Dissertations / Theses on the topic 'Isoperimetric problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 29 dissertations / theses for your research on the topic 'Isoperimetric problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
SILVA, MARCELO CHAVES. "ISOPERIMETRIC PROBLEMS IN THE MINKOWSKI PLANE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25618@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O objetivo principal deste trabalho é resolver o problema isoperimétrico no plano de Minkowski, isto é, determinar dentre todas as curvas convexas, fechadas, simples e suaves de perímetro fixo de um plano munido com uma norma qualquer, qual é aquela que delimita a maior área. Mostraremos que a solução para este problema não é necessariamente o círculo como no caso euclideano e sim uma curva conhecida como isoperimetrix. Para isto, vamos demonstrar a desigualdade de Minkowski a partir do conceito de área mista. Em seguida, vamos determinar se há outros casos (além do caso euclideano) em que o círculo coincide com o isoperimetrix. Também iremos mostrar que o perímetro da bola nestes planos pode assumir qualquer valor real entre seis e oito, sendo seis quando a bola for um hexágono regular afim e oito quando for um paralelogramo.
The main objective of this work is to solve the isoperimetric problem in the Minkowski plane, i. e., determine among all smooth simple closed convex curves of a normed plane with fixed perimeter, what is that which defines the largest area. We will show that the solution to this problem is not necessarily the circle as in the Euclidean case, but a curve known as isoperimetrix. For this, we will demonstrate the Minkowski inequality from the concept of mixed area. Then, we determine if there are other cases (apart from the Euclidean case) in which the circle coincides with the isoperimetrix. We will also show that the ball perimeter in a normed plane can take any real value between six and eight. It is six when the ball is an affine regular hexagon and eight when it is a parallelogram.
Serra, Montolí Joaquim. "Elliptic and parabolic PDEs : regularity for nonlocal diffusion equations and two isoperimetric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279290.
Full textLa tesi està dividida en dues parts. La primera part es centra principalment en questions de regularitat per equacions integro - iferencials (o no locals) el·líptiques i parbòliques. De la mateixa manera que les densitats de partícules amb un moviment Brownià resolen equacions el·líptiques o parbòliques de segon ordre, les densitats de partícules amb una difusió de tipus Lévy resolen aquestes equacions no locals més generals. En aquest context, les equacions completament no lineals sorgeixen de problemes de control estocàstic o "differential games''. L'exemple típic d'operador el·liptic no local és el laplacià fraccionari, el qual és l'únic d'aquests operadors que és invariant per translacions, rotacions, i reescalament. Hi ha molts resultats clàssics de regularitat per el laplacià fraccionari --- "l'invers'' del qual és el potencial de Riesz. Per exemple, el nucli de Poisson (explícit) per la bola és un resultat "vell'', així com la teoria de resolubilitat en espais L^p. No obstant això, se sabia ben poc sobre la regularitat a la vora per a aquests problemes. Un tema principal d'aquesta tesi és l'estudi d'aquesta regularitat a la vora, que és qualitativament molt diferent de la de les equacions de segon ordre . A la tesi s'estableix una nova teoria regularitat a la vora per completament no lineals ( i lineals ) equacions integro - diferencials el·líptiques . Les nostres demostracions requeixen una combinació de tècniques originals i versions apropiades de les clàssiques equacions de segon ordre ( com ara el mètode de Krylov ). També obtenim nous resultats de regularitat interior per equacions parabòliques no locals completament no lineals i amb "rough kernels''. A tal efecte, desenvolupem un mètode de blow-up i compacitat per a equacions completament no lineals que en permet provar regularitat a partir de teoremes de tipus Liouville. Aquest mètode és una contribució principal de la tesi. Els nous resultats de regularitat a la vora esmentats anteriorment són essencials en la prova d'un altre resultat principal de la tesi: la identitat Pohozaev per al Laplacià fraccionari. Aquesta identitat recorda a una fórmula d'integració per parts, però amb el Laplacià fraccionari. La novetat important és que apareix un terme de vora locals (això era inusual amb equacions no locals) . A la segona part de la tesi que donem dos exemples d'interacció entre isoperimetria i Equacions en Derivades Parcials. En el primer, s'utilitza el mètode d'Alexandrov- Bakelman-Pucci per a EDP el·líptiques a fi d'obtenir noves desigualtats isoperimètriques en cons convexos amb densitats, generalitzant una prova de la desigualtat isoperimètric clàssica de X. Cabré. Els nostres nous resultats contenen com a casos particularsla desigualtat clàssica de Wulff i la desigualtat isoperimètrica en cons de Lions-Pacella. En el segon exemple s'utilitza la desigualtat isoperimètrica i la identitat Pohozaev clàssica per establir un resultat de simetria radial per equacions de reacció-difusió de segon ordre. La novetat en aquest cas és que s'inclouen no-linealitats discontínues. Per a provar aquest resultat, estenem un argument en dues dimensions de P.-L. Lions de 1981 i podem obtenir ara resultass en dimensions superiors.
Costa, Marcos Antônio da. "Máximos e Mínimos: uma abordagem para o ensino médio." Universidade Federal de Goiás, 2013. http://repositorio.bc.ufg.br/tede/handle/tde/2947.
Full textMade available in DSpace on 2014-08-28T15:33:45Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao Marcos Antonio da Costa.pdf: 1237372 bytes, checksum: e4392b806f26f0293114e12b4ed829c9 (MD5) Previous issue date: 2013-04-12
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
We deal with extremum values problems. Our focus is the high school students. We present simple ideas and techniques on solving classical optimization problems. Among other problems we cite the classical isoperimetric ploblem and the Heron0s problem. We are based on the book Stories About Maxima and Minima by Tikhomirov which lead with these classical problems using only elementary mathematical subjects.
Estudamos problemas envolvendo valores extremos, com foco nos estudantes do Ensino Médio. Apresentamos de forma simples e resumida, algumas ideias e teorias para a solução de tais problemas. Dentre os quais citamos o Problema de Dido e o de Heron. O principal referencial teórico para confecção deste trabalho foi o livro de Tikhomirov intitulado Stories About Maxima and Minima. Baseados em tal livro, aplicamos métodos e teorias elementares para solucionarmos problemas clássicos de máximos e mínimos.
Do, Minh Nhat Vo. "The Constrained Isoperimetric Problem." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2700.
Full textLomas, Fernando Herrero. "Problemas isoperimétricos: uma abordagem no ensino médio." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-24112016-210117/.
Full textIn this dissertation isoperimetric problem approaches were discussed that can be applied in high school and full degree students in mathematics. It was initially performed a historical approach and then the discussion of individual and general cases of isoperimetric inequality both in the plane and in space . The main approach of this text is in the plan, in which the areas of the triangles were analyzed , quadrilaterals and regular polygons given a fixed perimeter.
Corucci, Mariachiara. "La soluzione di Hurwitz del problema isoperimetrico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19220/.
Full textLee, Sunmi. "The edge-isoperimetric problem for the square tessellation of plane." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1622.
Full textLouis, Anand. "The complexity of expansion problems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52294.
Full textJohn, Daniel. "Symmetrization procedures for the isoperimetric problem in symmetric spaces of noncompact type." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974086401.
Full textDos, Santos Viana C. "Index one minimal surfaces and the isoperimetric problem in spherical space forms." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10061744/.
Full textVertova, Luca. "Problemi di massimo e minimo dall'antichita agli albori del Novecento." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textKennedy, James Bernard. "On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditions." University of Sydney, 2010. http://hdl.handle.net/2123/5972.
Full textWe consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
Cameli, Federica. "Problemi di minimo e massimo dall'antichità a oggi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12243/.
Full textSantos, Ednaldo Sena dos. "Problemas de máximo e mínimo na geometria euclidiana /." Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7390.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents a research on problems of maxima and minima of the Euclidean geometry. Initially we present some preliminary results followed by statements that in essence use basic concepts of geometry. Below are some problems of maximizing area and minimizing perimeter of triangles and convex polygons, culminating in a proof of the isoperimetric inequality for polygons and review the general case. Solve some classical problems of geometry that are related to outliers and present other problems as proposed.
Este trabalho apresenta uma pesquisa sobre problemas de máximos e mínimos da Geometria Euclidiana. Inicialmente apresentamos alguns resultados preliminares seguidos de suas demonstrações que em sua essência usam conceitos básicos de geometria. Em seguida apresentamos alguns problemas de maximização de área e de minimização de perímetro em triângulos e polígonos convexos, culminando com uma prova da desigualdade isoperimétrica para polígonos e comentário do caso geral. Resolvemos alguns problemas clássicos de geometria que estão relacionados com valores extremos e apresentamos outros como problemas propostos.
Limberger, Roberto. "Abordagens do problema isoperimétrico." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306603.
Full textDissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-17T21:17:14Z (GMT). No. of bitstreams: 1 Limberger_Roberto_M.pdf: 2247337 bytes, checksum: b1a97b81860de8b0d8d254e3a4f702d0 (MD5) Previous issue date: 2011
Resumo: Neste trabalho são apresentadas abordagens do problema isoperimétrico que podem ser utilizadas no ensino médio ou ensino universitário. Estas incluem: i) aspectos históricos, ii) deduções formais do problema (dentre as curvas de perímetro fixo, a circunferência é a que engloba a maior área) utilizando apenas geometria euclidiana ou via cálculo diferencial, iii) contextualização em problemas de otimização a serem abordados também utilizando recursos computacionais e iv) descrição detalhada de material audiovisual produzido para o ensino médio, com a participação do autor, para um projeto com suporte MEC - UNICAMP
Abstract: This dissertation presents approaches to the isoperimetric problem that can be used in high school or university education. These include: i)historical aspects, ii) formal deductions of the problem (among the curves of fixed perimeter, the circle encompasses most area) using only Euclidean geometry or calculus iii) contextualization in optimization problems to be also addressed using computational resources iv) detailed description of audiovisual material produced for the high school, with the participation of the author
Mestrado
Matematica
Mestre em Matemática
Ronchi, Riccardo. "Un'applicazione geometrica delle serie di Fourier." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6897/.
Full textAmghibech, Said. "Inégalités isopérimétriques pour les graphes. Critères de régularité à la frontière d'un arbre." Rouen, 1996. http://www.theses.fr/1996ROUES011.
Full textGuerreschi, Patrizia. "Analisi dei metodi di ottimizzazione unidimensionale nella scuola secondaria di secondo grado." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20657/.
Full textGénérau, François. "Sur une approximation variationnelle stable du cut locus, et un problème isopérimetrique non local." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM014.
Full textThis thesis is composed of two parts. In the first part, we study a generalization of the variational problem of elastic-plastic torsion problem to manifolds. We show that in the case of manifolds, the problem is not equivalent to an obstacle type problem, contrary to the euclidean case, but we establish the equivalence when the parameter of the problem goes to infinity. We show, as in the euclidean case, that the non contact set contains the cut locus of the manifold, and converges to the latter in the Hausdorff sense. What is more, we show that the minimizers of the problem are uniformly semiconcave. We deduce a stable approximation of the cut locus, in the spirit of the lambda medial axis of Chazal and Lieutier. We then use this result to compute numerically the cut locus of some surfaces of varied geometries.In the second part, we study an extension of a nonlocal isoperimetric problem. More precisely, we add a confinement potential to Gamow's liquid drop model for the nucleus. We then study large volume minimizers. We show that for certain sets of parameters, large volume minimizers converge to the ball, or may even exactly be the ball. Moreover, we develop a numerical method for this variational problem. Our results confirm numerically a conjecture of Choksi and Peletier, in dimension 2: it seems that minimizers of Gamow'sliquid drop model are balls as long as they exist
Moussa, Gonoko. "Sur quelques problèmes de transmission à deux exposants apparaissant en physique." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0014.
Full textMichal, Jakub. "Řešení optimalizačních úloh na 2 a 3. stupni školy." Master's thesis, 2021. http://www.nusl.cz/ntk/nusl-446237.
Full textDotterrer, Dominic. "The (Co)isoperimetric Problem in (Random) Polyhedra." Thesis, 2013. http://hdl.handle.net/1807/43541.
Full textXIAO, SHOU-REN, and 蕭守仁. "On an isoperimetric problem in a cylindric can." Thesis, 1988. http://ndltd.ncl.edu.tw/handle/03237739476625292991.
Full textBharadwaj, Subramanya B. V. "The Isoperimetric Problem On Trees And Bounded Tree Width Graphs." Thesis, 2008. http://hdl.handle.net/2005/844.
Full textHong, Yi-Te, and 洪亦德. "A discussion of the isoperimetric problem on spheres withrotational and equatorial symmetry and monotone Gausscurvature." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/25540757290019922161.
Full text臺灣大學
數學研究所
98
In the thesis we follow the demonstration of Prof. M. Ritoré to solve the isoperimetric problem on roatationally and equatorially symmetric spheres with monotone Gauss curvature from the poles. We first classify all the curves with constant geodesic curvature on a sphere with the above properties. Then we apply Sturm''s comparison theorem successively to get the final only possible curve enclosing an isoperimetric domain. On regions with constant Gauss curvature we also invoke the Bol-Fiala inequality to conclude that inside such regions a geodesic circle has the minimal length encircling a domain with a given area.
John, Daniel [Verfasser]. "Symmetrization procedures for the isoperimetric problem in symmetric spaces of noncompact type / von Daniel John." 2005. http://d-nb.info/974086401/34.
Full textUre, Patricia K. "A study of (0,n,n+1)-sets and other solutions of the isoperimetric problem in finite projective planes." Thesis, 1996. https://thesis.library.caltech.edu/3520/1/Ure_pk_1996.pdf.
Full textBártlová, Tereza. "Izoperimetrické nerovnosti." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-304096.
Full textIndrei, Emanuel Gabriel. "Optimal transport, free boundary regularity, and stability results for geometric and functional inequalities." 2012. http://hdl.handle.net/2152/20631.
Full texttext