Academic literature on the topic 'Isolation Systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Isolation Systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Isolation Systems"
Gershon, Diane. "Splendid isolation systems." Nature 350, no. 6315 (March 1991): 255–58. http://dx.doi.org/10.1038/350255a0.
Full textKelly, James M. "Seismic Isolation Systems for Developing Countries." Earthquake Spectra 18, no. 3 (August 2002): 385–406. http://dx.doi.org/10.1193/1.1503339.
Full textBalandin, D. V., N. N. Bolotnik, and W. D. Pilkey. "Pre-Acting Control for Shock and Impact Isolation Systems." Shock and Vibration 12, no. 1 (2005): 49–65. http://dx.doi.org/10.1155/2005/578381.
Full textRamallo, J. C., E. A. Johnson, and B. F. Spencer. "“Smart” Base Isolation Systems." Journal of Engineering Mechanics 128, no. 10 (October 2002): 1088–99. http://dx.doi.org/10.1061/(asce)0733-9399(2002)128:10(1088).
Full textSandercock, John R. "Active vibration isolation systems." Journal of the Acoustical Society of America 90, no. 6 (December 1991): 3387. http://dx.doi.org/10.1121/1.401376.
Full textOzbulut, Osman E., and Stefan Hurlebaus. "A Comparative Study on the Seismic Performance of Superelastic-Friction Base Isolators against Near-Field Earthquakes." Earthquake Spectra 28, no. 3 (August 2012): 1147–63. http://dx.doi.org/10.1193/1.4000070.
Full textLiu, Yujun, Jing Liu, Guang Pan, Qiaogao Huang, and Liming Guo. "Vibration Analysis and Isolator Component Design of the Power System in an Autonomous Underwater Glider." International Journal of Acoustics and Vibration 27, no. 2 (June 30, 2022): 112–21. http://dx.doi.org/10.20855/ijav.2022.27.21841.
Full textSHRIMALI, M. K., and R. S. JANGID. "A COMPARATIVE STUDY OF PERFORMANCE OF VARIOUS ISOLATION SYSTEMS FOR LIQUID STORAGE TANKS." International Journal of Structural Stability and Dynamics 02, no. 04 (December 2002): 573–91. http://dx.doi.org/10.1142/s0219455402000725.
Full textRezaei, Sima, and Gholamreza Ghodrati Amiri. "Effect of Supplemental Damping on the Seismic Performance of Triple Pendulum Bearing Isolators under Near-Fault Ground Motions ." Applied Mechanics and Materials 845 (July 2016): 240–45. http://dx.doi.org/10.4028/www.scientific.net/amm.845.240.
Full textHong, Zhong, Jian-Min Jiang, and Hongping Shu. "Analyzing Isolation in Mobile Systems." Information Technology and Control 50, no. 4 (December 16, 2021): 769–85. http://dx.doi.org/10.5755/j01.itc.50.4.29031.
Full textDissertations / Theses on the topic "Isolation Systems"
Mansour, Mohamed S. "Behavior Isolation in Enterprise Systems." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14613.
Full textManarbek, Saruar. "Study of base isolation systems." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82820.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 55-56).
The primary objective of this investigation is to outline the relevant issues concerning the conceptual design of base isolated structures. A 90 feet high, 6 stories tall, moment steel frame structure with tension cross bracing is used to compare the response of both fixed base and base isolated schemes to severe earthquake excitations. Techniques for modeling the superstructure and the isolation system are also described. Elastic time-history analyses were carried out using comprehensive finite element structural analysis software package SAP200. Time history analysis was conducted for the 1940 El Centro earthquake. Response spectrum analysis was employed to investigate the effects of earthquake loading on the structure. In addition, the building lateral system was designed using the matrix stiffness calibration method and modal analysis was employed to compare the intended period of the structure with the results from computer simulations. Base isolation proves to be effective in reducing the induced inertia forces on a structure by increasing the effective period of oscillation. Keywords: Base Isolation, time history analysis, response spectrum analysis, matrix stiffness calibration method.
by Saruar Manarbek.
M.Eng.
Behrens, Diogo. "Error isolation in distributed systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-203428.
Full textBiteus, Jonas. "Fault Isolation in Distributed Embedded Systems." Doctoral thesis, Linköping : Vehicular Systems, Department of Electrical Engineering, Linköpings universitet, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8774.
Full textMATUTTI, ALBERTO CORONADO. "ENERGY FLOW IN VIBRATION ISOLATION SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1951@1.
Full textSistemas de isolamento de vibrações são utilizados em uma grande variedade de aplicações (automóveis, edifícios, estruturas espaciais como aeronaves, satélites e em máquinas rotativas) para reduzir a transmissão de vibrações mecânicas geradas por equipamentos ou a eles transmitidas pela vizinhança. Um isolamento é obtido inserindo-se um componente mecânico (isolador) que desempenha o papel de vínculo entre o sub-sistema que contém a perturbação e o sub-sistema a ser isolado. Duas são as quantidades geralmente utilizadas para avaliar a efetividade de um sistema de isolamento: a transmissibilidade e a potência. Neste trabalho foi utilizada a potência, sendo esta uma metodologia mais geral que pode ser facilmente utilizada em sistemas complexos, mas que tem a desvantagem de ser de difícil avaliação experimental. Nesta tese, serão simulados numericamente vários sistemas de isolamento passivo por componentes rígidos ou flexíveis, os quais serão modelados por suas respectivas matrizes de mobilidade ou impedância. Estas matrizes serão obtidas por métodos analíticos ou numéricos dependendo da conveniência de cada caso específico. Os projetos tradicionais de sistemas de isolamento geralmente consideram uma excitação unidirecional e avaliam somente algumas componentes da resposta do sistema, isso devido as limitações impostas pelo conceito da transmisibilidde usados nesses projetos. Além disso, eles não dão a devida importância a alguns parâmetros essenciais de configuração geométrica do sistema (localização e ângulo de inclinação dos isoladores, localização dos apoios de base, etc.). No presente trabalho, será mostrada a relevância desses parâmetros mencionados anteriormente no processo de busca das configurações ótimas e também se verá como essas configurações são fortemente dependentes do tipo de excitação do sistema, para isso serão utilizadas combinações de excitações harmônicas multidirecionais.
Vibration isolation systems are used in a large variety of applications (automotive, buil- dings, spatial structures such as aircrafts, satellites and in rotating machines) in order to reduce the transmission of mechanical vibrations from the equipments toward the foun- ation or viceversa. An isolation is obtained inserting a mechanical component (isolator) that acts as a link between the source subsystem and the isolated subsystem. There are two quantities generally used to evaluate the e®ectiveness of a isolation system: the trans-missibility and the power transmitted. In this work, it has been used the power, being this the most generic methodology that can be easily used in complex systems, but it has the disadvantage of a di±cult experimental validation. In this thesis, it will be studied numerically several passive isolation systems with rigid or °exible components, these will be modeled by theirs mobility or impedance matrices. This matrices are achieved by analytical or numerical methods depending of the convenience in each case. Generally traditional projects of isolation systems consider a unidirectional excitation and evaluate only some components of the response system, this occurs for the limitations in the trans-missibility use. Moreover, they do not give an appropriate attention to some parameters of geometrical con¯guration of the system (location and angle inclination of the isolators, location of the base supports, etc.). Herein, it will be shown the relevance of this pa-rameters in the search process of optimal con¯gurations and it will be also see how they depend strongly on the kind of the system excitation, so it will be used some combinations of multidirectional harmonic excitations.
Los sistemas de aislamiento de vibraciones son utilizados en una gran variedad de aplicaciones (automóbiles, edificios, extructuras espaciales como aeronaves y en máquinas rotativas) para reducir la transmisión de vibraciones mecánicas generadas por los equipos. Se obtiene un aislamiento insertando un componente mecánico (aislante) que desempeña el papel de vínculo entre el subsistema que contiene la perturbación y el subsistema que se desea aislar. Generalmente son dos las cantidades utilizadas para evaluar la efectividad de un sistema de aislamiento: la transmisibilidad y la potencia. En este trabajo se utiliza la potencia, pués al ser una metodología más general, puede ser utilizada en sistemas complejos, pero tiene la desventaja de ser de díficil evaluación experimental. En esta tesis, serán simulados numéricamente varios sistemas de aislamiento pasivo por componentes rígidos o flexibles, que serán modelados por sus respectivas matrices de movilidad o impedancia. Estas matrices se obtendrán por métodos analíticos o numéricos según convenga. Los proyectos tradicionales de sistemas de aislamiento, debido a las limitaciones impuestas por el concepto de transmisibilidad utilizada, consideran una excitación unidireccional y evalúan solamente algunas componentes de la respuesta del sistema. Además de eso, ellos no dan la debida importancia a algunos parámetros escenciales de configuración geométrica del sistema (localización y ángulo de inclinación de los aislantes, localización de los apoyos de base, etc.). En este trabajo, se muestra la relevancia de los parámetros mencionados anteriormente en el proceso de búsqueda de las configuraciones óptimas y también se verá como esas configuraciones son fuertemente dependientes del tipo de exitación del sistema. Para esto se utilizaran combinaciones de exitaciones armónicas multidireccionales.
SOARES, EDSON JOSE. "ENERGY SPREAD IN VIBRATION ISOLATION SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26507@1.
Full textMuitas indústrias usam em seus processos materiais viscoplásticos. Esses materiais possuem propriedades que dependem fortemente da temperatura. Não é incomum encontrar processos envolvendo escoamentos não isotérmicos de materiais viscoplásticos. Nesses casos, informações sobre a transferência de calor são extremamente necessárias para um bom atendimento e aperfeiçoamento das operações. Fluidos de perfuração são tipicamente suspensões aquosas, e, por consequência, de natureza viscoplástica.Tais fluidos devem possuir densidade correta para manter a integridade física dos poços e evitar a produção prematura de hidrocarbonetos. Além disso, suas propriedades reológicas devem garantir a capacidade de arraste das partículas de rocha geradas durante o processo de perfuração, com um mínimo de potência de bombeamento. Tais particularidades requerem fluidos com baixas viscosidades a altas taxas de cisalhamento, que ocorrem em regiões próximas à parede, e altas viscosidades quando as taxas de deformação são baixas, o que ocorre na vizinhança do cascalho. Materiais viscoplásticos apresentam este tipo de comportamento. Portanto, o sucesso do processo de extração do petróleo depende do conhecimento e controle das propriedades reológicas dos fluidos de perfuração, as quais são fortemente dependentes da temperatura. Por esse motivo, a determinação do campo de temperatura no fluido de perfuração em escoamento faz-se necessária ainda em nível de projeto, o que só é possível com o conhecimento dos coeficientes de troca de calor. Estuda-se neste trabalho o problema da transferência de calor na região de entrada de escoamentos laminares de fluidos viscoplásticos através de espaços anulares. O comportamento do material é representado pelo modelo do fluido Newtoniano generalizado, com a função viscosidade descrita pela equação de Herschel-Bulkley. As equações de conservação são resolvidas numericamente via o método de volumes finitos. Investigam-se os efeitos (no coeficiente de troca de calor) da tensão limite de escoamento, índice power-law, razão de aspecto e dos números adimensionais de Reynolds e Peclet. Dentre outras conclusões, mostra-se que o números de Nusselt é uma função muito fraca das propriedades reológicas, desviando-se muito pouco dos valores Newtonianos. Surpreendentemente, esta conclusão contrasta-se fortemente com o comportamento observando em escoamentos de materiais viscoplásticos através de tubos. Convém enfatizar a importância desse fato no que tange a projetos de processos.
There are many industries that use in their processes viscoplastic materials. These materials have properties that strongly depend on temperature. It is not uncommon to find processes involving the non-isothermal flow of viscoplastic materials. For these cases, heat transfer information is needed to allow reliable process designs. Drilling muds are typically aqueous suspensions and, consequently, viscoplastic in nature. They must have the correct density to provide the pressure needed for well integrity, and for avoiding premature production of hydrocarbons. Their rheological properties must be such as to aloe carrying the drill chips with a minimum of pumping power. This requires a highly shear-thinning rheological behavior. Also, the success of a well cementing operation depends to a great extent on the knowledge and control of cement rheological properties, which are also temperature dependent. In this work, heat transfer in the entrance-region flow of viscoplastic materials through annular spaces is analyzed. The flow is laminar, and the material is assumed to behave as a Generalized Newtonian fluid, with a Herschel-Bulkley viscosity function. The conservation equations are solved numerically via a finite volume method. The effect on heat transfer of yield stress, power-law exponent, aspect ratio and dimensionless Peclet and Reynolds numbers is investigated. Among other findings, it is shown that the Nusselt number is a rather weak function of the rheological properties, deviating very little from the Newtonian values. Surprisingly, this stands in strong contrast to the behavior observed for flows of viscoplastic materials through tubes. It is worth noting that this finding has important consequences in process design.
Ismail, Mohd. "Shock isolation systems incorporating Coulomb friction." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/348953/.
Full textHelal, Mohammad Rahat. "Efficient Isolation Enabled Role-Based Access Control for Database Systems." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501627843916302.
Full textBryant, H. Victoria. "Modeling atomicity and isolation in workflow systems." Laramie, Wyo. : University of Wyoming, 2007. http://proquest.umi.com/pqdweb?did=1400971431&sid=1&Fmt=2&clientId=18949&RQT=309&VName=PQD.
Full textYu, Dingli. "Fault diagnosis for industrial systems with emphasis on bilinear systems." Thesis, Coventry University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364163.
Full textBooks on the topic "Isolation Systems"
Starkey, Steve. Base isolation bearings (Dynamic Isolation Systems, Inc.): Construction report. Salem, Or: Oregon Dept. of Transportation, Research Unit, 1998.
Find full textHumphreys, M. Reliability study into subsea isolation systems. Sudbury: HSE Books, 1996.
Find full textBiteus, Jonas. Fault isolation in distributed embedded systems. Linko ping, Sue cia: Linko pings Universitet. Department of Computer and Information Science, 2007.
Find full textA, Furman F., and Rivin Eugene I, eds. Applied theory of vibration isolation systems. New York: Hemisphere Pub. Corp., 1990.
Find full textKemerlis, Vasileios. Protecting Commodity Operating Systems through Strong Kernel Isolation. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textMeskin, Nader. Fault Detection and Isolation: Multi-Vehicle Unmanned Systems. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textR, Cramond Wallis, U.S. Nuclear Regulatory Commission. Division of Safety Issue Resolution., Sandia National Laboratories, and Science Applications International Corporation, eds. Risk assessment of isolation devices in safety systems. Washington, DC: Division of Safety Issue Resolution, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1993.
Find full textMayhew, Ellen R. Fault detection and isolation for reconfigurable flight control systems. New York: American Institute of Aeronautics and Astronautics, 1988.
Find full textCenter, Lewis Research, ed. Development and approach to low-frequency microgravity isolation systems. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textInc, Dynamic Isolation Systems, Highway Innovative Technology Evaluation Center (U.S.), and Civil Engineering Research Foundation, eds. Evaluation findings for Dynamic Isolation Systems, Inc. elastomeric bearings. Washington, DC: Civil Engineering Research Foundation, 1998.
Find full textBook chapters on the topic "Isolation Systems"
Kounev, Samuel, Klaus-Dieter Lange, and Jóakim von Kistowski. "Performance Isolation." In Systems Benchmarking, 341–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41705-5_16.
Full textConnor, Jerome, and Simon Laflamme. "Base Isolation Systems." In Structural Motion Engineering, 279–344. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06281-5_6.
Full textFekete, Alan. "Snapshot Isolation." In Encyclopedia of Database Systems, 1–7. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_346-2.
Full textFekete, Alan. "Snapshot Isolation." In Encyclopedia of Database Systems, 2659–64. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_346.
Full textFekete, Alan. "Snapshot Isolation." In Encyclopedia of Database Systems, 3513–19. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_346.
Full textSippu, Seppo, and Eljas Soisalon-Soininen. "Transactional Isolation." In Data-Centric Systems and Applications, 101–24. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12292-2_5.
Full textBernstein, Philip A. "SQL Isolation Levels." In Encyclopedia of Database Systems, 1–2. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_366-2.
Full textFekete, Alan. "Serializable Snapshot Isolation." In Encyclopedia of Database Systems, 1–4. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_80774-1.
Full textBernstein, Philip A. "SQL Isolation Levels." In Encyclopedia of Database Systems, 2761–62. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_366.
Full textBernstein, Philip A. "SQL Isolation Levels." In Encyclopedia of Database Systems, 3681–83. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_366.
Full textConference papers on the topic "Isolation Systems"
Liu, Yanning, Yanchu Xu, and Bill Flynn. "Isolation and Vibration Transmission Reduction of Systems Mounted on a Flexible Structure." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48558.
Full textGermann, Lawrence M., and Avanindra A. Gupta. "Active isolation systems." In Optical Engineering and Photonics in Aerospace Sensing, edited by George E. Sevaston and Richard H. Stanton. SPIE, 1993. http://dx.doi.org/10.1117/12.157077.
Full textPonslet, E., and M. Eldred. "Discrete optimization of isolator locations for vibration isolation systems." In 6th Symposium on Multidisciplinary Analysis and Optimization. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-4178.
Full textRamallo, J. C., E. A. Johnson, B. F. Spencer, Jr., and M. K. Sain. "``Smart'' Base Isolation Systems." In Structures Congress 2000. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40492(2000)18.
Full textTryggvason, Bjarni V., S. E. Salcudean, W. Y. Stewart, and N. Parker. "Microgravity Vibration Isolation Mount." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1994. http://dx.doi.org/10.4271/941364.
Full textHunt, Tyler, Zhipeng Jia, Vance Miller, Christopher J. Rossbach, and Emmett Witchel. "Isolation and Beyond." In HotOS '19: Workshop on Hot Topics in Operating Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3317550.3321427.
Full textBurtsev, Anton, Dan Appel, David Detweiler, Tianjiao Huang, Zhaofeng Li, Vikram Narayanan, and Gerd Zellweger. "Isolation in Rust." In SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3477113.3487272.
Full textScarborough, Lloyd H., Christopher D. Rahn, and Edward C. Smith. "Fluidic Composite Tunable Vibration Isolators." In ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3683.
Full textHORAK, D. "Isolation of unstructured system failures in dynamic systems." In Guidance, Navigation and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-3508.
Full textMahmoudian, Pooya, and Reza Kashani. "Active Stiffness and Damping Control of Air Mounted/Suspended Systems." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66272.
Full textReports on the topic "Isolation Systems"
Yunovich. L52265 User Manual for Electrical Isolation Devices. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2004. http://dx.doi.org/10.55274/r0010183.
Full textPelto, P. J., K. R. Ames, and R. H. Gallucci. Reliability analysis of containment isolation systems. Office of Scientific and Technical Information (OSTI), June 1985. http://dx.doi.org/10.2172/5535425.
Full textPanas, C., and L. Siegel. Pandora Telescope Isolation Systems Engineering Project. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1788330.
Full textYan, Yiqun, Yi-Lung Mo, Farn-Yuh Menq, Kenneth H. Stokoe, II, Judy Perkins, and Yu Tang. Development of Seismic Isolation Systems Using Periodic Materials. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1183763.
Full textPonslet, E. R., and M. S. Eldred. Discrete optimization of isolator locations for vibration isolation systems: An analytical and experimental investigation. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/244592.
Full textLee, B. S. The effects of aging on BWR core isolation cooling systems. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10192341.
Full textTrummer, D. J., and S. C. Sommer. Overview of seismic base isolation systems, applications, and performance during earthquakes. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10185638.
Full textWaymire, D. R. Current shock-isolation system theory and practice for Sandia instrumentation systems at the Nevada Test Site. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/6176915.
Full textShenton, Harry W. III. Guidelines for pre-qualification, prototype and quality control testing of seismic isolation systems. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5800.
Full textBolisetti, Chandrakanth, Justin Coleman, William Hoffman, Andrew Whittaker, Sai Parsi, Jason Redd, Michael Cohen, et al. Seismic Isolation of Major Advanced Reactor Systems for Economic Improvement and Safety Assurance. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1690240.
Full text