Academic literature on the topic 'Iterative Simultaneous Yeast Display'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Iterative Simultaneous Yeast Display.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Iterative Simultaneous Yeast Display"

1

Wen, Fei, Jie Sun, and Huimin Zhao. "Yeast Surface Display of Trifunctional Minicellulosomes for Simultaneous Saccharification and Fermentation of Cellulose to Ethanol." Applied and Environmental Microbiology 76, no. 4 (December 18, 2009): 1251–60. http://dx.doi.org/10.1128/aem.01687-09.

Full text
Abstract:
ABSTRACT By combining cellulase production, cellulose hydrolysis, and sugar fermentation into a single step, consolidated bioprocessing (CBP) represents a promising technology for biofuel production. Here we report engineering of Saccharomyces cerevisiae strains displaying a series of uni-, bi-, and trifunctional minicellulosomes. These minicellulosomes consist of (i) a miniscaffoldin containing a cellulose-binding domain and three cohesin modules, which was tethered to the cell surface through the yeast a-agglutinin adhesion receptor, and (ii) up to three types of cellulases, an endoglucanase, a cellobiohydrolase, and a β-glucosidase, each bearing a C-terminal dockerin. Cell surface assembly of the minicellulosomes was dependent on expression of the miniscaffoldin, indicating that formation of the complex was dictated by the high-affinity interactions between cohesins and dockerins. Compared to the unifunctional and bifunctional minicellulosomes, the quaternary trifunctional complexes showed enhanced enzyme-enzyme synergy and enzyme proximity synergy. More importantly, surface display of the trifunctional minicellulosomes gave yeast cells the ability to simultaneously break down and ferment phosphoric acid-swollen cellulose to ethanol with a titer of ∼1.8 g/liter. To our knowledge, this is the first report of a recombinant yeast strain capable of producing cell-associated trifunctional minicellulosomes. The strain reported here represents a useful engineering platform for developing CBP-enabling microorganisms and elucidating principles of cellulosome construction and mode of action.
APA, Harvard, Vancouver, ISO, and other styles
2

Ito, Junji, Akihiko Kosugi, Tsutomu Tanaka, Kouichi Kuroda, Seiji Shibasaki, Chiaki Ogino, Mitsuyoshi Ueda, Hideki Fukuda, Roy H. Doi, and Akihiko Kondo. "Regulation of the Display Ratio of Enzymes on the Saccharomyces cerevisiae Cell Surface by the Immunoglobulin G and Cellulosomal Enzyme Binding Domains." Applied and Environmental Microbiology 75, no. 12 (May 1, 2009): 4149–54. http://dx.doi.org/10.1128/aem.00318-09.

Full text
Abstract:
ABSTRACT We constructed a novel cell surface display system to control the ratio of target proteins on the Saccharomyces cerevisiae cell surface, using two pairs of protein-protein interactions. One protein pair is the Z domain of protein A derived from Staphylococcus aureus and the Fc domain of human immunoglobulin G. The other is the cohesin (Coh) and dockerin (Dock) from the cellulosome of Clostridium cellulovorans. In this proposed displaying system, the scaffolding proteins (fusion proteins of Z and Coh) were displayed on the cell surface by fusing with the 3′ half of α-agglutinin, and the target proteins fused with Fc or Dock were secreted. As a target protein, a recombinant Trichoderma reesei endoglucanase II (EGII) was secreted into the medium and immediately displayed on the yeast cell surface via the Z and Fc domains. Display of EGII on the cell surface was confirmed by hydrolysis of β-glucan as a substrate, and EGII activity was detected in the cell pellet fraction. Finally, two enzymes, EGII and Aspergillus aculeatus β-glucosidase 1, were codisplayed on the cell surface via Z-Fc and Dock-Coh interactions, respectively. As a result, the yeast displaying two enzymes hydrolyzed β-glucan to glucose very well. These results strongly indicated that the proposed strategy, the simultaneous display of two enzymes on the yeast cell surface, was accomplished by quantitatively controlling the display system using affinity binding.
APA, Harvard, Vancouver, ISO, and other styles
3

Luo, Ruiqi, Baole Qu, Lili An, Yun Zhao, Yang Cao, Peng Ren, and Haiying Hang. "Simultaneous Maturation of Single Chain Antibody Stability and Affinity by CHO Cell Display." Bioengineering 9, no. 8 (August 2, 2022): 360. http://dx.doi.org/10.3390/bioengineering9080360.

Full text
Abstract:
Antibody stability and affinity are two important features of its applications in therapy and diagnosis. Antibody display technologies such as yeast and bacterial displays have been successfully used for improving both affinity and stability. Although mammalian cell display has also been utilized for maturing antibody affinity, it has not been applied for improving antibody stability. Previously, we developed a Chinese hamster ovary (CHO) cell display platform in which activation-induced cytidine deaminase (AID) was used to induce antibody mutation, and antibody affinity was successfully matured using the platform. In the current study, we developed thermo-resistant (TR) CHO cells for the purpose of maturing both antibody stability and affinity. We cultured TR CHO cells displaying an antibody mutant library and labeled them at temperatures above 41 °C, enriching cells that displayed antibody mutants with both the highest affinities and the highest display levels. To evaluate our system, we chose three antibodies to improve their affinities and stabilities. We succeeded in simultaneously improving both affinities and stabilities of all three antibodies. Of note, we obtained an anti-TNFα antibody mutant with a Tm (dissolution temperature) value 12 °C higher and affinity 160-fold greater than the parent antibody after two rounds of cell proliferation and flow cytometric sorting. By using CHO cells with its advantages in protein folding, post-translational modifications, and code usage, this procedure is likely to be widely used in maturing antibodies and other proteins in the future.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Hongling, Siyuan Cao, Shaohuan Zu, Bo Yang, Shian Shen, and Xiaoming Sun. "Iterative deblending using the POCS algorithm in the approximate flattened domain." Journal of Geophysics and Engineering 15, no. 4 (April 13, 2018): 1104–19. http://dx.doi.org/10.1093/jge/aaa981.

Full text
Abstract:
Abstract We proposed an improved method to eliminate the interference generated by simultaneous-source acquisition, which can help shorten the acquisition period and improve the quality of seismic data. An iterative mathematical framework is devised, which uses the projection onto convex sets algorithm to estimate the blending noise subtracted from the pseudo-deblended data to separate the blended data in an iterative way. Differently to the conventional method using the coherent-promoting operator only based on the curvelet transform, we combine the curvelet transform and the approximate flattened operator (AFO) to improve the deblended result, which can flatten seismic events approximately to preserve the details of useful signals. This is the first time that the AFO and the curvelet transform are combined to enhance the effect of the coherent-promoting operator and improve the performance of deblending. To display the advantages of the improved method, we use both simulated synthetic data and field data examples to compare and analyse the deblended results using our method and the conventional method, and confirm that the improved method can perform better.
APA, Harvard, Vancouver, ISO, and other styles
5

Albakri, Maram B., Yuwei Jiang, and Patrick Lajoie. "Polyglutamine toxicity assays highlight the advantages of mScarlet for imaging in Saccharomyces cerevisiae." F1000Research 7 (August 10, 2018): 1242. http://dx.doi.org/10.12688/f1000research.15829.1.

Full text
Abstract:
Development of fluorescent proteins (FPs) enabled researchers to visualize protein localization and trafficking in living cells and organisms. The extended palette of available FPs allows simultaneous detection of multiples fluorescent fusion proteins. Importantly, FPs are originally derived from different organisms from jelly fish to corals and each FP display its own biophysical properties. Among these properties, the tendency of FPs to oligomerize inherently affects the behavior of its fusion partner. Here we employed the budding yeast Saccharomyces cerevisiae to determine the impact of the latest generation of red FPs on their binding partner. We used a yeast assay based on the aggregation and toxicity of misfolded polyQ expansion proteins linked to Huntington’s disease. Since polyQ aggregation and toxicity are highly dependent on the sequences flanking the polyQ region, polyQ expansions provide an ideal tool to assess the impact of FPs on their fusion partners. We found that unlike yemRFP and yFusionRed, the synthetically engineered ymScarlet displayed severe polyQ toxicity and aggregation similar to what is observed for green FP variants. Our data indicate that ymScarlet might have significant advantages over the previous generation of red FPs for use in fluorescent fusions in yeast.
APA, Harvard, Vancouver, ISO, and other styles
6

Fujita, Yasuya, Junji Ito, Mitsuyoshi Ueda, Hideki Fukuda, and Akihiko Kondo. "Synergistic Saccharification, and Direct Fermentation to Ethanol, of Amorphous Cellulose by Use of an Engineered Yeast Strain Codisplaying Three Types of Cellulolytic Enzyme." Applied and Environmental Microbiology 70, no. 2 (February 2004): 1207–12. http://dx.doi.org/10.1128/aem.70.2.1207-1212.2004.

Full text
Abstract:
ABSTRACT A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.
APA, Harvard, Vancouver, ISO, and other styles
7

Yin, Yiming, Brian D. Quinlan, Tianling Ou, Yan Guo, Wenhui He, and Michael Farzan. "In vitro affinity maturation of broader and more-potent variants of the HIV-1–neutralizing antibody CAP256-VRC26.25." Proceedings of the National Academy of Sciences 118, no. 29 (July 14, 2021): e2106203118. http://dx.doi.org/10.1073/pnas.2106203118.

Full text
Abstract:
Three variable 2 (V2) loops of HIV-1 envelope glycoprotein (Env) trimer converge at the Env apex to form the epitope of an important classes of HIV-1 broadly neutralizing antibodies (bNAbs). These V2-glycan/apex antibodies are exceptionally potent but less broad (∼60 to 75%) than many other bNAbs. Their CDRH3 regions are typically long, acidic, and tyrosine sulfated. Tyrosine sulfation complicates efforts to improve these antibodies through techniques such as phage or yeast display. To improve the breadth of CAP256-VRC26.25 (VRC26.25), a very potent apex antibody, we adapted and extended a B cell display approach. Specifically, we used CRISPR/Cas12a to introduce VRC26.25 heavy- and light-chain genes into their respective loci in a B cell line, ensuring that each cell expresses a single VRC26.25 variant. We then diversified these loci through activation-induced cytidine deaminase–mediated hypermutation and homology-directed repair using randomized CDRH3 sequences as templates. Iterative sorting with soluble Env trimers and further randomization selected VRC26.25 variants with successively improving affinities. Three mutations in the CDRH3 region largely accounted for this improved affinity, and VRC26.25 modified with these mutations exhibited greater breadth and potency than the original antibody. Our data describe a broader and more-potent form of VRC26.25 as well as an approach useful for improving the breadth and potency of antibodies with functionally important posttranslational modifications.
APA, Harvard, Vancouver, ISO, and other styles
8

Goehring, April S., David M. Rivers, and George F. Sprague. "Urmylation: A Ubiquitin-like Pathway that Functions during Invasive Growth and Budding in Yeast." Molecular Biology of the Cell 14, no. 11 (November 2003): 4329–41. http://dx.doi.org/10.1091/mbc.e03-02-0079.

Full text
Abstract:
Ubiquitin is a small modifier protein that is conjugated to substrates to target them for degradation. Recently, a surprising number of ubiquitin-like proteins have been identified that also can be attached to proteins. Herein, we identify two molecular functions for the posttranslational protein modifier from Saccharomyces cerevisiae, Urm1p. Simultaneous loss of Urm1p and Cla4p, a p21-activated kinase that functions in budding, is lethal. This result suggests a role for the urmylation pathway in budding. Furthermore, loss of the urmylation pathway causes defects in invasive growth and confers sensitivity to rapamycin. Our results indicate that the sensitivity to rapamycin is due to a genetic interaction with the TOR pathway, which is important for regulation of cell growth in response to nutrients. We have found that Urm1p can be attached to a number of proteins. Loss of five genes that are also essential in a cla4Δ strain, NCS2, NCS6, ELP2, ELP6, and URE2, affect the level of at least one Urm1p conjugate. Moreover, these five genes have a role in invasive growth and display genetic interactions with the TOR pathway. In summary, our results suggest the urmylation pathway is involved in nutrient sensing and budding.
APA, Harvard, Vancouver, ISO, and other styles
9

Schmieder, Felix, Lars Büttner, Tony Hanitzsch, Volker Busskamp, and Jürgen W. Czarske. "Two-Wavelength Computational Holography for Aberration-Corrected Simultaneous Optogenetic Stimulation and Inhibition of In Vitro Biological Samples." Applied Sciences 12, no. 5 (February 22, 2022): 2283. http://dx.doi.org/10.3390/app12052283.

Full text
Abstract:
Optogenetics is a versatile toolset for the functional investigation of excitable cells such as neurons and cardiomyocytes in vivo and in vitro. While monochromatic illumination of these cells for either stimulation or inhibition already enables a wide range of studies, the combination of activation and silencing in one setup facilitates new experimental interrogation protocols. In this work, we present a setup for the simultaneous holographic stimulation and inhibition of multiple cells in vitro. The system is based on two fast ferroelectric liquid crystal spatial light modulators with frame rates of up to 1.7 kHz. Thereby, we are able to illuminate up to about 50 single spots with better than cellular resolution and without crosstalk, perfectly suited for refined network analysis schemes. System-inherent aberrations are corrected by applying an iterative optimization scheme based on Zernike polynomials. These are superposed on the same spatial light modulators that display the pattern-generating holograms, hence no further adaptive optical elements are needed for aberration correction. A near-diffraction-limited spatial resolution is achieved over the whole field of view, enabling subcellular optogenetic experiments by just choosing an appropriate microscope objective. The setup can pave the way for a multitude of optogenetic experiments, in particular with cardiomyocytes and neural networks.
APA, Harvard, Vancouver, ISO, and other styles
10

Tsai, Shen-Long, Jeongseok Oh, Shailendra Singh, Ruizhen Chen, and Wilfred Chen. "Functional Assembly of Minicellulosomes on the Saccharomyces cerevisiae Cell Surface for Cellulose Hydrolysis and Ethanol Production." Applied and Environmental Microbiology 75, no. 19 (August 14, 2009): 6087–93. http://dx.doi.org/10.1128/aem.01538-09.

Full text
Abstract:
ABSTRACT We demonstrated the functional display of a miniscaffoldin on the Saccharomyces cerevisiae cell surface consisting of three divergent cohesin domains from Clostridium thermocellum (t), Clostridium cellulolyticum (c), and Ruminococcus flavefaciens (f). Incubation with Escherichia coli lysates containing an endoglucanase (CelA) fused with a dockerin domain from C. thermocellum (At), an exoglucanase (CelE) from C. cellulolyticum fused with a dockerin domain from the same species (Ec), and an endoglucanase (CelG) from C. cellulolyticum fused with a dockerin domain from R. flavefaciens (Gf) resulted in the assembly of a functional minicellulosome on the yeast cell surface. The displayed minicellulosome retained the synergistic effect for cellulose hydrolysis. When a β-glucosidase (BglA) from C. thermocellum tagged with the dockerin from R. flavefaciens was used in place of Gf, cells displaying the new minicellulosome exhibited significantly enhanced glucose liberation and produced ethanol directly from phosphoric acid-swollen cellulose. The final ethanol concentration of 3.5 g/liter was 2.6-fold higher than that obtained by using the same amounts of added purified cellulases. The overall yield was 0.49 g of ethanol produced per g of carbohydrate consumed, which corresponds to 95% of the theoretical value. This result confirms that simultaneous and synergistic saccharification and fermentation of cellulose to ethanol can be efficiently accomplished with a yeast strain displaying a functional minicellulosome containing all three required cellulolytic enzymes.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Iterative Simultaneous Yeast Display"

1

Kuroda, Kouichi, and Mitsuyoshi Ueda. "Simultaneous Display of Multiple Kinds of Enzymes on the Yeast Cell Surface for Multistep Reactions." In Methods in Molecular Biology, 627–41. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2285-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography