Journal articles on the topic 'Isotopic model'

To see the other types of publications on this topic, follow the link: Isotopic model.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Isotopic model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sedaghatpour, Fatemeh, and Stein B. Jacobsen. "Magnesium stable isotopes support the lunar magma ocean cumulate remelting model for mare basalts." Proceedings of the National Academy of Sciences 116, no. 1 (December 17, 2018): 73–78. http://dx.doi.org/10.1073/pnas.1811377115.

Full text
Abstract:
We report high-precision Mg isotopic analyses of different types of lunar samples including two pristine Mg-suite rocks (72415 and 76535), basalts, anorthosites, breccias, mineral separates, and lunar meteorites. The Mg isotopic composition of the dunite 72415 (δ25Mg = −0.140 ± 0.010‰, δ26Mg = −0.291 ± 0.018‰), the most Mg-rich and possibly the oldest lunar sample, may provide the best estimate of the Mg isotopic composition of the bulk silicate Moon (BSM). This δ26Mg value of the Moon is similar to those of the Earth and chondrites and reflects both the relative homogeneity of Mg isotopes in the solar system and the lack of Mg isotope fractionation by the Moon-forming giant impact. In contrast to the behavior of Mg isotopes in terrestrial basalts and mantle rocks, Mg isotopic data on lunar samples show isotopic variations among the basalts and pristine anorthositic rocks reflecting isotopic fractionation during the early lunar magma ocean (LMO) differentiation. Calculated evolutions of δ26Mg values during the LMO differentiation are consistent with the observed δ26Mg variations in lunar samples, implying that Mg isotope variations in lunar basalts are consistent with their origin by remelting of distinct LMO cumulates.
APA, Harvard, Vancouver, ISO, and other styles
2

Sturm, C., Q. Zhang, and D. Noone. "An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology." Climate of the Past Discussions 5, no. 3 (June 30, 2009): 1697–729. http://dx.doi.org/10.5194/cpd-5-1697-2009.

Full text
Abstract:
Abstract. Stable water isotopes have been measured in a wide range of climate archives, with the purpose of reconstructing regional climate variations. Yet the common assumption that the isotopic signal is a direct indicator of temperature proves to be misleading under certain circumstances, since its relationship with temperature also depends on e.g. atmospheric circulation and precipitation seasonality. The present article introduces the principles, benefits and caveats of using climate models with embedded water isotopes as a support for the interpretation of isotopic climate archives. A short overview of the limitations of empirical calibrations of isotopic proxy records is presented, with emphasis on the physical processes that infirm its underlying hypotheses. The simulation of climate and its associated isotopic signal, despite difficulties related to downscaling and intrinsic atmospheric variability, can provide a "transfer function" between the isotopic signal and the considered climate variable. The multi-proxy data can then be combined with model output to produce a physically consistent climate reconstruction and its confidence interval. A sensitivity study with the isotope-enabled global circulation model CAM3iso under idealised present-day, pre-industrial and mid-Holocene is presented to illustrate the impact of a changing climate on the isotope-temperature relationship.
APA, Harvard, Vancouver, ISO, and other styles
3

Cauquoin, Alexandre, Martin Werner, and Gerrit Lohmann. "Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM." Climate of the Past 15, no. 6 (November 14, 2019): 1913–37. http://dx.doi.org/10.5194/cp-15-1913-2019.

Full text
Abstract:
Abstract. We present here the first results, for the preindustrial and mid-Holocene climatological periods, of the newly developed isotope-enhanced version of the fully coupled Earth system model MPI-ESM, called hereafter MPI-ESM-wiso. The water stable isotopes H216O, H218O and HDO have been implemented into all components of the coupled model setup. The mid-Holocene provides the opportunity to evaluate the model response to changes in the seasonal and latitudinal distribution of insolation induced by different orbital forcing conditions. The results of our equilibrium simulations allow us to evaluate the performance of the isotopic model in simulating the spatial and temporal variations of water isotopes in the different compartments of the hydrological system for warm climates. For the preindustrial climate, MPI-ESM-wiso reproduces very well the observed spatial distribution of the isotopic content in precipitation linked to the spatial variations in temperature and precipitation rate. We also find a good model–data agreement with the observed distribution of isotopic composition in surface seawater but a bias with the presence of surface seawater that is too 18O-depleted in the Arctic Ocean. All these results are improved compared to the previous model version ECHAM5/MPIOM. The spatial relationships of water isotopic composition with temperature, precipitation rate and salinity are consistent with observational data. For the preindustrial climate, the interannual relationships of water isotopes with temperature and salinity are globally lower than the spatial ones, consistent with previous studies. Simulated results under mid-Holocene conditions are in fair agreement with the isotopic measurements from ice cores and continental speleothems. MPI-ESM-wiso simulates a decrease in the isotopic composition of precipitation from North Africa to the Tibetan Plateau via India due to the enhanced monsoons during the mid-Holocene. Over Greenland, our simulation indicates a higher isotopic composition of precipitation linked to higher summer temperature and a reduction in sea ice, shown by positive isotope–temperature gradient. For the Antarctic continent, the model simulates lower isotopic values over the East Antarctic plateau, linked to the lower temperatures during the mid-Holocene period, while similar or higher isotopic values are modeled over the rest of the continent. While variations of isotopic contents in precipitation over West Antarctica between mid-Holocene and preindustrial periods are partly controlled by changes in temperature, the transport of relatively 18O-rich water vapor near the coast to the western ice core sites could play a role in the final isotopic composition. So, more caution has to be taken about the reconstruction of past temperature variations during warm periods over this area. The coupling of such a model with an ice sheet model or the use of a zoomed grid centered on this region could help to better describe the role of the water vapor transport and sea ice around West Antarctica. The reconstruction of past salinity through isotopic content in sea surface waters can be complicated for regions with strong ocean dynamics, variations in sea ice regimes or significant changes in freshwater budget, giving an extremely variable relationship between the isotopic content and salinity of ocean surface waters over small spatial scales. These complicating factors demonstrate the complexity of interpreting water isotopes as past climate signals of warm periods like the mid-Holocene. A systematic isotope model intercomparison study for further insights on the model dependency of these results would be beneficial.
APA, Harvard, Vancouver, ISO, and other styles
4

Halder, J., S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal. "The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research." Hydrology and Earth System Sciences 19, no. 8 (August 5, 2015): 3419–31. http://dx.doi.org/10.5194/hess-19-3419-2015.

Full text
Abstract:
Abstract. We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers, GNIR) and evaluate its longer-term data holdings. Overall, 218 GNIR river stations were clustered into three different groups based on the seasonal variation in their isotopic composition, which was closely coupled to precipitation and snowmelt water runoff regimes. Sinusoidal fit functions revealed phases within each grouping and deviations from the sinusoidal functions revealed important river alterations or hydrological processes in these watersheds. The seasonal isotopic amplitude of δ18O in rivers averaged 2.5 ‰, and did not increase as a function of latitude, like it does for global precipitation. Low seasonal isotopic amplitudes in rivers suggest the prevalence of mixing and storage such as occurs via lakes, reservoirs, and groundwater. The application of a catchment-constrained regionalized cluster-based water isotope prediction model (CC-RCWIP) allowed for direct comparison between the expected isotopic compositions for the upstream catchment precipitation with the measured isotopic composition of river discharge at observation stations. The catchment-constrained model revealed a strong global isotopic correlation between average rainfall and river discharge (R2 = 0.88) and the study demonstrated that the seasonal isotopic composition and variation of river water can be predicted. Deviations in data from model-predicted values suggest there are important natural or anthropogenic catchment processes like evaporation, damming, and water storage in the upstream catchment.
APA, Harvard, Vancouver, ISO, and other styles
5

Halder, J., S. Terzer, L. I. Wassenaar, L. J. Araguás-Araguás, and P. K. Aggarwal. "The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research." Hydrology and Earth System Sciences Discussions 12, no. 4 (April 22, 2015): 4047–79. http://dx.doi.org/10.5194/hessd-12-4047-2015.

Full text
Abstract:
Abstract. We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. Overall, 218 GNIR river stations were clustered into 3 different groups based on the seasonal variation in their isotopic composition, which was closely coupled to precipitation and snow-melt water run-off regimes. Sinusoidal fit functions revealed periodic phases within each grouping and deviations from the sinusoidal functions revealed important river alterations or hydrological processes in these watersheds. The seasonal isotopic amplitude of δ18O in rivers averaged 2.5 ‰, and did not increase as a function of latitude, as it does for global precipitation. Low seasonal isotopic amplitudes in rivers suggest the prevalence of mixing and storage such as occurs via lakes, reservoirs, and groundwater. The application of a catchment-constrained regionalized cluster-based water isotope prediction model (CC-RCWIP) allowed direct comparison between the expected isotopic composition for the upstream catchment precipitation with the measured isotopic composition of river discharge at observation stations. The catchment-constrained model revealed a strong global isotopic correlation between average rainfall and river discharge (R2 = 0.88) and the study demonstrated that the seasonal isotopic composition and variation of river water can be predicted. Deviations in data from model predicted values suggest there are important natural or anthropogenic catchment processes, like evaporation, damming, and water storage in the upstream catchment.
APA, Harvard, Vancouver, ISO, and other styles
6

Ballutaud, Marine, Morgane Travers-Trolet, Paul Marchal, Stanislas F. Dubois, Carolina Giraldo, Andrew C. Parnell, M. Teresa Nuche-Pascual, and Sébastien Lefebvre. "Inferences to estimate consumer’s diet using stable isotopes: Insights from a dynamic mixing model." PLOS ONE 17, no. 2 (February 7, 2022): e0263454. http://dx.doi.org/10.1371/journal.pone.0263454.

Full text
Abstract:
Stable isotope ratios are used to reconstruct animal diet in trophic ecology via mixing models. Several assumptions of stable isotope mixing models are critical, i.e., constant trophic discrimination factor and isotopic equilibrium between the consumer and its diet. The isotopic turnover rate (λ and its counterpart the half-life) affects the dynamics of isotopic incorporation for an organism and the isotopic equilibrium assumption: λ involves a time lag between the real assimilated diet and the diet estimated by mixing models at the individual scale. Current stable isotope mixing model studies consider neither this time lag nor even the dynamics of isotopic ratios in general. We developed a mechanistic framework using a dynamic mixing model (DMM) to assess the contribution of λ to the dynamics of isotopic incorporation and to estimate the bias induced by neglecting the time lag in diet reconstruction in conventional static mixing models (SMMs). The DMM includes isotope dynamics of sources (denoted δs), λ and frequency of diet-switch (ω). The results showed a significant bias generated by the SMM compared to the DMM (up to 50% of differences). This bias can be strongly reduced in SMMs by averaging the isotopic variations of the food sources over a time window equal to twice the isotopic half-life. However, the bias will persist (∼15%) for intermediate values of the ω/λ ratio. The inferences generated using a case study highlighted that DMM enhanced estimates of consumer’s diet, and this could avoid misinterpretation in ecosystem functioning, food-web structure analysis and underlying biological processes.
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Jing, V. Masson-Delmotte, T. Yao, L. Tian, C. Risi, and G. Hoffmann. "Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling*." Journal of Climate 24, no. 13 (July 1, 2011): 3161–78. http://dx.doi.org/10.1175/2010jcli3736.1.

Full text
Abstract:
Abstract Measurements of precipitation isotopic composition have been conducted on a daily basis for 1 yr at Bomi, in the southeast Tibetan Plateau, an area affected by the interaction of the southwest monsoon, the westerlies, and Tibetan high pressure systems, as well as at Lhasa, situated west of Bomi. The measured isotope signals are analyzed both on an event basis and on a seasonal scale using available meteorological information and airmass trajectories. The processes driving daily and seasonal isotopic variability are investigated using multidecadal climate simulations forced by twentieth-century boundary conditions and conducted with two different isotopic atmospheric general circulation models [the isotopic version of the Laboratoire de Météorologie Dynamique GCM (LMDZiso) and the ECHAM4iso model]. Both models use specific nudging techniques to mimic observed atmospheric circulation fields. The models simulate a wet and cold bias on the Tibetan Plateau together with a dry bias in its southern part. A zoomed LMDZ simulation conducted with ~50-km local spatial resolution dramatically improves the simulation of isotopic compositions of precipitation on the Tibetan Plateau. Simulated water isotope fields are compared with new data and with previous observations, and regional differences in moisture origins are analyzed using back-trajectories. Here, the focus is on relationships between the water isotopes and climate variables on an event and seasonal scale and in terms of spatial and altitudinal isotopic gradients. Enhancing the spatial resolution is crucial for improving the simulation of the precipitation isotopic composition.
APA, Harvard, Vancouver, ISO, and other styles
8

Salamalikis, Vasileios, and Athanassios A. Argiriou. "Validation and Bias Correction of Monthly δ18O Precipitation Time Series from ECHAM5-Wiso Model in Central Europe." Oxygen 2, no. 2 (May 3, 2022): 109–24. http://dx.doi.org/10.3390/oxygen2020010.

Full text
Abstract:
Simulated stable oxygen isotopic composition (δ18O) of precipitation from isotope-enabled GCMs (iGCMs) have gained significant visibility nowadays. This study evaluates bias correction techniques to reduce the systematic and dispersion biases of the modelled δ18O by the ECHAM5-wiso model compared to the Global Network of Isotopes in Precipitation (GNIP) observations over Central Europe. mean bias error (MBE) and Root Mean Square Error (RMSE) are substantially reduced by more than 70% and 10%, respectively, depending on the bias correction scheme, with better results for Generalized Additive Model (GAM) and linear scaling approach (SCL) methods. The bias-corrected δ18OECHAM5-wiso values successfully describe the long-term isotopic composition of precipitation and the isotopic amplitude with the best performances for the EQM method. The necessity of applying bias correction algorithms is verified by the excellent agreement between the corrected δ18OECHAM5-wiso with GNIP in high-altitude areas where ECHAM5-wiso fails to reproduce the observed isotopic variability. The results are expected to bring valuable insights into the utilization of iGCMs’ relationships in climate studies for understanding the present and past water cycle under the isotopic perspective.
APA, Harvard, Vancouver, ISO, and other styles
9

Neumann, Thomas A., and Edwin D. Waddington. "Effects of firn ventilation on isotopic exchange." Journal of Glaciology 50, no. 169 (2004): 183–94. http://dx.doi.org/10.3189/172756504781830150.

Full text
Abstract:
AbstractA new model of isotopic diffusion in the upper few meters of firn tracks the isotopic composition of both the ice matrix and the pore-space vapor through time in two dimensions. Stable isotopes in the vapor phase move through the firn by diffusion along concentration gradients and by advection. Wind-driven ventilation carries atmospheric water vapor into the firn, where it mixes with existing pore-space vapor. Unlike previous models, our model allows disequilibrium between pore-space vapor and the surrounding snow grains. We also calculate the isotopic effects of ventilation-driven sublimation and condensation in the firn. Model predictions of isotopic diffusion in firn compare favorably with existing diffusion models. Model results quantify what other investigators have suggested: isotopic change in the upper few meters is more rapid than can be explained by the Whillans and Grootes (1985) model; isotopic equilibration with atmospheric vapor is an important component of post-depositional isotopic change; and ventilation enhances isotopic exchange by creating regions of relatively rapid sublimation and condensation in the firn.
APA, Harvard, Vancouver, ISO, and other styles
10

Erez, Jonathan, Anne Bouevitch, and Aaron Kaplan. "Carbon isotope fractionation by photosynthetic aquatic microorganisms: experiments with Synechococcus PCC7942, and a simple carbon flux model." Canadian Journal of Botany 76, no. 6 (June 1, 1998): 1109–18. http://dx.doi.org/10.1139/b98-067.

Full text
Abstract:
Stable carbon isotopes (12C and 13C) are widely used to trace biogeochemical processes in the global carbon cycle. Natural fractionation of carbon isotopes is mainly due to the discrimination of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) against 13C during photosynthesis. In marine and other aquatic microorganisms, this fractionation is lowered when the dissolved CO2 (CO2(aq)) is decreasing, but the underlying mechanisms are poorly understood. Cultured Synechococcus PCC7942 showed maximum isotopic fractionations of -33omicron (in delta 13C units) relative to the total inorganic carbon (Ci) when CO2(aq) is above 30 m M. As the culture grew, pH increased, CO2(aq) was lower than 1 m M, and the Ci concentrating mechanism was induced although the Ci was above 3 mM. The isotopic fractionation was drastically reduced to values of -1 to -3 omicron relative to Ci. A simple carbon isotope flux model suggests that during the first stages of the experiment the total uptake (F1) was roughly three- to four-fold greater than the photosynthetic net accumulation (F2). When the Ci concentrating mechanism was induced, the leakage of CO2 from the cells declined, the cells started to utilize HCO3- and the F1/F2 ratio decreased to values close to 1. Based on this model the isotopic variability of oceanic phytoplankton suggests that the F1/F2 ratio may be above 3 in high latitudes and ~1.1 in equatorial waters, where the Ci concentrating mechanism is probably induced. Attempts to reconstruct past atmospheric CO2 levels and paleoproductivity should take into account the effects of the Ci concentrating mechanism on the isotopic fractionation of aquatic primary producers.Key words: carbon concentrating mechanism, carbon isotope fractionation, CO2, photosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
11

Michalski, G., S. K. Bhattacharya, and G. Girsch. "NO<sub>x</sub> cycle and the tropospheric ozone isotope anomaly: an experimental investigation." Atmospheric Chemistry and Physics 14, no. 10 (May 21, 2014): 4935–53. http://dx.doi.org/10.5194/acp-14-4935-2014.

Full text
Abstract:
Abstract. The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere is a useful tool for understanding the oxidation of NOx into nitric acid / nitrate in the atmosphere. A set of experiments was conducted to examine change in isotopic composition of NOx due to NOx–O2–O3 photochemical cycling. At low NOx / O2 mixing ratios, NOx became progressively and nearly equally enriched in 17O and 18O over time until it reached a steady state with Δ17O values of 39.3 ± 1.9‰ and δ18O values of 84.2 ± 4‰, relative to the isotopic composition of the initial O2 gas. As the mixing ratios were increased, the isotopic enrichments were suppressed by isotopic exchange between O atoms, O2, and NOx. A kinetic model was developed to simulate the observed data and it showed that the isotope effects occurring during O3 formation play a dominant role in controlling NOx isotopes and, in addition, secondary kinetic isotope effects or isotope exchange reactions are also important during NOx cycling. The data and model were consistent with previous studies which showed that the NO + O3 reactions occur mainly via the transfer of the terminal atoms of O3. The model predicts that under tropospheric concentrations of NOx and O3, the timescale of NOx–O3 isotopic equilibrium ranges from hours (for ppbv NOx / O2 mixing ratios) to days (for pptv mixing ratios) and yields steady state Δ17O and δ18O values of 45‰ and 117‰ respectively (relative to Vienna Standard Mean Ocean Water (VSMOW)) in both cases. Under atmospheric conditions when O3 has high concentrations, the equilibrium between NOx and O3 should occur rapidly (h) but this equilibrium cannot be reached during polar winters and/or nights if the NOx conversion to HNO3 is faster. The experimentally derived rate coefficients can be used to model the major NOx–O3 isotopologue reactions at various pressures and in isotope modeling of tropospheric nitrate.
APA, Harvard, Vancouver, ISO, and other styles
12

Orlowski, Natalie, Philipp Kraft, Jakob Pferdmenges, and Lutz Breuer. "Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany." Hydrology and Earth System Sciences 20, no. 9 (September 20, 2016): 3873–94. http://dx.doi.org/10.5194/hess-20-3873-2016.

Full text
Abstract:
Abstract. A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored for much longer than event water (average water age is 16 years). Tracing stable water isotopes through the water cycle in combination with our hydrological model was valuable for determining interactions between different water cycle components and unravelling age dynamics within the study area. This knowledge can further improve catchment-specific process understanding of developed, human-impacted landscapes.
APA, Harvard, Vancouver, ISO, and other styles
13

Comas-Bru, Laia, and Sandy P. Harrison. "SISAL: Bringing Added Value to Speleothem Research." Quaternary 2, no. 1 (February 1, 2019): 7. http://dx.doi.org/10.3390/quat2010007.

Full text
Abstract:
Isotopic records from speleothems are an important source of information about past climates and, given the increase in the number of isotope-enabled climate models, are likely to become an important tool for climate model evaluation. SISAL (Speleothem Isotopes Synthesis and Analysis) have created a global database of isotopic records from speleothems in order to facilitate regional analyses and data-model comparison. The papers in this Special Issue showcase the use of the database for regional analyses. In this paper, we discuss some of the important issues underpinning the use of speleothems and how the existence of this database assists palaeoclimate research. We also highlight some of the lessons learned in the creation of the SISAL database and outline potential research going forward.
APA, Harvard, Vancouver, ISO, and other styles
14

Qu, Simin, Xueqiu Chen, Yifan Wang, Peng Shi, Shuai Shan, Jianfeng Gou, and Peng Jiang. "Isotopic Characteristics of Precipitation and Origin of Moisture Sources in Hemuqiao Catchment, a Small Watershed in the Lower Reach of Yangtze River." Water 10, no. 9 (August 31, 2018): 1170. http://dx.doi.org/10.3390/w10091170.

Full text
Abstract:
The stable isotopes of oxygen and hydrogen in the water cycle have become a significant tool to study run-off formation, hydrograph separation, and the origin of precipitation. Precipitation assessment based on isotopic data has a potential implication for moisture sources. In the study, δD and δ18O of precipitation samples collected from six rainfall events were analyzed for stable isotope composition to provide implication of isotopic characteristics as well as moisture sources in Hemuqiao basin within Lake Tai drainage basin, eastern China. In these events, stable oxygen and hydrogen isotopic composition of precipitation had strong variations. Models of the meteoric water line and deuterium excess for different rainfall types (typhoon and plum rain, which is caused by precipitation along a persistent stationary front known as the Meiyu front for nearly two months during the late spring and early summer between eastern Russia, China, Taiwan, Korea and Japan) were established. Compared with plum rain, the moisture source of typhoon events had higher relative humidity and temperature. Moisture transport pathways were traced using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT Model, developed by NOAA, Washington DC, U.S.) to verify the linkage with isotopic composition and moisture source. The moisture sources of typhoon events mostly derived from tropical ocean air with higher isotopic value, while that of plum rain events came from near-source local air with lower isotopic value.
APA, Harvard, Vancouver, ISO, and other styles
15

Malpica-Cruz, Luis, Sharon Z. Herzka, Oscar Sosa-Nishizaki, and Juan Pablo Lazo. "Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results." Canadian Journal of Fisheries and Aquatic Sciences 69, no. 3 (March 2012): 551–64. http://dx.doi.org/10.1139/f2011-172.

Full text
Abstract:
There are very few studies reporting isotopic trophic discrimination factors and turnover rates for marine elasmobranchs. A controlled laboratory experiment was conducted to estimate carbon and nitrogen isotope trophic discrimination factors and isotope turnover rates for blood, liver, muscle, cartilage tissue, and fin samples of neonate to young-of-the-year leopard sharks ( Triakis semifasciata ). Trophic discrimination factors varied (0.13‰–1.98‰ for δ13C and 1.08‰–1.76‰ for δ15N). Tissues reached or were close to isotopic equilibrium to the new diet after about a threefold biomass gain and 192 days. Liver and blood exhibited faster isotope turnover than muscle, cartilage tissue, and fin samples, and carbon isotopes turned over faster than those of nitrogen. Metabolic turnover contributed substantially to isotopic turnover, which differs from most reports for young marine teleosts. We modeled the relationship between muscle turnover rates and shark size by coupling laboratory results with growth rate estimates for natural populations. Model predictions for small, medium, and large wild leopard sharks indicate the time to isotopic equilibrium is from one to several years.
APA, Harvard, Vancouver, ISO, and other styles
16

Jensen, Alexandria, William Ford, James Fox, and Admin Husic. "Improving In-Stream Nutrient Routines in Water Quality Models Using Stable Isotope Tracers: A Review and Synthesis." Transactions of the ASABE 61, no. 1 (2018): 139–57. http://dx.doi.org/10.13031/trans.12545.

Full text
Abstract:
Abstract. Water quality models serve as an economically feasible alternative to quantify fluxes of nutrient pollution and to simulate effective mitigation strategies; however, their applicability is often questioned due to broad uncertainties in model structure and parameterization, leading to uncertain outputs. We argue that reduction of uncertainty is partially achieved by integrating stable isotope data streams within the water quality model architecture. This article outlines the use of stable isotopes as a response variable within water quality models to improve the model boundary conditions associated with nutrient source provenance, constrain model parameterization, and elucidate shortcomings in the model structure. To assist researchers in future modeling efforts, we provide an overview of stable isotope theory; review isotopic signatures and applications for relevant carbon, nitrogen, and phosphorus pools; identify biotic and abiotic processes that impact isotope transfer between pools; review existing models that have incorporated stable isotope signatures; and highlight recommendations based on synthesis of existing knowledge. Broadly, we find existing applications that use isotopes have high efficacy for reducing water quality model uncertainty. We make recommendations toward the future use of sediment stable isotope signatures, given their integrative capacity and practical analytical process. We also detail a method to incorporate stable isotopes into multi-objective modeling frameworks. Finally, we encourage watershed modelers to work closely with isotope geochemists to ensure proper integration of stable isotopes into in-stream nutrient fate and transport routines in water quality models. Keywords: Isotopes, Nutrients, Uncertainty analysis, Water quality modeling, Watershed.
APA, Harvard, Vancouver, ISO, and other styles
17

Dütsch, Marina, Stephan Pfahl, Miro Meyer, and Heini Wernli. "Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe." Atmospheric Chemistry and Physics 18, no. 3 (February 6, 2018): 1653–69. http://dx.doi.org/10.5194/acp-18-1653-2018.

Full text
Abstract:
Abstract. Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25∘ and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air, liquid cloud formation, mixed phase cloud formation, ice cloud formation, and no process). The results show that for air parcels arriving over the ocean, evaporation from the ocean is the primary factor controlling δ2H and deuterium excess. Over land, evapotranspiration from land and mixing with moister air are similarly important. Liquid and mixed phase cloud formation contribute to the variability of δ2H and deuterium excess, especially over continental Europe. In summary, the presented method helps to better understand the linkage between the meteorological history of air parcels and their isotopic composition, and may support the interpretation of stable water isotope measurements in future.
APA, Harvard, Vancouver, ISO, and other styles
18

Hermoso de Mendoza, Ignacio, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles. "A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model." Geoscientific Model Development 15, no. 5 (March 9, 2022): 1931–52. http://dx.doi.org/10.5194/gmd-15-1931-2022.

Full text
Abstract:
Abstract. The representation of snow processes in forest growth models is necessary to accurately predict the hydrological cycle in boreal ecosystems and the isotopic signature of soil water extracted by trees, photosynthates and tree-ring cellulose. Yet, most process-based models do not include a snow module; consequently, their simulations may be biased in cold environments. Here, we modified the MAIDENiso model to incorporate a new snow module that simulates snow accumulation, melting and sublimation, as well as thermal exchanges driving freezing and thawing of the snow and the soil. We tested these implementations in two sites in eastern and western Canada for black spruce (Picea mariana (Mill.) B.S.P.) and white spruce (Picea glauca (Moench) Voss) forests, respectively. The new snow module improves the skills of the model to predict components of the hydrological cycle. The MAIDENiso model is now able to reproduce the spring discharge peak and to simulate stable oxygen isotopes in tree-ring cellulose more realistically than in the original snow-free version of the model. The new implementation also results in simulations with a higher contribution from the source water on the oxygen isotopic composition of the simulated cellulose, leading to more accurate estimates of cellulose isotopic composition. Future work may include the development of inverse modelling with this new version of MAIDENiso to produce robust reconstructions of the hydrological cycle and isotope processes in cold environments.
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Jie, Tao Tao, Zhonghe Pang, Ming Tan, Yanlong Kong, Wuhui Duan, and Yuwei Zhang. "Identification of Different Moisture Sources through Isotopic Monitoring during a Storm Event." Journal of Hydrometeorology 16, no. 4 (July 29, 2015): 1918–27. http://dx.doi.org/10.1175/jhm-d-15-0005.1.

Full text
Abstract:
Abstract Rain samples were collected for isotopic analyses during the entirety of an extreme rainfall event in Beijing, China, on 21 July 2012, the city’s heaviest rainfall event in the past six decades. Four stages of the storm event have been identified with corresponding isotopic characteristics: 1) isotopes deplete as rain increases, 2) isotopes enrich as rain decreases, 3) isotopes quickly deplete as rain increases, and 4) isotopes remain constant as rain reduces to a small amount. The rainout effect dominates the depletion of isotopic composition in stages 1 and 3. The incursion of a new air mass with enriched heavy isotopes was the main cause for the enriched isotopic composition during stage 2. A Rayleigh distillation model was used to describe the isotopic trends during stages 1 and 3. The Rayleigh distillation model and a binary mixing model were used to estimate the initial isotopic composition of different air masses, which were found to be similar to δ18O of precipitation at nearby Global Network of Isotopes in Precipitation stations representing southwest and southeast trajectories. The results are in agreement with meteorological arrays analysis. This model also indicates that 29% of the initial vapor from the southwest trajectory was precipitated in stage 1, followed by a mixing process between southeast and southwest moisture. In stage 3, up to 56% of mixed moisture was precipitated, among which ~65%–100% was from southeast moisture.
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Jianghanyang, Xuan Zhang, John Orlando, Geoffrey Tyndall, and Greg Michalski. "Quantifying the nitrogen isotope effects during photochemical equilibrium between NO and NO<sub>2</sub>: implications for <i>δ</i><sup>15</sup>N in tropospheric reactive nitrogen." Atmospheric Chemistry and Physics 20, no. 16 (August 21, 2020): 9805–19. http://dx.doi.org/10.5194/acp-20-9805-2020.

Full text
Abstract:
Abstract. Nitrogen isotope fractionations between nitrogen oxides (NO and NO2) play a significant role in determining the nitrogen isotopic compositions (δ15N) of atmospheric reactive nitrogen. Both the equilibrium isotopic exchange between NO and NO2 molecules and the isotope effects occurring during the NOx photochemical cycle are important, but both are not well constrained. The nighttime and daytime isotopic fractionations between NO and NO2 in an atmospheric simulation chamber at atmospherically relevant NOx levels were measured. Then, the impact of NOx level and NO2 photolysis rate on the combined isotopic fractionation (equilibrium isotopic exchange and photochemical cycle) between NO and NO2 was calculated. It was found that the isotope effects occurring during the NOx photochemical cycle can be described using a single fractionation factor, designated the Leighton cycle isotope effect (LCIE). The results showed that at room temperature, the fractionation factor of nitrogen isotopic exchange is 1.0289±0.0019, and the fractionation factor of LCIE (when O3 solely controls the oxidation from NO to NO2) is 0.990±0.005. The measured LCIE factor showed good agreement with previous field measurements, suggesting that it could be applied in an ambient environment, although future work is needed to assess the isotopic fractionation factors of NO+RO2/HO2→NO2. The results were used to model the NO–NO2 isotopic fractionations under several NOx conditions. The model suggested that isotopic exchange was the dominant factor when NOx>20 nmol mol−1, while LCIE was more important at low NOx concentrations (<1 nmol mol−1) and high rates of NO2 photolysis. These findings provided a useful tool to quantify the isotopic fractionations between tropospheric NO and NO2, which can be applied in future field observations and atmospheric chemistry models.
APA, Harvard, Vancouver, ISO, and other styles
21

Bühler, Janica C., Josefine Axelsson, Franziska A. Lechleitner, Jens Fohlmeister, Allegra N. LeGrande, Madhavan Midhun, Jesper Sjolte, Martin Werner, Kei Yoshimura, and Kira Rehfeld. "Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models." Climate of the Past 18, no. 7 (July 13, 2022): 1625–54. http://dx.doi.org/10.5194/cp-18-1625-2022.

Full text
Abstract:
Abstract. The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISS-E2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
APA, Harvard, Vancouver, ISO, and other styles
22

Jahn, A., K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady. "Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)." Geoscientific Model Development 8, no. 8 (August 5, 2015): 2419–34. http://dx.doi.org/10.5194/gmd-8-2419-2015.

Full text
Abstract:
Abstract. Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.
APA, Harvard, Vancouver, ISO, and other styles
23

Jahn, A., K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu, and E. C. Brady. "Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)." Geoscientific Model Development Discussions 7, no. 6 (November 6, 2014): 7461–503. http://dx.doi.org/10.5194/gmdd-7-7461-2014.

Full text
Abstract:
Abstract. Carbon isotopes in the ocean are frequently used as paleo climate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized dataset, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly less computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example a too sluggish ventilation of the deep Pacific Ocean.
APA, Harvard, Vancouver, ISO, and other styles
24

Chen, Mengli, Edward A. Boyle, Jong-Mi Lee, Intan Nurhati, Cheryl Zurbrick, Adam D. Switzer, and Gonzalo Carrasco. "Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2081 (November 28, 2016): 20160054. http://dx.doi.org/10.1098/rsta.2016.0054.

Full text
Abstract:
Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 ( 206 Pb/ 207 Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206 Pb/ 207 Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206 Pb/ 207 Pb isotopic composition of 1.161, but within a week, the 206 Pb/ 207 Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple K d model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The K d model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’.
APA, Harvard, Vancouver, ISO, and other styles
25

Roche, D. M. "δ<sup>18</sup>O water isotope in the <i>i</i>LOVECLIM model (version 1.0) – Part 1: Implementation and verification." Geoscientific Model Development 6, no. 5 (September 12, 2013): 1481–91. http://dx.doi.org/10.5194/gmd-6-1481-2013.

Full text
Abstract:
Abstract. A new 18O stable water isotope scheme is developed for three components of the iLOVECLIM coupled climate model: atmospheric, oceanic and land surface. The equations required to reproduce the fractionation of stable water isotopes in the simplified atmospheric model ECBilt are developed consistently with the moisture scheme. Simplifications in the processes are made to account for the simplified vertical structure including only one moist layer. Implementation of these equations together with a passive tracer scheme for the ocean and a equilibrium fractionation scheme for the land surface leads to the closure of the (isotopic-) water budget in our climate system. Following the implementation, verification of the existence of usual δ18O to climatic relationships are performed for the Rayleigh distillation, the Dansgaard relationship and the δ18O –salinity relationship. Advantages and caveats of the approach taken are outlined. The isotopic fields simulated are shown to reproduce most expected oxygen-18–climate relationships with the notable exception of the isotopic composition in Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
26

Seeger, Stefan, and Markus Weiler. "Temporal dynamics of tree xylem water isotopes: in situ monitoring and modeling." Biogeosciences 18, no. 15 (August 12, 2021): 4603–27. http://dx.doi.org/10.5194/bg-18-4603-2021.

Full text
Abstract:
Abstract. We developed a setup for a fully automated, high-frequency in situ monitoring system of the stable water isotope deuterium and 18O in soil water and tree xylem. The setup was tested for 12 weeks within an isotopic labeling experiment during a large artificial sprinkling experiment including three mature European beech (Fagus sylvatica) trees. Our setup allowed for one measurement every 12–20 min, enabling us to obtain about seven measurements per day for each of our 15 in situ probes in the soil and tree xylem. While the labeling induced an abrupt step pulse in the soil water isotopic signature, it took 7 to 10 d until the isotopic signatures at the trees' stem bases reached their peak label concentrations and it took about 14 d until the isotopic signatures at 8 m stem height leveled off around the same values. During the experiment, we observed the effects of several rain events and dry periods on the xylem water isotopic signatures, which fluctuated between the measured isotopic signatures observed in the upper and lower soil horizons. In order to explain our observations, we combined an already existing root water uptake (RWU) model with a newly developed approach to simulate the propagation of isotopic signatures from the root tips to the stem base and further up along the stem. The key to a proper simulation of the observed short-term dynamics of xylem water isotopes was accounting for sap flow velocities and the flow path length distribution within the root and stem xylem. Our modeling framework allowed us to identify parameter values that relate to root depth, horizontal root distribution and wilting point. The insights gained from this study can help to improve the representation of stable water isotopes in trees within ecohydrological models and the prediction of transit time distribution and water age of transpiration fluxes.
APA, Harvard, Vancouver, ISO, and other styles
27

Esteban, G. A., A. Perujo, and F. Legarda. "Study of the Isotope Effects in the Hydrogen Transport in Polycrystalline Tungsten." Materials Science Forum 480-481 (March 2005): 537–42. http://dx.doi.org/10.4028/www.scientific.net/msf.480-481.537.

Full text
Abstract:
A time-dependent gas-phase isovolumetric desorption technique has been used to evaluate the diffusive transport parameters of hydrogen isotopes in polycrystalline tungsten in the temperatures range 673 to 1073 K and driving pressures from 1.3 104 to 105 Pa. Experiments have been run with both protium and deuterium obtaining their respective transport parameters diffusivity (D), Sieverts’ constant (Ks), the trap site density (Nt) and the trapping activation energy (Et). Isotope effects on these transport parameters are analysed and modelled. Because the classical isotope relation for diffusivity has not been fulfilled, quantum-statistical vibration theory has been applied to model the isotopic relation. A congruent isotopic variation of diffusion parameters related to the type of microstructure, bcc, has been confirmed.
APA, Harvard, Vancouver, ISO, and other styles
28

Dietermann, N., and M. Weiler. "Spatial distribution of stable water isotopes in alpine snow cover." Hydrology and Earth System Sciences 17, no. 7 (July 11, 2013): 2657–68. http://dx.doi.org/10.5194/hess-17-2657-2013.

Full text
Abstract:
<p><strong>Abstract.</strong> The aim of this study was to analyse and predict the mean stable water isotopic composition of the snow cover at specific geographic locations and altitudes. In addition, the dependence of the isotopic composition of the entire snow cover on altitude was analysed. Snow in four Swiss catchments was sampled at the end of the accumulation period in April 2010 and a second time during snowmelt in May 2010 and analysed for stable isotope composition of <sup>2</sup>H and <sup>18</sup>O. The sampling was conducted at both south-facing and north-facing slopes at elevation differences of 100 m, for a total altitude difference of approximately 1000 m. The observed variability of isotopic composition of the snow cover was analysed with stepwise multiple linear regression models. The analysis indicated that there is only a limited altitude effect on the isotopic composition when considering all samples. This is due to the high variability of the isotopic composition of the precipitation during the winter months and, in particular in the case of south-facing slopes, an enrichment of heavy isotopes due to intermittent melting processes. This enrichment effect could clearly be observed in the samples which were taken later in the year. A small altitudinal gradient of the isotopic composition could only be observed at some north-facing slopes. However, the dependence of snow depth and the day of the year were significant predictor variables in all models. This study indicates the necessity to further study the variability of water isotopes in the snow cover to increase prediction for isotopic composition of snowmelt and hence increase model performance of residence time models for alpine areas in order to better understand the accumulation processes and the sources of water in the snow cover of high mountains.</p>
APA, Harvard, Vancouver, ISO, and other styles
29

Völpel, Rike, André Paul, Annegret Krandick, Stefan Mulitza, and Michael Schulz. "Stable water isotopes in the MITgcm." Geoscientific Model Development 10, no. 8 (August 25, 2017): 3125–44. http://dx.doi.org/10.5194/gmd-10-3125-2017.

Full text
Abstract:
Abstract. We present the first results of the implementation of stable water isotopes in the Massachusetts Institute of Technology general circulation model (MITgcm). The model is forced with the isotopic content of precipitation and water vapor from an atmospheric general circulation model (NCAR IsoCAM), while the fractionation during evaporation is treated explicitly in the MITgcm. Results of the equilibrium simulation under pre-industrial conditions are compared to observational data and measurements of plankton tow records (the oxygen isotopic composition of planktic foraminiferal calcite). The broad patterns and magnitude of the stable water isotopes in annual mean seawater are well captured in the model, both at the sea surface as well as in the deep ocean. However, the surface water in the Arctic Ocean is not depleted enough, due to the absence of highly depleted precipitation and snowfall. A model–data mismatch is also recognizable in the isotopic composition of the seawater–salinity relationship in midlatitudes that is mainly caused by the coarse grid resolution. Deep-ocean characteristics of the vertical water mass distribution in the Atlantic Ocean closely resemble observational data. The reconstructed δ18Oc at the sea surface shows a good agreement with measurements. However, the model–data fit is weaker when individual species are considered and deviations are most likely attributable to the habitat depth of the foraminifera. Overall, the newly developed stable water isotope package opens wide prospects for long-term simulations in a paleoclimatic context.
APA, Harvard, Vancouver, ISO, and other styles
30

Fujii, T., F. Moynier, A. Agranier, E. Ponzevera, and M. Abe. "Nuclear field shift effect of lead in ligand exchange reaction using a crown ether." Proceedings in Radiochemistry 1, no. 1 (September 1, 2011): 387–92. http://dx.doi.org/10.1524/rcpr.2011.0069.

Full text
Abstract:
AbstractLead isotopes were fractionated by the liquid-liquid extraction technique between an aqueous phase and a crown ether. After purification by ion-exchange chemistry, the 207Pb/206Pb and 208Pb/206Pb isotopic ratios were measured by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Isotope fractionations > 0.05‰ have been found. The conventional equilibrium mass-dependent isotope effect estimated by an ab initio calculation was smaller than the Pb isotope fractionation experimentally obtained. Conventional mass-dependent isotope fractionation is not a valuable explanation for our results. The nuclear field shift effect, which results from the isotopic change in the nuclear size and shape, was also estimated by an ab initio method combined with a finite nucleus model. The nuclear field shift effect calculated was in agreement with our experimental results. Therefore, this study reports the first nuclear field shift effect of Pb in an equilibrium ligand exchange reaction.
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Songyi, Yeongcheol Han, Soon Do Hur, Kei Yoshimura, and Jeonghoon Lee. "Relating Moisture Transport to Stable Water Vapor Isotopic Variations of Ambient Wintertime along the Western Coast of Korea." Atmosphere 10, no. 12 (December 12, 2019): 806. http://dx.doi.org/10.3390/atmos10120806.

Full text
Abstract:
Atmospheric water vapor transfers energy, causes meteorological phenomena and can be modified by climate change in the western coast region of Korea. In Korea, previous studies have utilized precipitation isotopic compositions in the water cycle for correlations with climate variables, but there are few studies using water vapor isotopes. In this study, water vapor was directly collected by a cryogenic method, analyzed for its isotopic compositions, and used to trace the origin and history of water vapor in the western coastal region of Korea during the winter of 2015/2016. Our analysis of paired mixing ratios with water vapor isotopes can explain the mechanism of water vapor isotopic fractionation and the extent of the mixing of two different air masses. We confirm the correlation between water vapor isotopes and meteorological parameters such as temperature, relative humidity, and specific humidity. The main water vapor in winter was derived from the continental polar region of northern Asia and showed an enrichment of 10 per mil (δ18O) through the evaporation of the Yellow Sea. Our results demonstrate the utility of using ground-based isotope observations as a complementary resource for constraining isotope-enabled Global Circulation Model in future investigations of atmospheric water cycles. These measurements are expected to support climate studies (speleothem) in the west coast region of Korea.
APA, Harvard, Vancouver, ISO, and other styles
32

Pieterse, G., M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann. "Global modelling of H<sub>2</sub> mixing ratios and isotopic compositions with the TM5 model." Atmospheric Chemistry and Physics Discussions 11, no. 2 (February 17, 2011): 5811–66. http://dx.doi.org/10.5194/acpd-11-5811-2011.

Full text
Abstract:
Abstract. The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their isotopic composition, into the global chemistry transport model TM5. For the first time, a global model now includes a simplified but explicit isotope reaction scheme for the photochemical production of H2. We present a comparison of modelled results for the H2 mixing ratio and isotope composition with available measurements on the seasonal to inter annual time scales for the years 2001–2007. The base model results agree well with observations for H2 mixing ratios. For δD[H2], modelled values are slightly lower than measurements. A detailed sensitivity study is performed to identify the most important parameters for modelling the isotopic composition of H2. The results show that on the global scale, the discrepancy between model and measurements can be closed by adjusting the default values of the isotope effects in deposition, photochemistry and the stratosphere-troposphere exchange within the known range of uncertainty. However, the available isotope data do not provide sufficient information to uniquely constrain the global isotope budget. Therefore, additional studies focussing on the isotopic composition near the tropopause and on the isotope effects in the photochemistry and deposition are recommended.
APA, Harvard, Vancouver, ISO, and other styles
33

Piovano, Thea I., Doerthe Tetzlaff, Sean K. Carey, Nadine J. Shatilla, Aaron Smith, and Chris Soulsby. "Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment." Hydrology and Earth System Sciences 23, no. 6 (June 3, 2019): 2507–23. http://dx.doi.org/10.5194/hess-23-2507-2019.

Full text
Abstract:
Abstract. Permafrost strongly controls hydrological processes in cold regions. Our understanding of how changes in seasonal and perennial frozen ground disposition and linked storage dynamics affect runoff generation processes remains limited. Storage dynamics and water redistribution are influenced by the seasonal variability and spatial heterogeneity of frozen ground, snow accumulation and melt. Stable isotopes are potentially useful for quantifying the dynamics of water sources, flow paths and ages, yet few studies have employed isotope data in permafrost-influenced catchments. Here, we applied the conceptual model STARR (the Spatially distributed Tracer-Aided Rainfall–Runoff model), which facilitates fully distributed simulations of hydrological storage dynamics and runoff processes, isotopic composition and water ages. We adapted this model for a subarctic catchment in Yukon Territory, Canada, with a time-variable implementation of field capacity to include the influence of thaw dynamics. A multi-criteria calibration based on stream flow, snow water equivalent and isotopes was applied to 3 years of data. The integration of isotope data in the spatially distributed model provided the basis for quantifying spatio-temporal dynamics of water storage and ages, emphasizing the importance of thaw layer dynamics in mixing and damping the melt signal. By using the model conceptualization of spatially and temporally variable storage, this study demonstrates the ability of tracer-aided modelling to capture thaw layer dynamics that cause mixing and damping of the isotopic melt signal.
APA, Harvard, Vancouver, ISO, and other styles
34

Comas-Bru, Laia, Sandy P. Harrison, Martin Werner, Kira Rehfeld, Nick Scroxton, and Cristina Veiga-Pires. "Evaluating model outputs using integrated global speleothem records of climate change since the last glacial." Climate of the Past 15, no. 4 (August 9, 2019): 1557–79. http://dx.doi.org/10.5194/cp-15-1557-2019.

Full text
Abstract:
Abstract. Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data–model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data–model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.
APA, Harvard, Vancouver, ISO, and other styles
35

Gkinis, Vasileios, Christian Holme, Emma C. Kahle, Max C. Stevens, Eric J. Steig, and Bo M. Vinther. "Numerical experiments on firn isotope diffusion with the Community Firn Model." Journal of Glaciology 67, no. 263 (February 10, 2021): 450–72. http://dx.doi.org/10.1017/jog.2021.1.

Full text
Abstract:
AbstractAdvances in analytical methods have made it possible to obtain high-resolution water isotopic data from ice cores. Their spectral signature contains information on the diffusion process that attenuated the isotopic signal during the firn densification process. Here, we provide a tool for estimating firn-diffusion rates that builds on the Community Firn Model. Our model requires two main inputs, temperature and accumulation, and it calculates the diffusion lengths for δ17O, δ18O and δD. Prior information on the isotopic signal of the precipitation is not a requirement. In combination with deconvolution techniques, diffusion lengths can be used in order reconstruct the pre-diffusion isotopic signal. Furthermore, the temperature dependence of the isotope diffusion and firn densification makes the diffusion length an interesting candidate as a temperature proxy. We test the model under steady state and transient scenarios and compare four densification models. Comparisons with ice core data provide an evaluation of the four models and indicate that there are differences in their performance. Combining data-based diffusion length estimates with information on past accumulation rates and ice flow thinning, we reconstruct absolute temperatures from three Antarctic ice core sites.
APA, Harvard, Vancouver, ISO, and other styles
36

Uriarte, Amaya, Alberto García, Aurelio Ortega, Fernando De la Gándara, José Quintanilla, and Raúl Laiz-Carrión. "Isotopic discrimination factors and nitrogen turnover rates in reared Atlantic bluefin tuna larvae (Thunnus thynnus): effects of maternal transmission." Scientia Marina 80, no. 4 (November 22, 2016): 447. http://dx.doi.org/10.3989/scimar.04435.25a.

Full text
Abstract:
The use of stable isotope analysis to study animal diets requires estimates of isotopic turnover rates (half time, t50) and discrimination factors (Δ) for an accurate interpretation of trophic patterns. The stable isotopes of carbon and nitrogen were analysed for eggs and reared larvae of Thunnus thynnus, as well as for the different diets supplied during the experiment. The results showed high values of δ15N in eggs and larvae (n=646) until 4 DAH. After this time lapse, the stable isotope values declined progressively until 12 DAH, when notochord flexion began. The δ13C showed an inverse trend, suggesting that maternal inheritance of the stable isotopes is evident until pre-flexion stages. This study proposes a model for estimating maternal isotopic signatures of bluefin broodstock. After notochord flexion, larvae were fed with aquaculture-bred gilthead seabream, which resulted in a rapid increase of bluefin larvae δ15N values together with a rapid decrease in δ13C values. The estimated nitrogen half-time to reach the steady state from the diet was 2.5±0.3 days and the discrimination factor was 0.4±0.3(‰). These results represent the first data set that has allowed isotopic nitrogen turnover rates and discrimination factors of the larval stages of bluefin tuna to be estimated.
APA, Harvard, Vancouver, ISO, and other styles
37

Pfahl, S., H. Wernli, and K. Yoshimura. "The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMO<sub>iso</sub>." Atmospheric Chemistry and Physics Discussions 11, no. 9 (September 22, 2011): 26521–70. http://dx.doi.org/10.5194/acpd-11-26521-2011.

Full text
Abstract:
Abstract. Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.
APA, Harvard, Vancouver, ISO, and other styles
38

Pfahl, S., H. Wernli, and K. Yoshimura. "The isotopic composition of precipitation from a winter storm – a case study with the limited-area model COSMO<sub>iso</sub>." Atmospheric Chemistry and Physics 12, no. 3 (February 14, 2012): 1629–48. http://dx.doi.org/10.5194/acp-12-1629-2012.

Full text
Abstract:
Abstract. Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area model COSMO. In a first case study, the new COSMOiso model is used for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed δ18O observations. COSMOiso very accurately reproduces the statistical distribution of δ18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Perpendicular to the front that triggers most of the rainfall during the event, the model simulates a gradient in the isotopic composition of the precipitation, with high δ18O values in the warm air and lower values in the cold sector behind the front. This spatial pattern is created through an interplay of large scale air mass advection, removal of heavy isotopes by precipitation at the front and microphysical interactions between rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.
APA, Harvard, Vancouver, ISO, and other styles
39

Pieterse, G., M. C. Krol, A. M. Batenburg, L. P. Steele, P. B. Krummel, R. L. Langenfelds, and T. Röckmann. "Global modelling of H<sub>2</sub> mixing ratios and isotopic compositions with the TM5 model." Atmospheric Chemistry and Physics 11, no. 14 (July 20, 2011): 7001–26. http://dx.doi.org/10.5194/acp-11-7001-2011.

Full text
Abstract:
Abstract. The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their stable isotopic composition and isotope fractionation constants, into the global chemistry transport model TM5. For the first time, a global model now includes a simplified but explicit isotope reaction scheme for the photochemical production of H2. We present a comparison of modelled results for the H2 mixing ratio and isotope composition with available measurements on seasonal to inter annual time scales for the years 2001–2007. The base model results agree well with observations for H2 mixing ratios. For δD[H2], modelled values are slightly lower than measurements. A detailed sensitivity study is performed to identify the most important parameters for modelling the isotopic composition of H2. The results show that on the global scale, the discrepancy between model and measurements can be closed by adjusting the default values of the isotope effects in deposition, photochemistry and the stratosphere-troposphere exchange within the known range of uncertainty. However, the available isotope data do not provide sufficient information to uniquely constrain the global isotope budget. Therefore, additional studies focussing on the isotopic composition near the tropopause and on the isotope effects in the photochemistry and deposition are recommended.
APA, Harvard, Vancouver, ISO, and other styles
40

Gromov, S., P. Jöckel, R. Sander, and C. A. M. Brenninkmeijer. "A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases." Geoscientific Model Development 3, no. 2 (August 10, 2010): 337–64. http://dx.doi.org/10.5194/gmd-3-337-2010.

Full text
Abstract:
Abstract. Isotope composition, in many cases, holds unique information on the sources, chemical modification and sinks of atmospheric trace gases. Vital to the interpretation and use of an increasing number of isotope analyses is appropriate modelling. However, the exact implementation of isotopic information in chemistry-climate models is a challenge, and often studies use simplifications which limit their applicability. Here we implement a thorough isotopic extension in MECCA, a comprehensive kinetic chemistry sub-model. To this end, we devise a generic tagging technique for the kinetic chemistry mechanisms implemented as the sub-submodel MECCA-TAG. The technique is diagnostic and numerically efficient and supports the investigation of various aspects of kinetic chemistry schemes. We focus specifically on the application to the modelling of stable isotopic composition. The results of MECCA-TAG are evaluated against the reference sub-submodel MECCA-DBL, which is implicitly full-detailed, but computationally expensive and thus sub-optimal in practical applications. Furthermore, we evaluate the elaborate carbon and oxygen isotopic mechanism by simulating the multi-isotope composition of CO and other trace gases in the CAABA/MECCA box-model. The mechanism realistically simulates the oxygen isotope composition of key species, as well as the carbon isotope signature transfer. The model adequately reproduces the isotope chemistry features for CO, taking into account the limits of the modelling domain. In particular, the mass-independently fractionated (MIF) composition of CO due to reactions of ozone with unsaturated hydrocarbons (a source effect) versus its intrinsic MIF enrichment induced in the removal reaction via oxidation by OH is assessed. The simulated ozone source effect was up to +1‰ in Δ17O(CO). The versatile modelling framework we employ (the Modular Earth Submodel System, MESSy) opens the way for implementation of the novel detailed isotopic chemistry treatment in the three-dimensional atmospheric-chemistry general circulation model EMAC. We therefore also present estimates of the computational gain obtained by the developed optimisations.
APA, Harvard, Vancouver, ISO, and other styles
41

Lewicka-Szczebak, Dominika, Maciej Piotr Lewicki, and Reinhard Well. "N<sub>2</sub>O isotope approaches for source partitioning of N<sub>2</sub>O production and estimation of N<sub>2</sub>O reduction – validation with the <sup>15</sup>N gas-flux method in laboratory and field studies." Biogeosciences 17, no. 22 (November 14, 2020): 5513–37. http://dx.doi.org/10.5194/bg-17-5513-2020.

Full text
Abstract:
Abstract. The approaches based on natural abundance N2O stable isotopes are often applied for the estimation of mixing proportions between various N2O-producing pathways as well as for estimation of the extent of N2O reduction to N2. But such applications are associated with numerous uncertainties; hence, their limited accuracy needs to be considered. Here we present the first systematic validation of these methods for laboratory and field studies by applying the 15N gas-flux method as the reference approach. Besides applying dual-isotope plots for interpretation of N2O isotopic data, for the first time we propose a three dimensional N2O isotopocule model based on Bayesian statistics to estimate the N2O mixing proportions and reduction extent based simultaneously on three N2O isotopic signatures (δ15N, δ15NSP, and δ18O). Determination of the mixing proportions of individual pathways with N2O isotopic approaches often appears imprecise, mainly due to imperfect isotopic separation of the particular pathways. Nevertheless, the estimation of N2O reduction is much more robust, when applying an optimal calculation strategy, typically reaching an accuracy of N2O residual fraction determination of about 0.15.
APA, Harvard, Vancouver, ISO, and other styles
42

Helsen, M. M., R. S. W. Van de Wal, and M. R. Van den Broeke. "The Isotopic Composition of Present-Day Antarctic Snow in a Lagrangian Atmospheric Simulation*." Journal of Climate 20, no. 4 (February 15, 2007): 739–56. http://dx.doi.org/10.1175/jcli4027.1.

Full text
Abstract:
Abstract The isotopic composition of present-day Antarctic snow is simulated for the period September 1980–August 2002 using a Rayleigh-type isotope distillation model in combination with backward trajectory calculations with 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data as meteorological input. Observed spatial isotopic gradients are correctly reproduced, especially in West Antarctica and in the coastal areas. However, isotopic depletion of snow on the East Antarctic plateau is underestimated, a problem that is also observed in general circulation models equipped with isotope tracers. The spatial isotope–temperature relation varies strongly, which indicates that this widely used relation is not applicable to all sites and temporal scales. Spatial differences in the seasonal amplitude are identified, with maximum values in the Antarctic interior and hardly any seasonal isotope signature in Marie Byrd Land, West Antarctica. The modeled signature of deuterium excess remains largely preserved during the last phase of transport, though the simulated relation of deuterium excess with δ18O suggests that parameterizations of kinetic isotopic fractionation can be improved.
APA, Harvard, Vancouver, ISO, and other styles
43

Wang, Da, Youye Zheng, Ryan Mathur, and Song Wu. "The Fe-Zn Isotopic Characteristics and Fractionation Models: Implications for the Genesis of the Zhaxikang Sb-Pb-Zn-Ag Deposit in Southern Tibet." Geofluids 2018 (2018): 1–23. http://dx.doi.org/10.1155/2018/2197891.

Full text
Abstract:
The genesis of the Zhaxikang Sb-Pb-Zn-Ag deposit remains controversial. Three different geological environments have been proposed to model mineralization: a hot spring, a magmatic-hydrothermal fluid, and a sedimentary exhalative (SEDEX) overprinted by a hot spring. Here, we present the electron probe microanalysis (EPMA) and Fe-Zn isotopic data (microsampled) of four samples from the first pulse of mineralization that show annular textures to constrain ore genesis. The Zn/Cd ratios from the EPMA data of sphalerite range from 296 to 399 and overlap the range of exhalative systems. The δ56Fe values of Mn-Fe carbonate and δ66Zn values of sphalerite gradually decrease from early to late stages in three samples. A combination of the EPMA and isotopic data shows the Fe-Zn contents also have different correlations with δ66Zn values in sphalerite from these samples. Rayleigh distillation models this isotope and concentration data with the cause of fractionation related to vapour-liquid partitioning and mineral precipitation. In order to verify this Rayleigh distillation model, we combine our Fe-Zn isotopic data with those from previous studies to establish 12 Fe-Zn isotopic fractionation models. These fractionation models indicate the δ56Fei and δ66Zni values (initial Fe-Zn isotopic compositions) of the ore-forming system are in the range of -0.5‰​​ ~−1‰ and -0.28‰​ ~0‰, respectively. To conclude, the EPMA data, Fe-Zn isotopic characteristics, and fractionation models support the SEDEX model for the first pulse of mineralization.
APA, Harvard, Vancouver, ISO, and other styles
44

Nan, Yi, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian. "Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau?" Hydrology and Earth System Sciences 25, no. 12 (December 3, 2021): 6151–72. http://dx.doi.org/10.5194/hess-25-6151-2021.

Full text
Abstract:
Abstract. Issues related to large uncertainty and parameter equifinality have posed big challenges for hydrological modeling in cold regions where runoff generation processes are particularly complicated. Tracer-aided hydrological models that integrate the transportation and fractionation processes of water stable isotope are increasingly used to constrain parameter uncertainty and refine the parameterizations of specific hydrological processes in cold regions. However, the common unavailability of site sampling of spatially distributed precipitation isotopes hampers the practical applications of tracer-aided models in large-scale catchments. This study, taking the precipitation isotope data (isotopes-incorporated global spectral model – isoGSM) derived from the isotopic general circulation models (iGCMs) as an example, explored its utility in driving a tracer-aided hydrological model in the Yarlung Tsangpo River basin (YTR; around 2×105 km2, with a mean elevation of 4875 m) on the Tibetan Plateau (TP). The isoGSM product was firstly corrected based on the biases between gridded precipitation isotope estimates and the limited site sampling measurements. Model simulations driven by the corrected isoGSM data were then compared with those forced by spatially interpolated precipitation isotopes from site sampling measurements. Our results indicated that (1) spatial precipitation isotopes derived from the isoGSM data helped to reduce modeling uncertainty and improve parameter identifiability in a large mountainous catchment on the TP, compared to a calibration method using discharge and snow cover area fraction without any information on water isotopes; (2) model parameters estimated by the corrected isoGSM data presented higher transferability to nested subbasins and produced higher model performance in the validation period than that estimated by the interpolated precipitation isotope data from site sampling measurements; (3) model calibration forced by the corrected isoGSM data successfully rejected parameter sets that overestimated glacier melt contribution and gave more reliable contributions of runoff components, indicating the corrected isoGSM data served as a better choice to provide informative spatial precipitation isotope than the interpolated data from site sampling measurements at the macro scale. This work suggested plausible utility of combining isoGSM data with measurements, even from a sparse sampling network, in improving hydrological modeling in large high mountain basins.
APA, Harvard, Vancouver, ISO, and other styles
45

C. Banda, Limbikani, Michael Rivett, Robert Kalin, Anold Zavison, Peaches Phiri, Geoffrey Chavula, Charles Kapachika, Sydney Kamtukule, Christina Fraser, and Muthi Nhlema. "Seasonally Variant Stable Isotope Baseline Characterisation of Malawi’s Shire River Basin to Support Integrated Water Resources Management." Water 12, no. 5 (May 15, 2020): 1410. http://dx.doi.org/10.3390/w12051410.

Full text
Abstract:
Integrated Water Resources Management (IWRM) is vital to the future of Malawi and motivates this study’s provision of the first stable isotope baseline characterization of the Shire River Basin (SRB). The SRB drains much of Southern Malawi and receives the sole outflow of Lake Malawi whose catchment extends over much of Central and Northern Malawi (and Tanzania and Mozambique). Stable isotope (283) and hydrochemical (150) samples were collected in 2017–2018 and analysed at Malawi’s recently commissioned National Isotopes Laboratory. Distinct surface water dry-season isotope enrichment and wet-season depletion are shown with minor retention of enriched signatures ascribed to Lake Malawi influences. Isotopic signatures corroborate that wet-season river flows mostly arise from local precipitation, with dry-season flows supported by increased groundwater contributions. Groundwater signatures follow a local meteoric water line of limited spread suggesting recharge by local precipitation predominantly during the peak months of the wet-season. Relatively few dry-season groundwater samples displayed evaporative enrichment, although isotopic seasonality was more pronounced in the lowlands compared to uplands ascribed to amplified climatic effects. These signatures serve as isotopic diagnostic tools that valuably informed a basin conceptual model build and, going forward, may inform key identified Malawian IWRM concerns. The isotopic baseline establishes a benchmark against which future influences from land use, climate change and water mixing often inherent to IWRM schemes may be forensically assessed. It thereby enables both source-water protection and achievement of Sustainable Development Goal 6.
APA, Harvard, Vancouver, ISO, and other styles
46

Binns, W. R., M. E. Wiedenbeck, T. T. von Rosenvinge, M. H. Israel, E. R. Christian, A. C. Cummings, G. A. de Nolfo, R. A. Leske, R. A. Mewaldt, and E. C. Stone. "The Isotopic Abundances of Galactic Cosmic Rays with Atomic Number 29 ≤ Z ≤ 38." Astrophysical Journal 936, no. 1 (August 25, 2022): 13. http://dx.doi.org/10.3847/1538-4357/ac82e7.

Full text
Abstract:
Abstract The Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer spacecraft has been operating successfully in a halo orbit about the L1 Lagrange point since late 1997. We report here the isotopic composition of the Galactic cosmic ray (GCR) elements with 29 ≤ Z ≤ 38 derived from more than 20 years of CRIS data. Using a model of cosmic-ray transport in the Galaxy and the solar system (SS), we have derived from these observations the isotopic composition of the accelerated material at the GCR source (GCRS). Comparison of the isotopic fractions of these elements in the GCRS with corresponding fractions in the solar system gives no indication of GCRS enrichment in r-process isotopes. Since a large fraction of core-collapse supernovae (CCSNe) occur in OB associations, the fact that GCRs do not contain enhanced abundances of r-process nuclides indicates that CCSNe are not the principal source of lighter (Z ≤ 38) r-process nuclides in the solar system. This conclusion supports recent work that points to binary neutron-star mergers, rather than supernovae, as the principal source of galactic r-process isotopes.
APA, Harvard, Vancouver, ISO, and other styles
47

Michalski, G., S. K. Bhattacharya, and G. Girsch. "NO<sub>x</sub> cycle and tropospheric ozone isotope anomaly: an experimental investigation." Atmospheric Chemistry and Physics Discussions 13, no. 4 (April 11, 2013): 9443–83. http://dx.doi.org/10.5194/acpd-13-9443-2013.

Full text
Abstract:
Abstract. The oxygen isotope composition of nitrogen oxides (NOx) in the atmosphere may be a useful tool for understanding the oxidation of NOx into nitric acid/nitrate in the atmosphere. A set of experiments were conducted to examine changes in isotopic composition of NOx due to O3-NOx photochemical cycling. At low NO2/O2 mixing ratios, NO2 becomes progressively and nearly equally enriched in 17O and 18O over time until it reaches a steady state with Δ17O values of 40.6 ± 1.9‰ and δ18O values of 84.2 ± 4‰, relative to the isotopic composition of the O2 gas. As the mixing ratio increases, isotopic exchange between O atoms and O2 and NOx suppresses the isotopic enrichments. A kinetic model simulating the observed data shows that the isotope effects during ozone formation play a more dominant role compared to kinetic isotope effects during NO oxidation or exchange of NO2. The model results are consistent with the data when the NO + O3 reaction occurs mainly via the transfer of the terminal atom of O3. The model predicts that under tropospheric concentrations of the three reactants, the timescale of NOx isotopic equilibrium ranges from hours (ppbv mixing ratios) to days/weeks (pptv) and yields steady state Δ17O and δ18O values of 46‰ and 115‰ respectively with respect to Vienna Standard Mean Ocean Water. Interpretation of tropospheric nitrate isotope data can now be done with the derived rate coefficients of the major isotopologue reactions at various pressures.
APA, Harvard, Vancouver, ISO, and other styles
48

Rempel, Alan W., and J. S. Wettlaufer. "Isotopic diffusion in polycrystalline ice." Journal of Glaciology 49, no. 166 (2003): 397–406. http://dx.doi.org/10.3189/172756503781830638.

Full text
Abstract:
AbstractQuantitative ice-core paleoclimatology must account for post-depositional processes, such as vapor-phase diffusion in the firn. After pore close-off, diffusion continues to smooth the stable-isotope records δ18O and δD that are eventually recovered from the ice, leading to the loss of high-frequency information. Johnsen and others (1997) found much higher rates of diffusive smoothing in the Greenland Icecore Project (GRIP) Holocene ice than would be predicted by diffusion through solid ice alone, and Nye (1998) argued that transport through liquid veins might explain this apparent excess diffusion. However, the analysis of Johnsen and others (2000) indicates that the required vein dimensions may be unrealistically large. Here, we model the diffusion of stable isotopes in polycrystalline ice and show that the predictions of Nye (1998) and those of Johnsen and others (2000) actually represent two end-members in a range of potential behavior. Our model determines which of these asymptotic regimes more closely resembles the prevailing conditions and quantifies the role of pre-melted liquid in the smoothing of isotopic signals. The procedure thereby ties together the two approaches and provides a rostrum for accurate analysis of isotope records and paleotemperature reconstructions.
APA, Harvard, Vancouver, ISO, and other styles
49

Feng, Xiahong, Eric S. Posmentier, Leslie J. Sonder, and Naixin Fan. "Rethinking Craig and Gordon's approach to modeling isotopic compositions of marine boundary layer vapor." Atmospheric Chemistry and Physics 19, no. 6 (March 29, 2019): 4005–24. http://dx.doi.org/10.5194/acp-19-4005-2019.

Full text
Abstract:
Abstract. We develop a one-dimensional (1-D) steady-state isotope marine boundary layer (MBL) model that includes meteorologically important features missing in models of the Craig and Gordon type, namely height-dependent diffusion and mixing, lifting to deliver air to the free troposphere, and convergence of subsiding air. Kinetic isotopic fractionation results from this height-dependent diffusion that starts as pure molecular diffusion at the air–water interface and increases with height due to turbulent eddies. Convergence causes mixing of dry, isotopically depleted air with ambient air. Model results fill a quadrilateral in δD–δ18O space, of which three boundaries are defined by (1) vapor in equilibrium with various sea surface temperatures (SSTs), (2) mixing of vapor in equilibrium with seawater and vapor in subsiding air, and (3) vapor that has experienced maximum possible kinetic fractionation. Model processes also cause variations in d-excess of MBL vapor. In particular, mixing of relatively high d-excess descending and converging air into the MBL increases d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven data sets of marine vapor isotopic ratios, with excellent correspondence. About 95 % of observational data fall within the quadrilateral predicted by the model. The distribution of observations also highlights the significant influence of vapor from nearby converging descending air on isotopic variations within the MBL. At least three factors may explain the ∼5 % of observations that fall slightly outside of the predicted regions in δD–δ18O and d-excess–δ18O space: (1) variations in seawater isotopic ratios, (2) variations in isotopic composition of subsiding air, and (3) influence of sea spray.
APA, Harvard, Vancouver, ISO, and other styles
50

Werner, M., B. Haese, X. Xu, X. Zhang, M. Butzin, and G. Lohmann. "Glacial–interglacial changes in H<sub>2</sub><sup>18</sup>O, HDO and deuterium excess – results from the fully coupled ECHAM5/MPI-OM Earth system model." Geoscientific Model Development 9, no. 2 (February 17, 2016): 647–70. http://dx.doi.org/10.5194/gmd-9-647-2016.

Full text
Abstract:
Abstract. In this study we present the first results of a new isotope-enabled general circulation model set-up. The model consists of the fully coupled ECHAM5/MPI-OM atmosphere–ocean model, enhanced by the JSBACH interactive land surface scheme and an explicit hydrological discharge scheme to close the global water budget. Stable water isotopes H218O and HDO have been incorporated into all relevant model components. Results of two equilibrium simulations under pre-industrial and Last Glacial Maximum conditions are analysed and compared to observational data and paleoclimate records for evaluating the model's performance in simulating spatial and temporal variations in the isotopic composition of the Earth's water cycle. For the pre-industrial climate, many aspects of the simulation results of meteoric waters are in good to very good agreement with both observations and earlier atmosphere-only simulations. The model is capable of adequately simulating the large spread in the isotopic composition of precipitation between low and high latitudes. A comparison to available ocean data also shows a good model–data agreement; however, a strong bias of overly depleted ocean surface waters is detected for the Arctic region. Simulation results under Last Glacial Maximum boundary conditions also fit to the wealth of available isotope records from polar ice cores, speleothems, as well as marine calcite data. Data–model evaluation of the isotopic composition in precipitation reveals a good match of the model results and indicates that the temporal glacial–interglacial isotope–temperature relation was substantially lower than the present spatial gradient for most mid- to high-latitudinal regions. As compared to older atmosphere-only simulations, a remarkable improvement is achieved for the modelling of the deuterium excess signal in Antarctic ice cores. Our simulation results indicate that cool sub-tropical and mid-latitudinal sea surface temperatures are key for this progress. A recently discussed revised interpretation of the deuterium excess record of Antarctic ice cores in terms of marine relative humidity changes on glacial–interglacial timescales is not supported by our model results.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography