Dissertations / Theses on the topic 'Iterative receiver'

To see the other types of publications on this topic, follow the link: Iterative receiver.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Iterative receiver.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nguyen, Xuan Huan Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "OFDM receiver design with iterative techniques." Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/26776.

Full text
Abstract:
Recent advances in iterative signal processing have allowed communication systems to obtain near optimal performance with manageable complexity. The idea of iteratively exchanging the reliability information among the components within a receiver to improve overall performance is known as the turbo concept or turbo processing. Based on the principle of turbo processing, this thesis investigates the key issues in designing a receiver for high data rate multicarrier wireless systems. The particular focus is on the orthogonal frequency division multiplexing (OFDM) technique which can be potentially targeted for the 4th generation communication systems. The first part of the thesis addresses the primary issues in an OFDM receiver such as channel estimation, carrier frequency offset (CFO) compensation, and decoding. Since the optimal solutions require a high load of computation, iterative algorithms are generally desirable. The soft information from the decoder/detector can be efficiently incorporated into the channel estimator/CFO compensator, which consequently results in better performance of the receiver. The thesis provides a framework of iterative algorithms for OFDM receivers in which the converged performances are close to those of the optimal solutions. In the second part of the thesis, the iterative algorithms for the spatial diversity channels, or in other words, multiple input multiple output (MIMO) channels, are investigated. Together with capacity potential, MIMO channels bring in some new challenges. With a number of antennas on both the transmitting and receiving sides, inter-antenna and co-antenna interference is the arising concern in addition to the conventional intersymbol interference problem. Also, most of the optimal signal processing algorithms within a receiver have complexities which are at least proportionally if not exponentially increasing with the number of antennas. This creates challenges for implementing signal processing algorithms at the receiver. We therefore investigate and design manageable-complexity iterative algorithms for spatial diversity channels. In particular, we develop novel decision feedback detectors for the single user scenario, and then propose a jointly iterative multiuser detection and cell-related interference cancellation scheme for the multiuser scenario. Again, it is verified that the iterative algorithms can be effectively used as near-optimal solutions for OFDM system with spatial diversity channels.
APA, Harvard, Vancouver, ISO, and other styles
2

Schmitt, Lars. "On iterative receiver algorithms for concatenated codes /." Aachen : Shaker, 2008. http://d-nb.info/98808757X/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mathur, Avinash. "Iterative LDPC CDMA receiver with EM estimation." Thesis, Wichita State University, 2007. http://hdl.handle.net/10057/1547.

Full text
Abstract:
This thesis proposed a scheme of obtaining an estimate of channel coefficient and noise power spectral density (PSD), using iterative expectation-maximization (EM) channel estimation, based on a low-density parity-check (LDPC) code-division multiple-access receiver. At the receiver, an initial estimate was obtained with the aid of pilot symbols. Pilot bits were distributed among subframes followed by spreading and binary phase-shift keying. Subsequent values of channel coefficient and noise PSD both were updated iteratively by the soft feedback from the LDPC decoder. The updated channel coefficient and noise PSD were iteratively passed to the LDPC decoder, which resulted in improved decoding accuracy. The algorithm was tested on both a single user for constant noise PSD and a more realistic multiuser environment for a time-varying interference-plus-noise PSD estimation.
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering
"July 2007."
APA, Harvard, Vancouver, ISO, and other styles
4

Mathur, Avinash Kwon Hyuck M. "Iterative LDPC CDMA receiver with EM estimation /." Thesis, A link to full text of this thesis in SOAR, 2007. http://hdl.handle.net/10057/1547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Kyung Tae (John) Electrical Engineering &amp Telecommunications Faculty of Engineering UNSW. "Selective detection in an iterative soft interference cancellation receiver." Awarded by:University of New South Wales. School of Electrical Engineering and Telecommunications, 2006. http://handle.unsw.edu.au/1959.4/35224.

Full text
Abstract:
This thesis proposes an idea to selectively detect the code bits in an iterative soft interference cancellation multiuser receiver. It is of a great interest to reduce the complexity of the multiuser detectors in order to achieve faster multiuser communication systems. Although the suboptimum detector has much less complexity than the optimum, the detections are made on each code bit of all users through-out every iteration. Selective detection greatly reduces the amount of calculation by re-detecting only the unreliably detected code bits from the second iteration. Simulation results show that the number of detections is significantly reduced, while the performance is maintained. Necessary background information to understand the working principles of the iterative soft cancellation receiver is presented as well. Selective detection may also be used in any other receiver structures with iterative procedures to provide much less complexity. Hence, it is able to handle much more complicated receiver structures, or implement the system to a mobile device where the computational ability is much less than at the base station.
APA, Harvard, Vancouver, ISO, and other styles
6

Schmitt, Lars [Verfasser]. "On Iterative Receiver Algorithms for Concatenated Codes / Lars Schmitt." Aachen : Shaker, 2008. http://d-nb.info/1161312811/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tervo, V. (Valtteri). "Joint multiuser power allocation and iterative multi-antenna receiver design." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526207292.

Full text
Abstract:
Abstract This thesis concentrates on joint optimization of transmit power allocation and receive filtering in multiuser, multi-antenna communications. Due to the increasing number of wireless devices, the design of energy-efficient communication links is becoming increasingly important. In cellular mobile communications, reducing the average power consumption in uplink transmission is beneficial for users in order to extend battery life and, hence, energy efficiency in general. However, the power consumption of the high power amplifier (HPA) at the transmitter depends on the peak power of the transmission. This thesis focuses on power allocation problems for single-carrier (SC) frequency division multiple access (FDMA) and orthogonal FDMA (OFDMA) transmission assuming iterative reception. The goal in the first scheme presented in this thesis is to reduce the average power consumption by designing a power allocation method that takes into account the convergence properties of an iterative receiver in multiuser uplink communications. The proposed scheme can guarantee that the desired quality of service (QoS) is achieved after a sufficient number of iterations. Reducing the peak-to-average power ratio (PAPR) in any transmission system is beneficial because it allows the use of inexpensive, energy-efficient power amplifiers. The goal in the second scheme presented in this thesis is to control the PAPR of the transmitted signal. Hence, in addition to the QoS constraint, the instantaneous PAPR constraint is derived for SC-FDMA and OFDMA transmission. Moreover, a statistical approach is considered in which the power variance of the transmitted waveform is controlled. The QoS and PAPR constraints are considered jointly and, therefore, the proposed power allocation strategy jointly takes into account the channel quality and the PAPR characteristics of the power amplifier. However, the PAPR constraint can be adopted to any SC-FDMA or OFDMA framework and it is not restricted to the scheme presented in this thesis. The objective of the optimization problems considered throughout the thesis is to minimize the sum power. The majority of the derived constraints are non-convex and therefore, two alternative successive convex approximations (SCAs) are derived for all the non-convex constraints considered. The numerical results show that the proposed power allocation strategies can significantly reduce the average transmission power of users while allowing flexible PAPR control. Hence, the proposed methods can be used to extend battery life for users and especially improve the QoS at the cell edges
Tiivistelmä Väitöskirjassa tutkitaan lähettimessä tapahtuvan tehoallokoinnin sekä vastaanottimessa tapahtuvan signaalin suodatuksen yhteisoptimointia monikäyttöön suunnatussa langattomassa moniantennikommunikaatiossa. Langattomien laitteiden lukumäärän kasvaessa energiatehokkuuden merkitys tiedonsiirtolinkkien suunnittelussa korostuu. Soluihin perustuvassa langattomassa tietoliikenteessä keskimääräisen tehonkulutuksen pienentäminen ylälinkkilähetyksessä (käyttäjältä tukiasemaan) on tärkeää käyttäjän kannalta, sillä se pidentää laitteen akun kestoa. Lähettimen tehovahvistimen (high power amplifier (HPA)) tehonkulutus on kuitenkin verrannollinen lähetyksen huipputehoon. Väitöskirjassa luodaaan uusia menetelmiä sekä vertaillaan tehoallokointia yhden kantoaallon taajuustason monikäyttöön (single carrier frequency division multiple access (SC-FDMA)) ja ortogonaalisen taajuustason monikäyttöön (orthogonal FDMA (OFDMA)) perustuvissa lähetysteknologioissa. Työn ensimmäisessä osiossa tavoitteena on keskimääräisen tehonkulutuksen pienentäminen monen käyttäjän ylälinkkikommunikaatiossa suunnittelemalla tehoallokointimenetelmä, joka ottaa huomioon iteratiivisen vastaanottimen konvergenssiominaisuudet. Työssä ehdotettu menetelmä takaa vastaanotetun informaation halutun laadun (quality of service (QoS)) riittävän monen vastaanottimessa tehdyn iteraation jälkeen. Huipputehon ja keskitehon suhteen (peak to average power ratio (PAPR)) pienentäminen missä tahansa lähetyksessä on hyödyllistä, sillä sen ansiosta voidaan käyttää energiatehokkaampia ja halvempia tehovahvistimia. Työn jälkimmäisessä osiossa tavoitteena on kontrolloida lähetetyn signaalin huipputehon ja keskitehon suhdetta. Työn ensimmäisessä osiossa esitetyn QoS-rajoitteen lisäksi tehoallokointia rajoitetaan symbolisekvenssikohtaisella PAPR-rajoitteella SCFDMA- ja OFDMA-lähetyksessä. Lisäksi esitetään tilastollinen menetelmä, jossa rajoitetaan lähetetyn signaalin tehon varianssia. Kun käytetään yhtäaikaisesti QoS- ja PAPR-rajoitteita, voidaan tiedonsiirtokanavaan suunnitella optimaalinen tehoallokointi ottaen huomioon tehovahvistimen epälineaarisuudet. Työssä esitetty PAPR-rajoite on kuitenkin geneerinen, ja se voidaan sovittaa mihin tahansa SCFDMA- tai OFDMA- optimointikehykseen. Työssä esitettävien optimointiongelmien tavoitteena on käyttäjien summatehon minimointi. Suurin osa työssä esiintyvistä ongelmista on ei-konvekseja, joten siinä esitetään kaksi vaihtoehtoista peräkkäinen konveksi approksimaatio (successive convex approximation (SCA)) -menetelmää kaikille ei-konvekseille rajoitteille. Numeeriset tulokset osoittavat, että esitetyt tehoallokointimenetelmät pienentävät merkittävästi keskimääräistä tehonkulutusta mahdollistaen lisäksi adaptiivisen PAPR-kontrolloinnin. Väitöskirjassa esitettyjen menetelmien avulla voidaan pidentää mobiilikäyttäjien akun kestoa sekä erityisesti parantaa solun reunakäyttäjien palvelun laatua
APA, Harvard, Vancouver, ISO, and other styles
8

Lillie, Andrew G. "Iterative receiver techniques for high data rate indoor wireless communication systems." Thesis, University of Bristol, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ozgur, Soner. "Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10518.

Full text
Abstract:
Monte Carlo algorithms can be used to estimate the state of a system given relative observations. In this dissertation, these algorithms are applied to physical layer communications system models to estimate channel state information, to obtain soft information about transmitted symbols or multiple access interference, or to obtain estimates of all of these by joint estimation. Initially, we develop and analyze a multiple access technique utilizing mutually orthogonal complementary sets (MOCS) of sequences. These codes deliberately introduce inter-chip interference, which is naturally eliminated during processing at the receiver. However, channel impairments can destroy their orthogonality properties and additional processing becomes necessary. We utilize Monte Carlo algorithms to perform joint channel and symbol estimation for systems utilizing MOCS sequences as spreading codes. We apply Rao-Blackwellization to reduce the required number of particles. However, dense signaling constellations, multiuser environments, and the interchannel interference introduced by the spreading codes all increase the dimensionality of the symbol state space significantly. A full maximum likelihood solution is computationally expensive and generally not practical. However, obtaining the optimum solution is critical, and looking at only a part of the symbol space is generally not a good solution. We have sought algorithms that would guarantee that the correct transmitted symbol is considered, while only sampling a portion of the full symbol space. The performance of the proposed method is comparable to the Maximum Likelihood (ML) algorithm. While the computational complexity of ML increases exponentially with the dimensionality of the problem, the complexity of our approach increases only quadratically. Markovian structures such as the one imposed by MOCS spreading sequences can be seen in other physical layer structures as well. We have applied this partitioning approach with some modification to blind equalization of frequency selective fading channel and to multiple-input multiple output receivers that track channel changes. Additionally, we develop a method that obtains a metric for quantifying the convergence rate of Monte Carlo algorithms. Our approach yields an eigenvalue based method that is useful in identifying sources of slow convergence and estimation inaccuracy.
APA, Harvard, Vancouver, ISO, and other styles
10

Fonseca, dos Santos André. "Efficient receiver methods for coded systems under channel uncertainty." Dresden Vogt, 2010. http://d-nb.info/1001706269/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Rui. "Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation." Thesis, The University of Sydney, 2008. http://hdl.handle.net/2123/3544.

Full text
Abstract:
As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels.
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Rui. "Iterative Receiver for MIMO-OFDM System with ICI Cancellation and Channel Estimation." University of Sydney, 2008. http://hdl.handle.net/2123/3544.

Full text
Abstract:
Master of Engineering by Research
As a multi-carrier modulation scheme, Orthogonal Frequency Division Multiplexing (OFDM) technique can achieve high data rate in frequency-selective fading channels by splitting a broadband signal into a number of narrowband signals over a number of subcarriers, where each subcarrier is more robust to multipath. The wireless communication system with multiple antennas at both the transmitter and receiver, known as multiple-input multiple-output (MIMO) system, achieves high capacity by transmitting independent information over different antennas simultaneously. The combination of OFDM with multiple antennas has been considered as one of most promising techniques for future wireless communication systems. The challenge in the detection of a space-time signal is to design a low-complexity detector, which can efficiently remove interference resulted from channel variations and approach the interference-free bound. The application of iterative parallel interference canceller (PIC) with joint detection and decoding has been a promising approach. However, the decision statistics of a linear PIC is biased toward the decision boundary after the first cancellation stage. In this thesis, we employ an iterative receiver with a decoder metric, which considerably reduces the bias effect in the second iteration, which is critical for the performance of the iterative algorithm. Channel state information is required in a MIMO-OFDM system signal detection at the receiver. Its accuracy directly affects the overall performance of MIMO-OFDM systems. In order to estimate the channel in high-delay-spread environments, pilot symbols should be inserted among subcarriers before transmission. To estimate the channel over all the subcarriers, various types of interpolators can be used. In this thesis, a linear interpolator and a trigonometric interpolator are compared. Then we propose a new interpolator called the multi-tap method, which has a much better system performance. In MIMO-OFDM systems, the time-varying fading channels can destroy the orthogonality of subcarriers. This causes serious intercarrier interference (ICI), thus leading to significant system performance degradation, which becomes more severe as the normalized Doppler frequency increases. In this thesis, we propose a low-complexity iterative receiver with joint frequency- domain ICI cancellation and pilot-assisted channel estimation to minimize the effect of time-varying fading channels. At the first stage of receiver, the interference between adjacent subcarriers is subtracted from received OFDM symbols. The parallel interference cancellation detection with decision statistics combining (DSC) is then performed to suppress the interference from other antennas. By restricting the interference to a limited number of neighboring subcarriers, the computational complexity of the proposed receiver can be significantly reduced. In order to construct the time variant channel matrix in the frequency domain, channel estimation is required. However, an accurate estimation requiring complete knowledge of channel time variations for each block, cannot be obtained. For time- varying frequency-selective fading channels, the placement of pilot tones also has a significant impact on the quality of the channel estimates. Under the assumption that channel variations can be approximated by a linear model, we can derive channel state information (CSI) in the frequency domain and estimate time-domain channel parameters. In this thesis, an iterative low-complexity channel estimation method is proposed to improve the system performance. Pilot symbols are inserted in the transmitted OFDM symbols to mitigate the effect of ICI and the channel estimates are used to update the results of both the frequency domain equalizer and the PICDSC detector in each iteration. The complexity of this algorithm can be reduced because the matrices are precalculated and stored in the receiver when the placement of pilots symbols is fixed in OFDM symbols before transmission. Finally, simulation results show that the proposed MIMO-OFDM iterative receiver can effectively mitigate the effect of ICI and approach the ICI-free performance over time-varying frequency-selective fading channels.
APA, Harvard, Vancouver, ISO, and other styles
13

Shepherd, David Peter, and RSISE [sic]. "Optimisation of Iterative Multi-user Receivers using Analytical Tools." The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20081114.221408.

Full text
Abstract:
The objective of this thesis is to develop tools for the analysis and optimization of an iterative receiver. These tools can be applied to most soft-in soft-out (SISO) receiver components. For illustration purposes we consider a multi-user DS-CDMA system with forward error correction that employs iterative multi-user detection based on soft interference cancellation and single user decoding. Optimized power levels combined with adaptive scheduling allows for efficient utilization of receiver resources for heavily loaded systems.¶ Metric transfer analysis has been shown to be an accurate method of predicting the convergence behavior of iterative receivers. EXtrinsic Information (EXIT), fidelity (FT) and variance (VT) transfer analysis are well-known methods, however the relationship between the different approaches has not been explored in detail. We compare the metrics numerically and analytically and derive functions to closely approximate the relationship between them. The result allows for easy translation between EXIT, FT and VT methods. Furthermore, we extend the $J$ function, which describes mutual information as a function of variance, to fidelity and symbol error variance, the Rayleigh fading channel model and a channel estimate. These $J$ functions allow the \textit{a priori} inputs to the channel estimator, interference canceller and decoder to be accurately modeled. We also derive the effective EXIT charts which can be used for the convergence analysis and performance predictions of unequal power CDMA systems.¶ The optimization of the coded DS-CDMA system is done in two parts; firstly the received power levels are optimized to minimize the power used in the terminal transmitters, then the decoder activation schedule is optimized such that the multi-user receiver complexity is minimized. The uplink received power levels are optimized for the system load using a constrained nonlinear optimization approach. EXIT charts are used to optimize the power allocation in a multi-user turbo-coded DS-CDMA system. We show through simulation that the optimized power levels allow for successful decoding of heavily loaded systems with a large reduction in the convergence SNR.¶ We utilize EXIT chart analysis and a Viterbi search algorithm to derive the optimal decoding schedule for a multi component receiver/decoder. We show through simulations that decoding delay and complexity can be significantly reduced while maintaining BER performance through optimization of the decoding schedule.
APA, Harvard, Vancouver, ISO, and other styles
14

Milliner, David Louis 1981. "A low-complexity linear and iterative receiver architecture for multi-antenna communication systems." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28448.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.
Vita.
Includes bibliographical references (leaves 60-62).
Multi-antenna systems have been shown to significantly improve channel capacity in wireless environments. The focus of this thesis is on the design of low-complexity multi-antenna receiver architectures for communication networks and their demonstration in a real-time wireless environment. Our practical realization of an orthogonal frequency-division multi-antenna receiver is capable of several forms of linear and iterative detection. Our implementation is based on a division-free reformulation of standard minimum mean-squared-error detection algorithms and uses complex dot-products as the basic building blocks of a folded-pipelined architecture. This folded-pipelined architecture provides significant area savings over non-folded approaches. The demonstration of our receiver architecture is carried out on a rapid-prototyping FPGA communication system. This prototype is used to validate our design and complement theoretical and simulated results with real-time laboratory measurements in a typical office environment.
by David Louis Milliner.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
15

Bagdiya, Anshul P. "Iterative receiver for flip orthogonal frequency division multiplexing and proposed 5G modulation techniques." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10251768.

Full text
Abstract:

In Optical Wireless Communication (OWC) systems, the technique of Flip-Orthogonal Frequency Division Multiplexing (Flip-OFDM) is applied, where the positive segment and negative segment of the signal are transmitted on two continuous OFDM sub-frames. Conventionally in Flip-OFDM, data is recovered by simply subtracting the negative sub-frame from the positive sub-frame. But the signal survey confirms that the information in both sub-frames gets disrupted during signal propagation and an incorrect detection of the received values takes place at the detector.

An iterative receiver is proposed that utilizes the input signal values along with the received signals sub-frames to improve the efficacy of the Flip-OFDM. The Matlab software is used to design the transmitter and iterative receiver. Features such as cyclic prefixing, frame multiplexing, and channel characterization are included in the design.

The results of the simulation depict that the suggested receiver delivers a superior Bit Error Rate (BER) and Signal to Noise Ratio (SNR) gain when compared to the conservative receiver.

APA, Harvard, Vancouver, ISO, and other styles
16

Mohd, Tadza Noor Zahrinah Binti. "Energy efficient design of an adaptive switching algorithm for the iterative-MIMO receiver." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/11711.

Full text
Abstract:
An efficient design dedicated for iterative-multiple-input multiple-output (MIMO) receiver systems is now imperative in our world since data demands are increasing tremendously in wireless networks. This puts a massive burden on the signal processing power especially in small receiver systems where power sources are often shared or limited. This thesis proposes an attractive solution to both the wireless signal processing and the architectural implementation design sides of the problem. A novel algorithm, dubbed the Adaptive Switching Algorithm, is proven to not only save more than a third of the energy consumption in the algorithmic design, but is also able to achieve an energy reduction of more than 50% in terms of processing power when the design is mapped onto state-of-the-art programmable hardware. Simulations are based in MatlabTM using the Monte Carlo approach, where multiple additive white Gaussian noise (AWGN) and Rayleigh fading channels for both fast and slow fading environments were investigated. The software selects the appropriate detection algorithm depending on the current channel conditions. The design for the hardware is based on the latest field programmable gate arrays (FPGA) hardware from Xilinx R , specifically the Virtex-5 and Virtex-7 chipsets. They were chosen during the experimental phase to verify the results in order to examine trends for energy consumption in the proposed algorithm design. Savings come from dynamic allocation of the hardware resources by implementing power minimization techniques depending on the processing requirements of the system. Having demonstrated the feasibility of the algorithm in controlled environments, realistic channel conditions were simulated using spatially correlated MIMO channels to test the algorithm’s readiness for real-world deployment. The proposed algorithm is placed in both the MIMO detector and the iterative-decoder blocks of the receiver. When the final full receiver design setup is implemented, it shows that the key to energy saving lies in the fact that both software and hardware components of the Adaptive Switching Algorithm adopt adaptivity in the respective designs. The detector saves energy by selecting suitable detection schemes while the decoder provides adaptivity by limiting the number of decoding iterations, both of which are updated in real-time. The overall receiver can achieve more than 70% energy savings in comparison to state-of-the-art iterative-MIMO receivers and thus it can be concluded that this level of ‘intelligence’ is an important direction towards a more efficient iterative-MIMO receiver designs in the future.
APA, Harvard, Vancouver, ISO, and other styles
17

Teekapakvisit, Chakree. "Low Complexity Adaptive Iterative Receivers for Layered Space-Time Coded and CDMA Systems." University of Sydney, 2007. http://hdl.handle.net/2123/1776.

Full text
Abstract:
Doctor of Philosophy(PhD)
In this thesis, we propose and investigate promising approaches for interference mitigation in multiple input multiple output (MIMO) and code division multiple access (CDMA) systems. Future wireless communication systems will have to achieve high spectral efficiencies in order to meet increasing demands for huge data rates in emerging Internet and multimedia services. Multiuser detection and space diversity techniques are the main principles, which enable efficient use of the available spectrum. The main limitation for the applicability of the techniques in these practical systems is the high complexity of the optimal receiver structures. The research emphasis in this thesis is on the design of a low complexity interference suppression/cancellation algorithm. The most important result of our research is the novel design of interference cancellation receivers which are adaptive and iterative and which are of low computational complexity. We propose various adaptive iterative receivers, based on a joint adaptive iterative detection and decoding algorithm. The proposed receiver can effectively suppress and cancel co-channel interference from the adjacent antennas in the MIMO system with a low computation complexity. The proposed adaptive detector, based on the adaptive least mean square (LMS) algorithm, is investigated and compared with the non-adaptive iterative receiver. Since the LMS algorithm has a slow convergence speed, a partially filtered gradient LMS (PFGLMS) algorithm, which has a faster convergence speed, is proposed to improve the convergence speed of the system. The performance and computational complexity of this receiver are also considered. To further reduce the computational complexity, we apply a frequency domain adaptation technique into the adaptive iterative receivers. The system performance and complexity are investigated. It shows that the computational complexity of the frequency domain based receiver is significantly lower than that of the time domain based receiver with the same system performance. We also consider applications of MIMO techniques in CDMA systems, called MIMO-CDMA. In the MIMO-CDMA, the presence of the co-channel interference (CCI) from the adjacent antennas and multiple access interference (MAI) from other users significantly degrades the system performance. We propose an adaptive iterative receiver, which provides the capability to effectively suppress the interference and cancel the CCI from the adjacent antennas and the MAI from other users so as to improve the system performance. The proposed receiver structure is also based on a joint adaptive detection and decoding scheme. The adaptive detection scheme employs an adaptive normalized LMS algorithm operating in the time and frequency domain. We have investigated and compared their system performance and complexity. Moreover, the system performance is evaluated by using a semi-analytical approach and compared with the simulation results. The results show that there is an excellent agreement between the two approaches.
APA, Harvard, Vancouver, ISO, and other styles
18

Teekapakvisit, Chakree. "Low Complexity Adaptive Iterative Receivers for Layered Space-Time Coded and CDMA Systems." Thesis, The University of Sydney, 2006. http://hdl.handle.net/2123/1776.

Full text
Abstract:
In this thesis, we propose and investigate promising approaches for interference mitigation in multiple input multiple output (MIMO) and code division multiple access (CDMA) systems. Future wireless communication systems will have to achieve high spectral efficiencies in order to meet increasing demands for huge data rates in emerging Internet and multimedia services. Multiuser detection and space diversity techniques are the main principles, which enable efficient use of the available spectrum. The main limitation for the applicability of the techniques in these practical systems is the high complexity of the optimal receiver structures. The research emphasis in this thesis is on the design of a low complexity interference suppression/cancellation algorithm. The most important result of our research is the novel design of interference cancellation receivers which are adaptive and iterative and which are of low computational complexity. We propose various adaptive iterative receivers, based on a joint adaptive iterative detection and decoding algorithm. The proposed receiver can effectively suppress and cancel co-channel interference from the adjacent antennas in the MIMO system with a low computation complexity. The proposed adaptive detector, based on the adaptive least mean square (LMS) algorithm, is investigated and compared with the non-adaptive iterative receiver. Since the LMS algorithm has a slow convergence speed, a partially filtered gradient LMS (PFGLMS) algorithm, which has a faster convergence speed, is proposed to improve the convergence speed of the system. The performance and computational complexity of this receiver are also considered. To further reduce the computational complexity, we apply a frequency domain adaptation technique into the adaptive iterative receivers. The system performance and complexity are investigated. It shows that the computational complexity of the frequency domain based receiver is significantly lower than that of the time domain based receiver with the same system performance. We also consider applications of MIMO techniques in CDMA systems, called MIMO-CDMA. In the MIMO-CDMA, the presence of the co-channel interference (CCI) from the adjacent antennas and multiple access interference (MAI) from other users significantly degrades the system performance. We propose an adaptive iterative receiver, which provides the capability to effectively suppress the interference and cancel the CCI from the adjacent antennas and the MAI from other users so as to improve the system performance. The proposed receiver structure is also based on a joint adaptive detection and decoding scheme. The adaptive detection scheme employs an adaptive normalized LMS algorithm operating in the time and frequency domain. We have investigated and compared their system performance and complexity. Moreover, the system performance is evaluated by using a semi-analytical approach and compared with the simulation results. The results show that there is an excellent agreement between the two approaches.
APA, Harvard, Vancouver, ISO, and other styles
19

Ylioinas, J. (Jari). "Iterative detection, decoding, and channel estimation in MIMO-OFDM." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514262203.

Full text
Abstract:
Abstract Iterative receiver techniques, multiple-input – multiple-output (MIMO) processing, and orthogonal frequency division multiplexing (OFDM) are amongst the key physical layer technologies when aiming at higher spectral efficiency for a wireless communication system. Special focus is put on iterative detection, decoding, and channel estimation for a MIMO-OFDM system. After designing separately efficient algorithms for the detection, channel decoding, and channel estimation, the objective is to optimize them to work together through optimizing the activation schedules for soft-in soft-out (SfISfO) components. A list parallel interference cancellation (PIC) detector is derived to approximate an a posteriori probability (APP) algorithm with reduced complexity and minimal loss of performance. It is shown that the list PIC detector with good initialization outperforms the K-best list sphere detector (LSD) in the case of small list sizes, whereas the complexities of the algorithms are of the same order. The convergence of the iterative detection and decoding is improved by using a priori information to also recalculate the candidate list, aside from the log-likelihood ratios (LLRs) of the coded bits. Unlike in pilot based channel estimation, the least-squares (LS) channel estimator based on symbol decisions requires a matrix inversion in MIMO-OFDM. The frequency domain (FD) space-alternating generalized expectation-maximization (SAGE) channel estimator calculates the LS estimate iteratively, avoiding the matrix inversion with constant envelope modulation. The performance and computational complexity of the FD-SAGE channel estimator are compared to those of pilot based LS channel estimation with minimum mean square error (MMSE) post-processing exploiting the time correlation of the channel. A time domain (TD) SAGE channel estimator is derived to avoid the matrix inversion in channel estimation based on symbol decisions for MIMO-OFDM systems also with non-constant envelope modulation. An obvious problem, with more than two blocks in an iterative receiver, is to find the optimal activation schedule of the different blocks. It is proposed to use extrinsic information transfer (EXIT) charts to characterize the behavior of the receiver blocks and to find out the optimal activation schedule for them. A semi-analytical expression of the EXIT function is derived for the LS channel estimator. An algorithm is proposed to generate the EXIT function of the APP algorithm as a function of the channel estimate’s mutual information (MI). Surface fitting is used to get closed form expressions for the EXIT functions of the APP algorithm and the channel decoder. Trellis search algorithms are shown to find the convergence with the lowest possible complexity using the EXIT functions. With the proposed concept, the activation scheduling can be adapted to prevailing channel circumstances and unnecessary iterations will be avoided.
APA, Harvard, Vancouver, ISO, and other styles
20

Bijukchhe, Neelu. "Iterative EM channel estimation for turbo-coded DS CDMA receiver under different communication scenarios." Thesis, Wichita State University, 2008. http://hdl.handle.net/10057/1972.

Full text
Abstract:
This thesis proposes a scheme of obtaining an estimate of channel coefficients and noise power spectral density (PSD) using iterative expectation maximization based on a turbo-coded code-division multiple-access (CDMA) receiver under different communication scenarios such as time-varying interference and pulse-band jamming. At the receiver, an initial estimate is obtained with the aid of pilot symbols. The subsequent values of channel coefficient and noise PSD are updated by soft feedback from the turbo decoder. The updated channel coefficient and noise PSD are iteratively passed to the turbo decoder, which results in improved decoding accuracy. The proposed systems are verified through simulations using a structure similar to the Third Generation Partnership Project Long-Term Evolution (3GPP LTE) system under Jakes and Rayleigh fading environments. In addition, this thesis also proposes the scheme of obtaining an estimate of channel coefficients and noise PSD without sending any pilots under a single-user environment. At the receiver, the initial estimate of channel coefficient and noise PSD are obtained without pilots using blind estimation, and then the further estimations are done using expectation maximization. The estimated values are updated iteratively by feedback from the turbo decoder. The updated channel coefficient and noise PSD are iteratively passed to the turbo decoder, which yields improved decoding results. The elimination of pilot symbols sacrifices performance but allows increased energy per transmitted symbol, increased information throughput, or the inclusion of additional parity bits.
Thesis (M.S) - Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering
APA, Harvard, Vancouver, ISO, and other styles
21

Bijukchhe, Neelu Kwon Hyuck M. "Iterative EM channel estimation for turbo-coded DS CDMA receiver under different communication scenarios." A link to full text of this thesis in SOAR, 2008. http://hdl.handle.net/10057/1972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sahin, Mustafa. "Baseband receiver algorithms for 4G co-channel femtocells." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Law, Tung-man. "An iterative receiver with pilot-aided Kalman filter based channel estimation for wireless MC-CDMA communication systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38581668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Law, Tung-man, and 羅東文. "An iterative receiver with pilot-aided Kalman filter based channel estimation for wireless MC-CDMA communication systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B38581668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tseng, Hsin-Wu, Jiahua Fan, and Matthew A. Kupinski. "Assessing computed tomography image quality for combined detection and estimation tasks." SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 2017. http://hdl.handle.net/10150/626451.

Full text
Abstract:
Maintaining or even improving image quality while lowering patient dose is always the desire in clinical computed tomography (CT) imaging. Iterative reconstruction (IR) algorithms have been designed to allow for a reduced dose while maintaining or even improving an image. However, we have previously shown that the dose-saving capabilities allowed with IR are different for different clinical tasks. The channelized scanning linear observer (CSLO) was applied to study clinical tasks that combine detection and estimation when assessing CT image data. The purpose of this work is to illustrate the importance of task complexity when assessing dose savings and to move toward more realistic tasks when performing these types of studies. Human-observer validation of these methods will take place in a future publication. Low-contrast objects embedded in body-size phantoms were imaged multiple times and reconstructed by filtered back projection (FBP) and an IR algorithm. The task was to detect, localize, and estimate the size and contrast of low-contrast objects in the phantom. Independent signal-present and signal-absent regions of interest cropped from images were channelized by the dense-difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the areas under EROC curves (EAUC) were calculated by CSLO as the figure of merit. The one-shot method was used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose by similar to 50% while maintaining an image quality comparable to conventional FBP reconstruction warranting further investigation using real patient data. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
APA, Harvard, Vancouver, ISO, and other styles
26

Ning, Baozhu. "Performance Analysis of Iterative Soft Interference Cancellation Algorithms and New Link Adaptation Strategies for Coded MIMO Systems." Thesis, Supélec, 2013. http://www.theses.fr/2013SUPL0034/document.

Full text
Abstract:
Les systèmes de communication sans fil actuels évoluent vers un renforcement des réactivités des protocles de la gestion des ressources radio (RRM) et adaptation du lien radipe (FLA) afin d'optimiser conjointement les couches MAC et PHY. En parallèle, la technologie d'antenne multiples et turbo récepteurs avancés ont un grand potentiel pour augmenter l’efficacité spectrale dans les futurs systèmes de communication sans fil. Ces deux tendances, à savoir, l'optimisation inter couche et le traitement de turbo, nécessitent le développement de nouvelles abstractions de la couche PHY (aussi appelée méthode de prédiction de la performance) qui peuvent capturer les performances du récepteur itératif par itération pour permettre l'introduction en douceur de ces récepteurs avancés dans FLA et RRM.La thèse de doctorat revisite en détail l'architecture du turbo récepteur, plus particulièrement, la classe d'algorithme itératif effectuant la détection linéaire par minimisation d’erreur quadratique moyenne avec l'annulation d’interférence (LMMSE-IC). Ensuite, une méthode semi-analytique de prédiction de la performance est proposée pour analyser son l'évolution par la modélisation stochastique de chacun des composants. Intrinsèquement, la méthode de prédiction de la performance est subordonnée à la disposition de connaissance d’information d’état du canal au niveau du récepteur (CSIR), le type de codage de canal (code convolutif ou un code turbo), le nombre de mots de code ainsi que le type d’information probabilistic sur les bits codés réinjectée par le décodeur pour la reconstruction et l'annulation d'interférence à l'intérieur d’algorithme de LMMSE -IC itératif.Dans la deuxième partie, l’adaptation du lien en boucle fermée dans les systèmes MIMO codés basés sur les abstractions de la couche PHY proposées pour les récepteurs LMMSE -IC itératifs ont été abordés. Le schéma proposé d'adaptation de liaison repose sur un faible taux de rétroaction et exploite la sélection du précodeur spatiale (par exemple, la sélection d'antennes) et du schéma de modulation et de codage (MCS) de façon à maximiser le taux moyen soumis à une contrainte de taux d'erreur de bloc. Différents schémas de codage sont testés, tels qu’un codage parcourant tous les antennes où un codage par antenne. Les simulations montrent bien le gain important obtenu avec les turbo récepteurs comparée à celui d’un récepteur MMSE classique
Current wireless communication systems evolve toward an enhanced reactivity of Radio Resource Management (RRM) and Fast Link Adaptation (FLA) protocols in order to jointly optimize the Media Access Control (MAC) and Physical (PHY) layers. In parallel, multiple antenna technology and advanced turbo receivers have a large potential to increase the spectral efficiency of future wireless communication system. These two trends, namely, cross layer optimization and turbo processing, call for the development of new PHY-layer abstractions (also called performance prediction method) that can capture the iterative receiver performance per iteration to enable the smooth introduction of such advanced receivers within FLA and RRM. The PhD thesis first revisits in detail the architecture of the turbo receiver, more particularly, the class of iterative Linear Minimum Mean-Square Error (soft) Interference Cancellation (LMMSE-IC) algorithms. Then, a semi-analytical performance prediction method is proposed to analyze its evolution through the stochastic modeling of each of the components. Intrinsically, the performance prediction method is conditional on the available Channel State Information at Receiver (CSIR), the type of channel coding (convolutional code or turbo code), the number of codewords and the type of Log Likelihood Ratios (LLR) on coded bits fed back from the decoder for interference reconstruction and cancellation inside the iterative LMMSE-IC algorithms. In the second part, closed-loop FLA in coded MIMO systems based on the proposed PHY-layer abstractions for iterative LMMSE-IC receiver have been tackled. The proposed link adaptation scheme relies on a low rate feedback and operates joint spatial precoder selection (e.g., antenna selection) and Modulation and Coding Scheme (MCS) selection so as to maximize the average rate subject to a target block error rate constraint. The cross antenna coding (the transmitter employs a Space-Time Bit-Interleaved Coded Modulation (STBICM) ) and per antenna coding (Each antenna employs an independent Bit-Interleaved Coded Modulation(BICM)) cases are both considered. The simulations clearly show the significant gain obtained with turbo receivers compared to that of a conventional MMSE receiver
APA, Harvard, Vancouver, ISO, and other styles
27

Luna, Rivera José M. "Iterative multiuser receivers for coded DS-CDMA systems." Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/1382.

Full text
Abstract:
The introduction of cellular wireless systems in the 1980s has resulted in a continuous and growing demand for personal communication services. This demand has made larger capacity systems necessary. With the interest from both the research community and industry in wireless code-division multiple-access (CDMA) systems, the application of multiuser detection (MUD) techniques to wireless systems is becoming increasingly important. MUD is an important area of interest to help obtain the significant increase in capacity needed for future wireless services. The standardisation of direct-sequence CDMA (DS-CDMA) systems in the third generation of mobile communication systems has raised even more interest in exploiting the capabilities and capacity of this type of technology. However, the conventional DS-CDMA system has the major problem of multiple-access interference (MAI). The MAI is unavoidable because receivers deal with information which is transmitted not by a single source but by several uncoordinated and geographically separated sources. As a result, the capacity of these systems is inherently interference limited by other users. To overcome these limitations, MUD emerges as a promising approach to increase the system capacity. This thesis addresses the problem of improving the downlink capacity of a coded DS-CDMA system with the use of MUD techniques at the mobile terminal receiver. The optimum multiuser receiver scheme is far too computational intensive for practical use. Therefore, the aim of this thesis is to investigate sub-optimal multiuser receiver schemes that can exploit the advantages of MUD but also simplify its implementation. The attention is primarily focused on iterative MUD receiver schemes which apply the turbo multiuser detection principle. Essentially this principle consists of an iterative exchange of extrinsic information among the receiver modules to achieve improved performance. In this thesis, the implementation of an iterative receiver based on a linear MUD technique and a cancellation scheme over an additive white Gaussian noise (AWGN) channel is first proposed and analysed. The interference analysis shows that good performance is achieved using a lowcomplexity receiver structure. In more realistic mobile channels, however, this type of receiver suffers from the presence of higher levels of interference resulting in poor receiver performance. The reason for this is that in such scenarios the desired signals are no longer linearly separable. Therefore, non-linear detection techniques are required to provide better performance. With this purpose, a hybrid iterative multiuser receiver is investigated for the case of a stationary multipath channel. The incorporation of antenna arrays is an effective and practical technique to provide a significant capacity gain over conventional single-antenna systems. In this context, a novel space-time iterative multiuser receiver is proposed which achieves a large improvement in spectral efficiency and performance over multipath fading channels. In addition, it is shown that this architecture can be implemented without a prohibitive complexity cost. The exploitation of the iterative principle can be used to approach the capacity bounds of a coded DS-CDMA system. Using the Shannon’s sphere packing bound, a comparison is presented to illustrate how closely a practical system can approach the theoretical limits of system performance.
APA, Harvard, Vancouver, ISO, and other styles
28

Jakubisin, Daniel Joseph. "Advances in Iterative Probabilistic Processing for Communication Receivers." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/71640.

Full text
Abstract:
As wireless communication systems continue to push the limits of energy and spectral efficiency, increased demands are placed on the capabilities of the receiver. At the same time, the computational resources available for processing received signals will continue to grow. This opens the door for iterative algorithms to play an increasing role in the next generation of communication receivers. In the context of receivers, the goal of iterative probabilistic processing is to approximate maximum a posteriori (MAP) symbol-by-symbol detection of the information bits and estimation of the unknown channel or signal parameters. The sum-product algorithm is capable of efficiently approximating the marginal posterior probabilities desired for MAP detection and provides a unifying framework for the development of iterative receiver algorithms. However, in some applications the sum-product algorithm is computationally infeasible. Specifically, this is the case when both continuous and discrete parameters are present within the model. Also, the complexity of the sum-product algorithm is exponential in the number of variables connected to a particular factor node and can be prohibitive in multi-user and multi-antenna applications. In this dissertation we identify three key problems which can benefit from iterative probabilistic processing, but for which the sum-product algorithm is too complex. They are (1) joint synchronization and detection in multipath channels with emphasis on frame timing, (2) detection in co-channel interference and non-Gaussian noise, and (3) joint channel estimation and multi-signal detection. This dissertation presents the advances we have made in iterative probabilistic processing in order to tackle these problems. The motivation behind the work is to (a) compromise as little as possible on the performance that is achieved while limiting the computational complexity and (b) maintain good theoretical justification to the algorithms that are developed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
29

Shepherd, David. "Optimisation of iterative multi-user receivers using analytical tools /." View thesis entry in Australian Digital Theses Program, 2008. http://thesis.anu.edu.au/public/adt-ANU20081114.221408/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nissilä, M. (Mauri). "Iterative receivers for digital communications via variational inference and estimation." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514286865.

Full text
Abstract:
Abstract In this thesis, iterative detection and estimation algorithms for digital communications systems in the presence of parametric uncertainty are explored and further developed. In particular, variational methods, which have been extensively applied in other research fields such as artificial intelligence and machine learning, are introduced and systematically used in deriving approximations to the optimal receivers in various channel conditions. The key idea behind the variational methods is to transform the problem of interest into an optimization problem via an introduction of extra degrees of freedom known as variational parameters. This is done so that, for fixed values of the free parameters, the transformed problem has a simple solution, solving approximately the original problem. The thesis contributes to the state of the art of advanced receiver design in a number of ways. These include the development of new theoretical and conceptual viewpoints of iterative turbo-processing receivers as well as a new set of practical joint estimation and detection algorithms. Central to the theoretical studies is to show that many of the known low-complexity turbo receivers, such as linear minimum mean square error (MMSE) soft-input soft-output (SISO) equalizers and demodulators that are based on the Bayesian expectation-maximization (BEM) algorithm, can be formulated as solutions to the variational optimization problem. This new approach not only provides new insights into the current designs and structural properties of the relevant receivers, but also suggests some improvements on them. In addition, SISO detection in multipath fading channels is considered with the aim of obtaining a new class of low-complexity adaptive SISOs. As a result, a novel, unified method is proposed and applied in order to derive recursive versions of the classical Baum-Welch algorithm and its Bayesian counterpart, referred to as the BEM algorithm. These formulations are shown to yield computationally attractive soft decision-directed (SDD) channel estimators for both deterministic and Rayleigh fading intersymbol interference (ISI) channels. Next, by modeling the multipath fading channel as a complex bandpass autoregressive (AR) process, it is shown that the statistical parameters of radio channels, such as frequency offset, Doppler spread, and power-delay profile, can be conveniently extracted from the estimated AR parameters which, in turn, may be conveniently derived via an EM algorithm. Such a joint estimator for all relevant radio channel parameters has a number of virtues, particularly its capability to perform equally well in a variety of channel conditions. Lastly, adaptive iterative detection in the presence of phase uncertainty is investigated. As a result, novel iterative joint Bayesian estimation and symbol a posteriori probability (APP) computation algorithms, based on the variational Bayesian method, are proposed for both constant-phase channel models and dynamic phase models, and their performance is evaluated via computer simulations.
APA, Harvard, Vancouver, ISO, and other styles
31

Veselinovic, N. (Nenad). "Iterative receivers for interference cancellation and suppression in wireless communications." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514275977.

Full text
Abstract:
Abstract The performance of conventional receivers for wireless communications may severely deteriorate in the presence of unaccounted interference. The effectiveness of methods for mitigating these effects greatly depends on the knowledge that is available about the interference and signal-of-interest (SOI), therefore making the design of robust receivers a great challenge. This thesis focuses on receiver structures for channel coded systems that exploit different levels of knowledge about the SOI and interference in an iterative fashion. This achieves both robustness and overall performance improvement compared to non-iterative receivers. Code division multiple access (CDMA) and spatial division multiple access (SDMA) systems are considered. The overlay of a turbo coded direct-sequence spread-spectrum (DS-SS) system and strong digitally modulated tone interference is studied. An iterative receiver, which is capable of blind cancellation of both wideband and narrowband interference is proposed based on the adaptive self-reconfigurable -filter scheme. Asymptotic performance analysis of the iterative receiver shows that significant iteration gains are possible if the signal-to-interference-plus-noise-ratio (SINR) is relatively large and the processing gain (PG) of the SOI is relatively small. Robust diversity detection in turbo-coded DS-SS system with statistically modeled interference is studied. A non-parametric type-based iterative receiver that estimates the probability density function (PDF) of interference-plus-noise is proposed. Its performance is shown to be rather robust to the number of interferers and their distances from the victim receiver and very similar to the performance of a clairvoyant receiver. Amazingly, this is achievable with no prior knowledge about the interference parameters. Furthermore, iteration gain is shown to significantly reduce the length of the pilot sequence needed for the PDF estimation. A family of iterative minimum-mean-squared-error (MMSE) and maximum-likelihood (ML) receivers for convolutionally and space-time coded SDMA systems is proposed. Joint iterative multiuser-detection (MUD), equalization and interference suppression are proposed to jointly combat co-channel interference (CCI), inter-symbol-interference (ISI) and unknown CCI (UCCI) in broadband single-carrier systems. It is shown that both in convolutional and space-time coded systems the ISI and CCI interference can be completely eliminated if UCCI is absent. This is achievable with a number of receive antennas equal to the number of users of interest and not to the total number of transmit antennas. In case UCCI is present, the effectiveness of CCI and ISI cancellation and UCCI suppression depends on the effective degrees of freedom of the receiver. Receiver robustness can be significantly preserved by using hybrid MMSE/ML detection for the signals of interest, or by using estimation of the PDF of the UCCI-plus-noise. A low complexity hybrid MMSE/ML iterative receiver for SDMA is proposed. It is shown that its performance is not significantly degraded compared to the optimal ML receiver. Its sensitivity to spatial correlation and a timing offset is assessed by using field measurement data. It was shown that the hybrid MMSE/ML receiver is robust against spatial correlation. The sensitivity to the timing offset is significantly reduced if the receiver performs UCCI suppression.
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Hui. "Iterative receivers for OFDM systems with dispersive fading and frequency offset." Thesis, [College Station, Tex. : Texas A&M University, 2004. http://hdl.handle.net/1969.1/284.

Full text
Abstract:
Thesis (M.S.)--Texas A&M University, 2003.
"Major Subject: Electrical Engineering" Title from author supplied metadata (automated record created on Jul. 18, 2005.) Vita. Abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
33

Zhou, Jiahuai. "Iterative map and Apri-SOVA receivers for the frequency-selective Rayleigh fading channel." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ32293.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Yim Cheung. "Comparison of iterative MAP and SOVA receivers for the frequency non-selective fading channel." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0003/MQ45085.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nhan, Nhat-Quang. "Optimisation de précodeurs linéaires pour les systèmes MIMO à récepteurs itératifs." Thesis, Brest, 2016. http://www.theses.fr/2016BRES0062/document.

Full text
Abstract:
Les standards « Long-term evolution » (LTE) et LTE-Advanced (LTE-A) devraient influencer fortement l’avenir de la cinquième génération (5G) des réseaux mobiles. Ces normes exigent de hauts débits de données et une qualité de service de très bon niveau, ce qui permet d’assurer un faible taux d’erreur, avec une faible latence. Par ailleurs, la complexité doit être limitée. Dans le but de déterminer des solutions technologiques modernes qui satisfont ces contraintes fortes, nous étudions dans la thèse des systèmes de communication sans fil MIMO codés. D’abord, nous imposons un simple code convolutif récursif systématique (RSC) pour limiter la complexité et la latence. En considérant des récepteurs itératifs, nous optimisons alors la performance en termes de taux d’erreur de ces systèmes en définissant un précodage linéaire MIMO et des techniques de mapping appropriées. Dans la deuxième partie de la thèse, nous remplaçons le RSC par un LDPC non-binaire (NB-LDPC). Nous proposons d’utiliser les techniques de précodage MIMO afin de réduire la complexité des récepteurs des systèmes MIMO intégrant des codes NB-LDPC. Enfin, nous proposons également un nouvel algorithme de décodage itératif à faible complexité adapté aux codes NB-LDPC
The long-term evolution (LTE) and the LTE-Advanced (LTE-A) standardizations are predicted to play essential roles in the future fifth-generation (5G) mobile networks. These standardizations require high data rate and high quality of service, which assures low error-rate and low latency. Besides, as discussed in the recent surveys, low complexity communication systems are also essential in the next 5G mobile networks. To adapt to the modern trend of technology, in this PhD thesis, we investigate the multiple-input multiple-output (MIMO) wireless communication schemes. In the first part of this thesis, low-complex forward error correction (FEC) codes are used for low complexity and latency. By considering iterative receivers at the receiver side, we exploit MIMO linear precoding and mapping methods to optimize the error-rate performance of these systems. In the second part of this thesis, non-binary low density parity check (NB-LDPC) codes are investigated. We propose to use MIMO precoders to reduce the complexity for NB-LDPC encoded MIMO systems. A novel low complexity decoding algorithm for NB-LDPC codes is also proposed at the end of this thesis
APA, Harvard, Vancouver, ISO, and other styles
36

Otnes, Roald. "Improved Receivers for Digital High Frequency Communications : Iterative Channel Estimation, Equalization, and Decoding (Adaptive Turbo Equalization)." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-86.

Full text
Abstract:

We address the problem of improving the throughput and the availability of digital communications in the High Frequency (HF, 3-30 MHz) band. In standardized military waveforms, the data is protected by an error-correcting code (ECC), and the code bits are shuffled by an interleaver and mapped onto a signal constellation for modulation onto a single carrier. Training sequences are multiplexed into the stream of transmitted symbols to aid the receiver in tracking the channel variations. The channel imposes severe time-varying intersymbol interference (ISI) as well as additive noise. Conventional receivers for such a system would first perform adaptive equalization (to mitigate the ISI) and symbol demapping, deinterleave the received code bits, and finally perform decoding, where the redundancy of the ECC is used to make high-quality decisions on the transmitted data bits even when bit errors have been introduced by the channel. Such a receiver is suboptimal because the equalizer does not make use of the redundancy introduced by the ECC, and is outperformed by an iterative scheme called turbo equalization. In turbo equalization, a.k.a. iterative equalization and decoding, soft information on the code bits is fed back from the decoder to the equalizer in an iterative fashion, and by performing the equalization and decoding tasks several times the bit error rates become significantly smaller than for a conventional “single-pass” receiver. Since we are dealing with an unknown time-varying channel, we must also perform channel estimation. We include channel estimation in the iterative loop of the turbo equalizer, using soft information fed back from the decoder as “training sequences” between the ordinary transmitted training sequences. Then, the receiver performs iterative channel estimation, equalization, and decoding, which can also be called adaptive turbo equalization. We have proposed a receiver using adaptive turbo equalization, and performed simulations using the MIL-STD-188-110 waveform at 2400 bps, transmitted over an ITU-R poor channel (a commonly used channel to test HF modems). We find that the proposed receiver outperforms a conventional receiver by 2-3 dB in terms of required signal-to-noise ratio to achieve a certain bit error rate. In this dissertation, we give an introduction to the fields of HF communications and standardized HF waveforms, channel modelling, and turbo equalization. We present an analysis of measured channel data to motivate our research in turbo equalization. We then present our research contributions to the field of turbo equalization: A low-complexity soft-in soft-out equalizer for time-varying channels, a comparative study of channel estimation algorithms using soft information as the input signal, and an investigation of adaptive turbo equalization using a technique known as EXIT charts. Finally, we present our main practical result, which is our proposed receiver and the corresponding simulation results.

APA, Harvard, Vancouver, ISO, and other styles
37

Borlenghi, Filippo Verfasser], Gerd [Akademischer Betreuer] [Ascheid, Heinrich [Akademischer Betreuer] Meyr, and Andreas [Akademischer Betreuer] Burg. "Silicon implementation of iterative detection and decoding for multi-antenna receivers / Filippo Borlenghi ; Gerd Ascheid, Heinrich Meyr, Andreas Burg." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128597942/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Borlenghi, Filippo [Verfasser], Gerd [Akademischer Betreuer] Ascheid, Heinrich [Akademischer Betreuer] Meyr, and Andreas [Akademischer Betreuer] Burg. "Silicon implementation of iterative detection and decoding for multi-antenna receivers / Filippo Borlenghi ; Gerd Ascheid, Heinrich Meyr, Andreas Burg." Aachen : Universitätsbibliothek der RWTH Aachen, 2015. http://d-nb.info/1128597942/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Senst, Martin Verfasser], Gerd [Akademischer Betreuer] [Ascheid, and Peter [Akademischer Betreuer] Vary. "On the design of iterative wireless receivers : the divergence minimization approach to approximate Bayesian inference / Martin Senst ; Gerd Ascheid, Peter Vary." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1162498137/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Senst, Martin [Verfasser], Gerd [Akademischer Betreuer] Ascheid, and Peter [Akademischer Betreuer] Vary. "On the design of iterative wireless receivers : the divergence minimization approach to approximate Bayesian inference / Martin Senst ; Gerd Ascheid, Peter Vary." Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1162498137/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

El, chall Rida. "Récepteur itératif pour les systèmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité." Thesis, Rennes, INSA, 2015. http://www.theses.fr/2015ISAR0019/document.

Full text
Abstract:
Pour permettre l’accroissement de débit et de robustesse dans les futurs systèmes de communication sans fil, les processus itératifs sont de plus considérés dans les récepteurs. Cependant, l’adoption d’un traitement itératif pose des défis importants dans la conception du récepteur. Dans cette thèse, un récepteur itératif combinant les techniques de détection multi-antennes avec le décodage de canal est étudié. Trois aspects sont considérés dans un contexte MIMOOFDM: la convergence, la performance et la complexité du récepteur. Dans un premier temps, nous étudions les différents algorithmes de détection MIMO à décision dure et souple basés sur l’égalisation, le décodage sphérique, le décodage K-Best et l’annulation d’interférence. Un décodeur K-best de faible complexité (LC-K-Best) est proposé pour réduire la complexité sans dégradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de détection avec différentes techniques de codage de canal, notamment le décodeur turbo et le décodeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itérations internes et externes nécessaires est proposé. Les performances du récepteur ainsi proposé sont évaluées dans différents modèles de canal LTE, et comparées avec différentes techniques de détection MIMO. Ensuite, la complexité des récepteurs itératifs avec différentes techniques de codage de canal est étudiée et comparée pour différents modulations et rendement de code. Les résultats de simulation montrent que les approches proposées offrent un bon compromis entre performance et complexité. D’un point de vue implémentation, la représentation en virgule fixe est généralement utilisée afin de réduire les coûts en termes de surface, de consommation d’énergie et de temps d’exécution. Nous présentons ainsi une représentation en virgule fixe du récepteur itératif proposé basé sur le décodeur LC K-Best. En outre, nous étudions l’impact de l’estimation de canal sur la performance du système. Finalement, le récepteur MIMOOFDM itératif est testé sur la plateforme matérielle WARP, validant le schéma proposé
Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform
APA, Harvard, Vancouver, ISO, and other styles
42

Sahin, Serdar. "Advanced receivers for distributed cooperation in mobile ad hoc networks." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0089.

Full text
Abstract:
Les réseaux ad hoc mobiles (MANETs) sont des systèmes de communication sans fil rapidement déployables et qui fonctionnent avec une coordination minimale, ceci afin d'éviter les pertes d'efficacité spectrale induites par la signalisation. Les stratégies de transmissions coopératives présentent un intérêt pour les MANETs, mais la nature distribuée de tels protocoles peut augmenter le niveau d'interférence avec un impact autant plus sévère que l'on cherche à pousser les limites des efficacités énergétique et spectrale. L'impact de l'interférence doit alors être réduit par l'utilisation d'algorithmes de traitement du signal au niveau de la couche PHY, avec une complexité calculatoire raisonnable. Des avancées récentes sur les techniques de conception de récepteurs numériques itératifs proposent d'exploiter l'inférence bayésienne approximée et des techniques de passage de message associés afin d'améliorer le potentiel des turbo-détecteurs plus classiques. Entre autres, la propagation d'espérance (EP) est une technique flexible, qui offre des compromis attractifs de complexité et de performance dans des situations où la propagation de croyance conventionnel est limité par sa complexité calculatoire. Par ailleurs, grâce à des techniques émergentes de l'apprentissage profond, de telles structures itératives peuvent être projetés vers des réseaux de détection profonds, où l'apprentissage des hyper-paramètres algorithmiques améliore davantage les performances. Dans cette thèse nous proposons des égaliseurs à retour de décision à réponse impulsionnelle finie basée sur la propagation d'espérance (EP) qui apportent des améliorations significatives, en particulier pour des applications à haute efficacité spectrale vis à vis des turbo-détecteurs conventionnels, tout en ayant l'avantage d'être asymptotiquement prédictibles. Nous proposons un cadre générique pour la conception de récepteurs dans le domaine fréquentiel, afin d'obtenir des architectures de détection avec une faible complexité calculatoire. Cette approche est analysée théoriquement et numériquement, avec un accent mis sur l'égalisation des canaux sélectifs en fréquence, et avec des extensions pour de la détection dans des canaux qui varient dans le temps ou pour des systèmes multi-antennes. Nous explorons aussi la conception de détecteurs multi-utilisateurs, ainsi que l'impact de l'estimation du canal, afin de comprendre le potentiel et le limite de cette approche. Pour finir, nous proposons une méthode de prédiction performance à taille finie, afin de réaliser une abstraction de lien pour l'égaliseur domaine fréquentiel à base d'EP. L'impact d'un modélisation plus fine de la couche PHY est évalué dans le contexte de la diffusion coopérative pour des MANETs tactiques, grâce à un simulateur flexible de couche MAC
Mobile ad hoc networks (MANETs) are rapidly deployable wireless communications systems, operating with minimal coordination in order to avoid spectral efficiency losses caused by overhead. Cooperative transmission schemes are attractive for MANETs, but the distributed nature of such protocols comes with an increased level of interference, whose impact is further amplified by the need to push the limits of energy and spectral efficiency. Hence, the impact of interference has to be mitigated through with the use PHY layer signal processing algorithms with reasonable computational complexity. Recent advances in iterative digital receiver design techniques exploit approximate Bayesian inference and derivative message passing techniques to improve the capabilities of well-established turbo detectors. In particular, expectation propagation (EP) is a flexible technique which offers attractive complexity-performance trade-offs in situations where conventional belief propagation is limited by computational complexity. Moreover, thanks to emerging techniques in deep learning, such iterative structures are cast into deep detection networks, where learning the algorithmic hyper-parameters further improves receiver performance. In this thesis, EP-based finite-impulse response decision feedback equalizers are designed, and they achieve significant improvements, especially in high spectral efficiency applications, over more conventional turbo-equalization techniques, while having the advantage of being asymptotically predictable. A framework for designing frequency-domain EP-based receivers is proposed, in order to obtain detection architectures with low computational complexity. This framework is theoretically and numerically analysed with a focus on channel equalization, and then it is also extended to handle detection for time-varying channels and multiple-antenna systems. The design of multiple-user detectors and the impact of channel estimation are also explored to understand the capabilities and limits of this framework. Finally, a finite-length performance prediction method is presented for carrying out link abstraction for the EP-based frequency domain equalizer. The impact of accurate physical layer modelling is evaluated in the context of cooperative broadcasting in tactical MANETs, thanks to a flexible MAC-level simulator
APA, Harvard, Vancouver, ISO, and other styles
43

Vargas, Paredero David Eduardo. "Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/66081.

Full text
Abstract:
[EN] Multiple-Input Multiple-Output (MIMO) technology in Digital Terrestrial Television (DTT) networks has the potential to increase the spectral efficiency and improve network coverage to cope with the competition of limited spectrum use (e.g., assignment of digital dividend and spectrum demands of mobile broadband), the appearance of new high data rate services (e.g., ultra-high definition TV - UHDTV), and the ubiquity of the content (e.g., fixed, portable, and mobile). It is widely recognised that MIMO can provide multiple benefits such as additional receive power due to array gain, higher resilience against signal outages due to spatial diversity, and higher data rates due to the spatial multiplexing gain of the MIMO channel. These benefits can be achieved without additional transmit power nor additional bandwidth, but normally come at the expense of a higher system complexity at the transmitter and receiver ends. The final system performance gains due to the use of MIMO directly depend on physical characteristics of the propagation environment such as spatial correlation, antenna orientation, and/or power imbalances experienced at the transmit aerials. Additionally, due to complexity constraints and finite-precision arithmetic at the receivers, it is crucial for the overall system performance to carefully design specific signal processing algorithms. This dissertation focuses on transmit and received signal processing for DTT systems using MIMO-BICM (Bit-Interleaved Coded Modulation) without feedback channel to the transmitter from the receiver terminals. At the transmitter side, this thesis presents investigations on MIMO precoding in DTT systems to overcome system degradations due to different channel conditions. At the receiver side, the focus is given on design and evaluation of practical MIMO-BICM receivers based on quantized information and its impact in both the in-chip memory size and system performance. These investigations are carried within the standardization process of DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) the handheld evolution of DVB-T2 (Terrestrial - Second Generation), and ATSC 3.0 (Advanced Television Systems Committee - Third Generation), which incorporate MIMO-BICM as key technology to overcome the Shannon limit of single antenna communications. Nonetheless, this dissertation employs a generic approach in the design, analysis and evaluations, hence, the results and ideas can be applied to other wireless broadcast communication systems using MIMO-BICM.
[ES] La tecnología de múltiples entradas y múltiples salidas (MIMO) en redes de Televisión Digital Terrestre (TDT) tiene el potencial de incrementar la eficiencia espectral y mejorar la cobertura de red para afrontar las demandas de uso del escaso espectro electromagnético (e.g., designación del dividendo digital y la demanda de espectro por parte de las redes de comunicaciones móviles), la aparición de nuevos contenidos de alta tasa de datos (e.g., ultra-high definition TV - UHDTV) y la ubicuidad del contenido (e.g., fijo, portable y móvil). Es ampliamente reconocido que MIMO puede proporcionar múltiples beneficios como: potencia recibida adicional gracias a las ganancias de array, mayor robustez contra desvanecimientos de la señal gracias a la diversidad espacial y mayores tasas de transmisión gracias a la ganancia por multiplexado del canal MIMO. Estos beneficios se pueden conseguir sin incrementar la potencia transmitida ni el ancho de banda, pero normalmente se obtienen a expensas de una mayor complejidad del sistema tanto en el transmisor como en el receptor. Las ganancias de rendimiento finales debido al uso de MIMO dependen directamente de las características físicas del entorno de propagación como: la correlación entre los canales espaciales, la orientación de las antenas y/o los desbalances de potencia sufridos en las antenas transmisoras. Adicionalmente, debido a restricciones en la complejidad y aritmética de precisión finita en los receptores, es fundamental para el rendimiento global del sistema un diseño cuidadoso de algoritmos específicos de procesado de señal. Esta tesis doctoral se centra en el procesado de señal, tanto en el transmisor como en el receptor, para sistemas TDT que implementan MIMO-BICM (Bit-Interleaved Coded Modulation) sin canal de retorno hacia el transmisor desde los receptores. En el transmisor esta tesis presenta investigaciones en precoding MIMO en sistemas TDT para superar las degradaciones del sistema debidas a diferentes condiciones del canal. En el receptor se presta especial atención al diseño y evaluación de receptores prácticos MIMO-BICM basados en información cuantificada y a su impacto tanto en la memoria del chip como en el rendimiento del sistema. Estas investigaciones se llevan a cabo en el contexto de estandarización de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), la evolución portátil de DVB-T2 (Second Generation Terrestrial), y ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporan MIMO-BICM como clave tecnológica para superar el límite de Shannon para comunicaciones con una única antena. No obstante, esta tesis doctoral emplea un método genérico tanto para el diseño, análisis y evaluación, por lo que los resultados e ideas pueden ser aplicados a otros sistemas de comunicación inalámbricos que empleen MIMO-BICM.
[CAT] La tecnologia de múltiples entrades i múltiples eixides (MIMO) en xarxes de Televisió Digital Terrestre (TDT) té el potencial d'incrementar l'eficiència espectral i millorar la cobertura de xarxa per a afrontar les demandes d'ús de l'escàs espectre electromagnètic (e.g., designació del dividend digital i la demanda d'espectre per part de les xarxes de comunicacions mòbils), l'aparició de nous continguts d'alta taxa de dades (e.g., ultra-high deffinition TV - UHDTV) i la ubiqüitat del contingut (e.g., fix, portàtil i mòbil). És àmpliament reconegut que MIMO pot proporcionar múltiples beneficis com: potència rebuda addicional gràcies als guanys de array, major robustesa contra esvaïments del senyal gràcies a la diversitat espacial i majors taxes de transmissió gràcies al guany per multiplexat del canal MIMO. Aquests beneficis es poden aconseguir sense incrementar la potència transmesa ni l'ample de banda, però normalment s'obtenen a costa d'una major complexitat del sistema tant en el transmissor com en el receptor. Els guanys de rendiment finals a causa de l'ús de MIMO depenen directament de les característiques físiques de l'entorn de propagació com: la correlació entre els canals espacials, l'orientació de les antenes, i/o els desequilibris de potència patits en les antenes transmissores. Addicionalment, a causa de restriccions en la complexitat i aritmètica de precisió finita en els receptors, és fonamental per al rendiment global del sistema un disseny acurat d'algorismes específics de processament de senyal. Aquesta tesi doctoral se centra en el processament de senyal tant en el transmissor com en el receptor per a sistemes TDT que implementen MIMO-BICM (Bit-Interleaved Coded Modulation) sense canal de tornada cap al transmissor des dels receptors. En el transmissor aquesta tesi presenta recerques en precoding MIMO en sistemes TDT per a superar les degradacions del sistema degudes a diferents condicions del canal. En el receptor es presta especial atenció al disseny i avaluació de receptors pràctics MIMO-BICM basats en informació quantificada i al seu impacte tant en la memòria del xip com en el rendiment del sistema. Aquestes recerques es duen a terme en el context d'estandardització de DVB-NGH (Digital Video Broadcasting - Next Generation Handheld), l'evolució portàtil de DVB-T2 (Second Generation Terrestrial), i ATSC 3.0 (Advanced Television Systems Commitee - Third Generation) que incorporen MIMO-BICM com a clau tecnològica per a superar el límit de Shannon per a comunicacions amb una única antena. No obstant açò, aquesta tesi doctoral empra un mètode genèric tant per al disseny, anàlisi i avaluació, per la qual cosa els resultats i idees poden ser aplicats a altres sistemes de comunicació sense fils que empren MIMO-BICM.
Vargas Paredero, DE. (2016). Transmit and Receive Signal Processing for MIMO Terrestrial Broadcast Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/66081
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
44

Hassan, Khurrum Kwon H. M. "LDPC encoded pilots for iterative receiver improvement." Diss., 2005. http://il.proquest.com/products_umi/dissertations.

Full text
Abstract:
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering.
"December 2005." Title from PDF title page (viewed on April 22, 2007). Thesis adviser: H. M. Kwon. UMI Number: AAT 1436560 Includes bibliographic references (leaves 31-35).
APA, Harvard, Vancouver, ISO, and other styles
45

Hassan, Khurrum. "LDPC encoded pilots for iterative receiver improvement." Thesis, 2005. http://hdl.handle.net/10057/769.

Full text
Abstract:
Turbo and low density parity check (LDPC) codes show performances approaching Shannon capacity. This thesis proposes a novel iterative channel estimation and LDPC decoding scheme where the pilot symbols are encoded and can be used for both channel estimation and decoding using soft iterative receiver. To achieve this objective, systematic LDPC codes are employed so that pilot symbols can be encoded as data. In this way, initial channel estimation can be made before decoding by using the systematic coded pilot symbols. In addition, the known pilot symbol positions have higher reliability than data and can improve the initial decoding significantly. Using simulations it is shown that the decoding capability of the receiver improves significantly and ultimately LDPC decoder converges much early compared to the case where there are no coded pilots. Moreover, passing soft decoded values to the iterative receiver the coding gain improves also in comparison to the case when passing hard decoded values. (Abstract shortened by UMI.)
Thesis (M.S.)--Wichita State University, College of Engineering, Dept. of Electrical and Computer Engineering.
"December 2005."
APA, Harvard, Vancouver, ISO, and other styles
46

Reed, Mark C. "Iterative receiver techniques for coded multiple access communication systems." 1999. http://arrow.unisa.edu.au:8081/1959.8/24962.

Full text
Abstract:
The introduction of cellular wireless systems in the 1980s has resulted in a huge demand for personal communication services. This demand has made larger capacity systems necessary. This has been partially satisfied by the introduction of second generation digital systems. New third generation systems are now under going standardisation and will require even more efficient utilisation of the spectrum if the high bandwidth features and larger capacity are to become a reality. Motivated by these growing requirements we discuss methods of achieving large improvements in spectral efficiency and performance. Multiple-user communications over a channel can only be achieved with some form of diversity. In this work we point out that the efficient utilisation of the dimensions of space, time, and frequency will ultimately maximise the system capacity of a multiple-user system. We apply our receiver techniques solely to the base-station design where capacity limitations are currently present. We note however, that some of these techniques could also be applied at the mobile terminal receiver. We primarily focus our attention on the direct-sequence code-division multiple-access (DS/CDMA) channel, since this channel is inherently interference limited by other users in the cell of interest. We exploit a new powerful channel coding technique named " turbo coding" for its iterative decoding approach. We show how we can substitute the inner convolutional code of a turbo code encoder with the CDMA channel. By " iterative detection/decoding" or " turbo equalisation" at the receiver we achieve performance results which show the interference from other users to approach complete removal. We develop and analyse a new, low complexity, iterative interference canceller/decoder. This receiver has complexity per user linear with the memory of the channel and independent of the number of users in the system. We extend this receiver to more realistic channels that are asynchronous and include multi-path, and include spatial diversity by using an antenna array at the receiver. The CDMA channel we study exclusively uses randomly generated spreading codes. With this channel model we still achieve single user performance (no interference from other users) with a 10logL gain from L antenna elements and a gain of up to 10logP from P multi-path components. With any new receiver design, sensitivity to channel parameter errors is of paramount interest. We find that the sensitivity of our receiver is low with respect to the parameter errors induced. This is as we desire for a realisable receiver design. Finally we investigate the application of this new iterative interference canceller/decoder receiver to a number of other interference channels. These include the intersymbol interference (ISI) channel, partial response signalling (PRS), and continuous phase modulation (CPM). For these channels excellent performance improvement is generally achieved by the utilisation of the iterative interference canceller/decoder solution.
Thesis (PhD)--University of South Australia, 1999
APA, Harvard, Vancouver, ISO, and other styles
47

Karuppasami, Sridhar. "LDPC code based iterative receiver techniques for phase varying channels." 2009. http://arrow.unisa.edu.au:8081/1959.8/83062.

Full text
Abstract:
The objective of this thesis is to design bandwidth-efficient, low-complexity LDPC code based receivers that porovide good performance under static, phase varying channels.
Thesis (PhDTelecommunications)--University of South Australia, 2009
APA, Harvard, Vancouver, ISO, and other styles
48

Yu, Ying-Shin, and 游英信. "Iterative Parallel Interference Cancellation Receiver with QR Decompositionin MIMO System." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/87321917195676937137.

Full text
Abstract:
碩士
中原大學
電子工程研究所
96
In this thesis, we propose a new iterative parallel interference cancellation receiver architecture. QR-decomposition algorithm is used to compute the transmitted signals roughly in advance, and followed by an iterative parallel interference cancellation (Iterative PIC) to calculate them several times. The simulation shows that the new receiver architecture not only keeps the original frame error rate(FER) in several iteration but also reduces large number of operations comparing with standard iterative parallel interference cancellation (Iterative PIC-STD) and iterative parallel interference cancellation with decision statistics combining (Iterative PIC-DSC).
APA, Harvard, Vancouver, ISO, and other styles
49

Lin, Ray-Kao, and 林瑞國. "An Efficient Iterative Multiuser Receiver for Turbo-Coded CDMA Systems." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/26253619167269658617.

Full text
Abstract:
碩士
國立清華大學
電機工程學系
89
Abstract Turbo codes can provide surprising bit error rate performance on digital communications. They have been considered for use in third-generation wireless mobile communication systems, such as direct-sequence code-division-multiple-access (DS-CDMA) systems. In order to provide better performance in DS-CDMA systems, an appropriate joint design of the turbo code decoder and the multiuser detector is highly desirable. In this thesis, an efficient iterative multiuser receiver is proposed for turbo-coded CDMA systems. The proposed structure consists of a likelihood calculator, a metric generator, and a bank of K turbo decoders, where K is the number of users and one multiuser detection iteration includes only one turbo decoding iteration. The metric generator can make use of the reliability information fed back from the turbo decoders to provide the a priori information for use in the turbo decoders. The reliability information passed from the turbo decoders to the metric generator in the conventional iterative scheme is either the extrinsic information or the a posteriori information. In this thesis, we propose a simple rule to choose the type of reliability information delivery; if the component decoders inside a turbo decoder have the same decision for the concerned symbol at an iteration, the extrinsic information generated at the turbo decoder is passed to the metric generator, or the a posteriori information is passed. Computer simulation results show that the iterative scheme with the proposed rule outperforms the conventional schemes with no increase in computational complexity. In addition, we propose a reduced-complexity metric generator for iterative coded CDMA systems. As compared to the conventional method, the proposed metric generator achieves a significant complexity reduction. For the optimal iterative multiuser receiver, the complexity per user bit per iteration is reduced from O(2KK) to O(2K/K). For the suboptimal iterative multiuser receiver proposed by Reed et al., the corresponding complexity is further reduced to be O(1). The good-performance and low-complexity features make the proposed approaches attractive for use in practical applications.
APA, Harvard, Vancouver, ISO, and other styles
50

Tsai, Song-Da, and 蔡松達. "Iterative Receiver Design for OFDM Systems in Impulsive Noise Channels." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/51948126954434440708.

Full text
Abstract:
碩士
淡江大學
電機工程學系碩士班
103
In this thesis, the orthogonal frequency division multiple (OFDM) signals with blanking nonlinearity in impulsive noise channels is presented. Blanking nonlinearity has been widely used in practical OFDM systems to suppress impulsive noise at the expense of reducing signal power and generating intercarrier interference (ICI).   To improve the performance of blanking nonlinearity element, we propose an iterative interference cancellation scheme which can effectively reduce the level of ICI caused by the blanking operation at the OFDM receiver. With adaptive blanking threshold for each iteration, the proposed iterative receiver design can converge to its best performance with only three iterations. Simulation results achieved by the proposed scheme significant improvement.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography