaman, and Harn-Jou Yeh. "An Exact Method for NC Verification of up to 5-Axis Machining." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/dac-8560.
Full textLi, Ju, and J. Michael McCarthy. "Singularity Variety of a 3SPS-1S Spherical Parallel Manipulator." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60416.
Full textSakamoto, Noboru, and Arjan J. van der Schaft. "An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory." In 2007 American Control Conference. IEEE, 2007. http://dx.doi.org/10.1109/acc.2007.4282581.
Full textButuk, Nelson, and JeanPaul Pemba. "Computing CHEMKIN Sensitivities Using Complex Variables." In ASME 2001 Engineering Technology Conference on Energy. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/etce2001-17013.
Full text