Books on the topic 'Ito equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Ito equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.
Full textChung, Kai Lai. Introduction to stochastic integration. 2nd ed. Boston: Birkhäuser, 1990.
Find full textStuart, Charles A. Bifurcation into spectral gaps. Brussels, Belgium: Société mathématique de Belgique, 1995.
Find full textBillings, S. A. Mapping nonlinear integro-differential equations into the frequency domain. Sheffield: University of Sheffield, Dept. of Control Engineering, 1989.
Find full textZhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.
Full textPollock, Marcia (Marcia Kay), 1942-2011, ed. Putting God back into Einstein's equations: Energy of the soul. Boynton Beach, FL: Shechinah Third Temple, Inc., 2012.
Find full textSinha, N. Inclusion of chemical kinetics into beam-warming based PNS model for hypersonic propulsion applications. New York: AIAA, 1987.
Find full textKudinov, Igor', Anton Eremin, Konstantin Trubicyn, Vitaliy Zhukov, and Vasiliy Tkachev. Vibrations of solids, liquids and gases taking into account local disequilibrium. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1859642.
Full textHartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textIkeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.
Find full textTriantafyllos, Ioannis. Implementation of a non-linear low-re two equation model into a compressible Navier-Stokescode. Manchester: UMIST, 1996.
Find full textUmarov, Sabir, Marjorie G. Hahn, and Kei Kobayashi. Beyond the Triangle : Brownian Motion, Ito Calculus, and Fokker-Planck Equation: Fractional Generalizations. World Scientific Publishing Co Pte Ltd, 2018.
Find full textEscudier, Marcel. Basic equations of viscous-fluid flow. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0015.
Full textA Journey Into Partial Differential Equations. Jones & Bartlett Publishers, 2010.
Find full textRajeev, S. G. Euler’s Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0002.
Full textCantor, Brian. The Equations of Materials. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198851875.001.0001.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Kinetic theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0010.
Full textRajeev, S. G. Hamiltonian Systems Based on a Lie Algebra. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0010.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Self-gravitating fluids. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0015.
Full textMann, Peter. Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0027.
Full textRajeev, S. G. Finite Difference Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0014.
Full textMann, Peter. Virtual Work & d’Alembert’s Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0013.
Full textSucci, Sauro. Model Boltzmann Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0008.
Full textHoring, Norman J. Morgenstern. Equations of Motion with Particle–Particle Interactions and Approximations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0008.
Full textPrussing, John E. Rocket Trajectories. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198811084.003.0003.
Full textSucci, Sauro. Approach to Equilibrium, the H-Theorem and Irreversibility. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0003.
Full textMorawetz, Klaus. Approximations for the Selfenergy. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0010.
Full textRajeev, S. G. Viscous Flows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0005.
Full textIsett, Philip. The Divergence Equation. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691174822.003.0006.
Full textMorawetz, Klaus. Nonequilibrium Quantum Hydrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0015.
Full textMann, Peter. Vector Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0034.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. The Kerr solution. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0048.
Full textSogge, Christopher D. A review: The Laplacian and the d’Alembertian. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691160757.003.0001.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. The Maxwell equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0030.
Full textSucci, Sauro. Stochastic Particle Dynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0009.
Full textDeruelle, Nathalie, and Jean-Philippe Uzan. Conservation laws. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0045.
Full textHoring, Norman J. Morgenstern. Interacting Electron–Hole–Phonon System. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0011.
Full textHoring, Norman J. Morgenstern. Q. M. Pictures; Heisenberg Equation; Linear Response; Superoperators and Non-Markovian Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0003.
Full textRajeev, S. G. Fluid Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.001.0001.
Full textMann, Peter. The Hamiltonian & Phase Space. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0014.
Full textEpstein, Charles L., and Rafe Mazzeo. Maximum Principles and Uniqueness Theorems. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0003.
Full textRajeev, S. G. Boundary Layers. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0007.
Full textMcDuff, Dusa, and Dietmar Salamon. From classical to modern. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0002.
Full textMorawetz, Klaus. Quantum Kinetic Equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0009.
Full textKanzieper, Eugene. Painlevé transcendents. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.9.
Full textMigration and Development: Factoring Return into the Equation. Newcastle UK: Cambridge Scholars Publishing, 2009.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. The Cartan structure equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0065.
Full textGeorgiev, Svetlin. Foundations of Iso-Differential Calculus: Iso-Dynamic Equations Georgiev. Nova Science Publishers, Incorporated, 2015.
Find full textSucci, Sauro. Lattice Boltzmann Models for Microflows. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0029.
Full textRajeev, S. G. Spectral Methods. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198805021.003.0013.
Full text