Academic literature on the topic 'Isoperimetric problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Isoperimetric problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Isoperimetric problems"
Petty, C. M. "AFFINE ISOPERIMETRIC PROBLEMS." Annals of the New York Academy of Sciences 440, no. 1 Discrete Geom (May 1985): 113–27. http://dx.doi.org/10.1111/j.1749-6632.1985.tb14545.x.
Full textApostol, Tom M., and Mamikon A. Mnatsakanian. "Isoperimetric and Isoparametric Problems." American Mathematical Monthly 111, no. 2 (February 2004): 118. http://dx.doi.org/10.2307/4145213.
Full textApostol, Tom M., and Mamikon A. Mnatsakanian. "Isoperimetric and Isoparametric Problems." American Mathematical Monthly 111, no. 2 (February 2004): 118–36. http://dx.doi.org/10.1080/00029890.2004.11920056.
Full textTóth, L. Fejes. "Isoperimetric problems for tilings." Mathematika 32, no. 1 (June 1985): 10–15. http://dx.doi.org/10.1112/s0025579300010792.
Full textBOLLOBÁS, BÉLA, and IMRE LEADER. "Isoperimetric Problems for r-sets." Combinatorics, Probability and Computing 13, no. 2 (March 2004): 277–79. http://dx.doi.org/10.1017/s0963548304006078.
Full textTóth, L. Fejes. "Isoperimetric problems for tilings, corrigendum." Mathematika 33, no. 2 (December 1986): 189–91. http://dx.doi.org/10.1112/s0025579300011177.
Full textSiegel, Jerrold, and Frank Williams. "Uniform bounds for isoperimetric problems." Proceedings of the American Mathematical Society 107, no. 2 (February 1, 1989): 459. http://dx.doi.org/10.1090/s0002-9939-1989-0984815-2.
Full textRitoré, Manuel, and Antonio Ros. "Some updates on isoperimetric problems." Mathematical Intelligencer 24, no. 3 (June 2002): 9–14. http://dx.doi.org/10.1007/bf03024725.
Full textClarenz, Ulrich, and Heiko von der Mosel. "Isoperimetric inequalities for parametric variational problems." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 19, no. 5 (2002): 617–29. http://dx.doi.org/10.1016/s0294-1449(02)00096-3.
Full textDemyanov, V. F., and G. Sh Tamasyan. "Exact penalty functions in isoperimetric problems." Optimization 60, no. 1-2 (January 2011): 153–77. http://dx.doi.org/10.1080/02331934.2010.534166.
Full textDissertations / Theses on the topic "Isoperimetric problems"
SILVA, MARCELO CHAVES. "ISOPERIMETRIC PROBLEMS IN THE MINKOWSKI PLANE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25618@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O objetivo principal deste trabalho é resolver o problema isoperimétrico no plano de Minkowski, isto é, determinar dentre todas as curvas convexas, fechadas, simples e suaves de perímetro fixo de um plano munido com uma norma qualquer, qual é aquela que delimita a maior área. Mostraremos que a solução para este problema não é necessariamente o círculo como no caso euclideano e sim uma curva conhecida como isoperimetrix. Para isto, vamos demonstrar a desigualdade de Minkowski a partir do conceito de área mista. Em seguida, vamos determinar se há outros casos (além do caso euclideano) em que o círculo coincide com o isoperimetrix. Também iremos mostrar que o perímetro da bola nestes planos pode assumir qualquer valor real entre seis e oito, sendo seis quando a bola for um hexágono regular afim e oito quando for um paralelogramo.
The main objective of this work is to solve the isoperimetric problem in the Minkowski plane, i. e., determine among all smooth simple closed convex curves of a normed plane with fixed perimeter, what is that which defines the largest area. We will show that the solution to this problem is not necessarily the circle as in the Euclidean case, but a curve known as isoperimetrix. For this, we will demonstrate the Minkowski inequality from the concept of mixed area. Then, we determine if there are other cases (apart from the Euclidean case) in which the circle coincides with the isoperimetrix. We will also show that the ball perimeter in a normed plane can take any real value between six and eight. It is six when the ball is an affine regular hexagon and eight when it is a parallelogram.
Serra, Montolí Joaquim. "Elliptic and parabolic PDEs : regularity for nonlocal diffusion equations and two isoperimetric problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279290.
Full textLa tesi està dividida en dues parts. La primera part es centra principalment en questions de regularitat per equacions integro - iferencials (o no locals) el·líptiques i parbòliques. De la mateixa manera que les densitats de partícules amb un moviment Brownià resolen equacions el·líptiques o parbòliques de segon ordre, les densitats de partícules amb una difusió de tipus Lévy resolen aquestes equacions no locals més generals. En aquest context, les equacions completament no lineals sorgeixen de problemes de control estocàstic o "differential games''. L'exemple típic d'operador el·liptic no local és el laplacià fraccionari, el qual és l'únic d'aquests operadors que és invariant per translacions, rotacions, i reescalament. Hi ha molts resultats clàssics de regularitat per el laplacià fraccionari --- "l'invers'' del qual és el potencial de Riesz. Per exemple, el nucli de Poisson (explícit) per la bola és un resultat "vell'', així com la teoria de resolubilitat en espais L^p. No obstant això, se sabia ben poc sobre la regularitat a la vora per a aquests problemes. Un tema principal d'aquesta tesi és l'estudi d'aquesta regularitat a la vora, que és qualitativament molt diferent de la de les equacions de segon ordre . A la tesi s'estableix una nova teoria regularitat a la vora per completament no lineals ( i lineals ) equacions integro - diferencials el·líptiques . Les nostres demostracions requeixen una combinació de tècniques originals i versions apropiades de les clàssiques equacions de segon ordre ( com ara el mètode de Krylov ). També obtenim nous resultats de regularitat interior per equacions parabòliques no locals completament no lineals i amb "rough kernels''. A tal efecte, desenvolupem un mètode de blow-up i compacitat per a equacions completament no lineals que en permet provar regularitat a partir de teoremes de tipus Liouville. Aquest mètode és una contribució principal de la tesi. Els nous resultats de regularitat a la vora esmentats anteriorment són essencials en la prova d'un altre resultat principal de la tesi: la identitat Pohozaev per al Laplacià fraccionari. Aquesta identitat recorda a una fórmula d'integració per parts, però amb el Laplacià fraccionari. La novetat important és que apareix un terme de vora locals (això era inusual amb equacions no locals) . A la segona part de la tesi que donem dos exemples d'interacció entre isoperimetria i Equacions en Derivades Parcials. En el primer, s'utilitza el mètode d'Alexandrov- Bakelman-Pucci per a EDP el·líptiques a fi d'obtenir noves desigualtats isoperimètriques en cons convexos amb densitats, generalitzant una prova de la desigualtat isoperimètric clàssica de X. Cabré. Els nostres nous resultats contenen com a casos particularsla desigualtat clàssica de Wulff i la desigualtat isoperimètrica en cons de Lions-Pacella. En el segon exemple s'utilitza la desigualtat isoperimètrica i la identitat Pohozaev clàssica per establir un resultat de simetria radial per equacions de reacció-difusió de segon ordre. La novetat en aquest cas és que s'inclouen no-linealitats discontínues. Per a provar aquest resultat, estenem un argument en dues dimensions de P.-L. Lions de 1981 i podem obtenir ara resultass en dimensions superiors.
Costa, Marcos Antônio da. "Máximos e Mínimos: uma abordagem para o ensino médio." Universidade Federal de Goiás, 2013. http://repositorio.bc.ufg.br/tede/handle/tde/2947.
Full textMade available in DSpace on 2014-08-28T15:33:45Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertacao Marcos Antonio da Costa.pdf: 1237372 bytes, checksum: e4392b806f26f0293114e12b4ed829c9 (MD5) Previous issue date: 2013-04-12
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
We deal with extremum values problems. Our focus is the high school students. We present simple ideas and techniques on solving classical optimization problems. Among other problems we cite the classical isoperimetric ploblem and the Heron0s problem. We are based on the book Stories About Maxima and Minima by Tikhomirov which lead with these classical problems using only elementary mathematical subjects.
Estudamos problemas envolvendo valores extremos, com foco nos estudantes do Ensino Médio. Apresentamos de forma simples e resumida, algumas ideias e teorias para a solução de tais problemas. Dentre os quais citamos o Problema de Dido e o de Heron. O principal referencial teórico para confecção deste trabalho foi o livro de Tikhomirov intitulado Stories About Maxima and Minima. Baseados em tal livro, aplicamos métodos e teorias elementares para solucionarmos problemas clássicos de máximos e mínimos.
Do, Minh Nhat Vo. "The Constrained Isoperimetric Problem." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2700.
Full textLomas, Fernando Herrero. "Problemas isoperimétricos: uma abordagem no ensino médio." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-24112016-210117/.
Full textIn this dissertation isoperimetric problem approaches were discussed that can be applied in high school and full degree students in mathematics. It was initially performed a historical approach and then the discussion of individual and general cases of isoperimetric inequality both in the plane and in space . The main approach of this text is in the plan, in which the areas of the triangles were analyzed , quadrilaterals and regular polygons given a fixed perimeter.
Corucci, Mariachiara. "La soluzione di Hurwitz del problema isoperimetrico." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19220/.
Full textLee, Sunmi. "The edge-isoperimetric problem for the square tessellation of plane." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1622.
Full textLouis, Anand. "The complexity of expansion problems." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52294.
Full textJohn, Daniel. "Symmetrization procedures for the isoperimetric problem in symmetric spaces of noncompact type." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974086401.
Full textDos, Santos Viana C. "Index one minimal surfaces and the isoperimetric problem in spherical space forms." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10061744/.
Full textBooks on the topic "Isoperimetric problems"
B, Zegarlinski, ed. Entropy bounds and isoperimetry. Providence, RI: American Mathematical Society, 2005.
Find full textEcole d'été de probabilités de Saint-Flour (24th 1994). Lectures on probability theory and statistics: Ecole d'été de probabilités de Saint-Flour XXIV, 1994. Edited by Dobrushin R. L. 1929-, Groeneboom P, Ledoux Michel 1958-, and Bernard P. 1944-. Berlin: Springer, 1996.
Find full textTyson, Jeremy T., ed. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8133-2.
Full textHarper, L. H. Global Methods for Combinatorial Isoperimetric Problems (Cambridge Studies in Advanced Mathematics). Cambridge University Press, 2004.
Find full text1928-, Bakelʹman I. I͡A︡, ed. Geometric analysis and nonlinear partial differential equations. New York: M. Dekker, 1993.
Find full textCoopersmith, Jennifer. Antecedents. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198743040.003.0002.
Full textLedoux, Michel, R. Dobrushin, and P. Groeneboom. Lectures on Probability Theory and Statistics: Ecole D'Ete De Probabilities De St. Flour Xxiv - 1994 (Lecture Notes in Mathematics). Springer, 1997.
Find full textAn Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (Progress in Mathematics). Birkhäuser Basel, 2007.
Find full textBook chapters on the topic "Isoperimetric problems"
Buldygin, V. V., and A. B. Kharazishvili. "Two classical isoperimetric problems." In Geometric Aspects of Probability Theory and Mathematical Statistics, 49–56. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-1687-1_4.
Full textKobelev, V. V. "Isoperimetric Inequalities in Stability Problems." In Optimization of Large Structural Systems, 1155–64. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-010-9577-8_60.
Full textGulliver, Robert. "Isoperimetric problems having continua of solutions." In Lecture Notes in Mathematics, 256–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082870.
Full textFilliman, P. "Symmetric solutions to isoperimetric problems for polytopes." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 289–300. Providence, Rhode Island: American Mathematical Society, 1991. http://dx.doi.org/10.1090/dimacs/004/21.
Full textHildebrandt, S. "On Two Isoperimetric Problems with Free Boundary Conditions." In Variational Methods for Free Surface Interfaces, 43–51. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_5.
Full textMorini, Massimiliano. "Local and global minimality results for an isoperimetric problem with long-range interactions." In Free Discontinuity Problems, 153–224. Pisa: Scuola Normale Superiore, 2016. http://dx.doi.org/10.1007/978-88-7642-593-6_3.
Full textBezrukov, Sergei L., and Robert Elsässer. "Edge-Isoperimetric Problems for Cartesian Powers of Regular Graphs." In Graph-Theoretic Concepts in Computer Science, 9–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45477-2_3.
Full textPacella, Filomena. "Some Relative Isoperimetric Inequalities and Applications to Nonlinear Problems." In Variational Methods, 219–35. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4757-1080-9_15.
Full textNeumayer, Robin. "On Minimizers and Critical Points for Anisotropic Isoperimetric Problems." In 2018 MATRIX Annals, 293–302. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38230-8_20.
Full textGuba, V. S. "Polynomial Isoperimetric Inequalities for Richard Thompson’s Groups F, T, and V." In Algorithmic Problems in Groups and Semigroups, 91–120. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1388-8_5.
Full textConference papers on the topic "Isoperimetric problems"
Bognár, Gabriella. "Isoperimetric inequalities for some nonlinear eigenvalue problems." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.4.
Full textGlizer, Valery Y., Vladimir Turetsky, and Emil Bashkansky. "Application of Pontryagin’s Maximum Principle to Statistical Process Control Optimization." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70104.
Full textPandey, Rajesh K., and Om P. Agrawal. "Comparison of Four Numerical Schemes for Isoperimetric Constraint Fractional Variational Problems With A-Operator." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46570.
Full textPandey, Rajesh K., and Om P. Agrawal. "Numerical Scheme for Generalized Isoparametric Constraint Variational Problems With A-Operator." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12388.
Full textZhang, Ruochun, and Xiaoping Qian. "Triangulation Based Isogeometric Analysis of the Cahn-Hilliard Phase-Field Model." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85576.
Full textRodrigues, Helder C., and Paulo A. Fernandes. "Generalized Topology Optimization of Linear Elastic Structures Subjected to Thermal Loads." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0370.
Full textDate, Hisashi, and Yoshihiro Takita. "Control of 3D Snake-Like Locomotive Mechanism Based on Continuum Modeling." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85130.
Full text