Dissertations / Theses on the topic 'Isolated power converts'

To see the other types of publications on this topic, follow the link: Isolated power converts.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Isolated power converts.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Di, Capua Giulia. "Models and methods for the design of isolated power converters in high-frequency high-efficiency applications." Doctoral thesis, Universita degli studi di Salerno, 2013. http://hdl.handle.net/10556/893.

Full text
Abstract:
2011 - 2012
Isolated power supplies design requires the achievement of overall stress, losses, cost, size and reliability trade-off. This problem is of considerable importance in modern applications of power converters, as for energy saving issues as for the achievement of high power density capabilities needed to integrate the power supply into the same boards where the system they feed is hosted. The aim of this PhD dissertation is to discuss the fundamental issues regarding the design of high-efficiency high-power-density isolated power converters, related to the transformers design and to the system-level analysis of functional and parametric correlations existing among transformers and silicon devices in the achievement of high efficiency. Transformer design is the central issue in isolated switching power supplies design. Affording a preliminary reliable investigation of possible feasible power supply designs using off-the-shelf transformers can be of great help in reducing the time to prototyping and the time-to-market. Even though many off-the-shelf transformers are available today for standard applications, many special situations occur such that the design of a custom transformer is required. New design method are needed in order to enable a wider detection and investigation of possible transformer design solutions by means of a straightforward matching between the available magnetic cores, the operating conditions of the transformer to be designed and the design constraints to be fulfilled. A critical re-examination of transformers design methods discussed in technical literature has been afforded to highlighting some common misleading assumptions which can hinder the minimization of the transformer. Thus, a new design approach has been investigated and discussed, which helps in easily identifying possible transformer solutions in critical custom designs for a given application, complying with losses and size constraints. The new method is aimed at quickly identifying possible combinations of magnetic cores and windings turns number when many possible design might be feasible and a fast comparative evaluation is needed for preliminary cores selection. Novel geometric form factors of magnetic core (Kf and Kc) have been introduced and a consequent classification procedure for magnetic cores has been obtained, showing the correlation between the characteristics of the core and the specific applications in which each type of core offers major advantages in terms of minimizing losses and/or size. A magneto-electro-thermal macro model of the transformer has been adopted in order to investigate the dependency of total transformer losses on the temperature and to analyze the temperature sensitivity of form factor constraints of magnetic cores for power loss compliance. In particular, temperature-dependent boundaries curves both for the core window area and cross-section and for the form factors Kf and Kc have been obtained, allowing quick identification of feasible design solutions, complying with all design constraints, included thermal issues. Transformers and silicon devices do inextricably share the responsibility of major losses in isolated power supplies, and the optimization of the former normally impinges the one of the latter. As a consequence, the intimate correlation among these parts need to be jointly considered regarding the way the characteristics of one device influence the losses of the other one. In order to achieve reliable comparative evaluations among different design set-up, a new versatile numerical model for commutations analysis of power MOSFETs has been developed. The model takes into account the non-linear behavior of the inter-electrode capacitances and has been conceived to work as with parameters and information contained in the devices datasheets as with more detailed models. A Modified Forward Euler (MFE) numerical technique has been specifically developed and adopted in the realization of a numerical algorithm which solves the non linear system of differential equations describing the effect of parasitic capacitances in whatever operating conditions, in order to overcome the limitation exhibited by ODEs techniques for stiff problems in this particular application. The new MFE technique allows to compare the switching characteristics of MOSFETs with a good level of reliability and to obtain a detailed analysis of capacitive currents paths circulating between MOSFETs in half-bridge configuration during commutations. The numerical device-level model of the MOSFETs couples has been first tested in the analysis of basic non isolated synchronous rectification buck converter and then used into an integrated model allowing the analysis of Active Clamp Forward converters. It has been also demonstrated that the model adopted for the switching cell can be implemented in circuit simulators like Micro-Cap. The correlations existing between the parasitic parameters which characterize both transformer and MOSFETs and their impact on the switching behavior and the efficiency of such a conversion system can be effectively investigated by using such modeling approach, thus overcoming the limitations and unreliability of simplified analytical formulas for the prediction of the ZVS achievement. In particular, the integrated system model has been successfully used to determine the mutual constraint conditions between magnetic devices and solid state devices to achieve soft-switching, and their effects on the physical feasibility and design/selection of such power devices in order to achieve high efficiency. Experimental activities have been done to validate the methods and models proposed, through the implementation of on-line losses measurements techniques for both magnetic and solid state devices. The high switching frequency, high slew rates, high current and low leakage devices make such measures extremely sensitive to the parasitic circuit layout parameters. In order to achieve reliable measurements, non-conventional measurement techniques have been investigated based on the use of current sensing MOSFETs, and applied in the development and implementation of new measuring circuits. [edited by author]
XI n.s.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xuan. "Switched Capacitor Circuit Based Isolated Power Converters." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461327493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahmad, Khan Naveed. "Power Loss Modeling of Isolated AC/DC Converter." Thesis, KTH, Elektrisk energiomvandling, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-109717.

Full text
Abstract:
Several research activities at KTH are carried out related to Isolated AC/DC converters in order to improve the design and efficiency. Concerning the improvement in the mentioned constraints, losses of the elements in the prototype converter are modeled in this thesis work. The obtained loss model is capable of calculating the losses under different circumstances. The individual contribution of losses for each element at different conditions can be obtained, which is further useful in improving the design and therefore, efficiency. The losses in different elements of the converter, including power semiconductor devices, RC-snubbers, transformer and filter inductor at different operating points can be computed by using the obtained model. The loss model is then validated by comparing the analytical results with the measurements. The results based on developed loss model show consistency with the measured losses. The comparison at different conditions shows that, the difference between measured and analytical results ranges between 10% to 20 %. The difference is due to those losses which are disregarded because of their negligible contribution. On the other hand, it is also observed that if the neglected losses are counted, the difference reduces up to 10%.
APA, Harvard, Vancouver, ISO, and other styles
4

York, Jr John Benson. "An Isolated Micro-Converter for Next-Generation Photovoltaic Infrastructure." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/19326.

Full text
Abstract:
Photovoltaic (PV) systems are a rapidly growing segment in the renewable energy industry.  Though they have humble origins and an uncertain future, the commercial viability of PV has significantly increased, especially in the past decade.  In order to make PV useful, however, significant effort has to go into the power conditioning systems that take the low-voltage dc from the panel and create utility compatible ac output.  Popular architectures for this process include the centralized inverter and the distributed micro-inverter, each with its own advantages and disadvantages.  One attempt to retain the advantages of both architectures is to centralize the inverter function but construct PV panel-level micro-converters which optimize the panel output and condition the power for the inverter.  The main focus of this work is to explore the technical challenges that face the evolution of the dc-dc micro-converter and to use them as a template for a vertically integrated design procedure.

The individual chapters focus on different levels of the process:  topology, modulation and control, transient mitigation, and steady-state optimization.  Chapter 2 introduces a new dc-dc topology, the Integrated Boost Resonant (IBR) converter, born out of the natural design requirements for the micro-converter, such as high CEC efficiency, simple structure, and inherent Galvanic isolation.  The circuit is a combination of a traditional PWM boost converter and a discontinuous conduction mode (DCM), series resonant circuit.  The DCM operation of the high-frequency transformer possesses much lower circulating energy when compared to the traditional CCM behavior.  When combined with  zero-current-switching (ZCS) for the output diode, it results in a circuit with a high weighted efficiency of 96.8%.  Chapter 3 improves upon that topology by adding an optimized modulation scheme to the control strategy.  This improves the power stage efficiency at nominal input and enhances the available operating range.  The new, hybrid-frequency method utilizes areas where the modulator operates in constant-on, constant-off, and fixed-frequency conditions depending on duty cycle, the resonant period length, and the desired input range.  The method extends the operating range as wide as 12-48V and improves the CEC efficiency to 97.2% in the 250-W prototype.  Chapter 4 considers the soft-start of the proposed system, which can have a very large capacitive load from the inverter.  A new capacitor-transient limited (CTL) soft-start method senses the ac transient across the resonant capacitor, prematurely ending the lower switch on-time in order to prevent an excessive current spike.  A prototype design is then applied to the IBR system, allowing safe system startup with a range of capacitive loads from 2μF to 500μF and a consistent peak current without the need for current sensing.  Chapter 5 further investigates the impact of voltage ripple on the PV output power.  A new method for analyzing the maximum power point tracking (MPPT) efficiency is proposed based on panel-derived models.  From the panel model, an expression demonstrating the MPPT efficiency is derived, along with a ripple â "budgetâ " for the harmonic sources.  These ripple sources are then analyzed and suggestions for controlling their contributions are proposed that enable circuit designers to make informed and cost-effective design decisions.  Chapter 6 illustrates how results from a previous iteration can provide a basis for the next generation\'s design.  A zero-voltage-switching (ZVS) version of the circuit in Chapter 2 is proposed, requiring only two additional MOSFETs and one inductor on the low-voltage side.  The maximum switching frequency is then increased from 70kHz to 170kHz, allowing for a 46% reduction in converter volume (from 430cm3 to 230cm3) while retaining greater than 97% weighted efficiency.

Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Kenneth S. "CAD simulation of drive converters on isolated marine power systems." Thesis, University of Aberdeen, 1992. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU040411.

Full text
Abstract:
Power electronic converters are being increasingly used on isolated marine power systems, to provide variable speed control of electric motors. As the rating of these drive converters increases, the converter load becomes a significant part of the total system load. Traditional methods for calculating the performance characristics, which assume the presence of an infinite busbar on the system, are not appropriate for such systems. The intercoupling which exists between system components such as synchronous generators, converters, and the drive motor must be included in the calculation. In this thesis, a commercially available software simulator Saber, is used to model a complete electrical cycloconverter propulsion drive, of the type which may be used for future Royal Navy frigates. This model includes the synchronous generators, cycloconverters, and induction motor drives. The simulation is performed in the time domain, which ensures that the intercoupling present between system components is preserved. The simulation is not restricted to one converter configuration, and has been used to investigate the relative merits of a number of possible converter connections. This method can be used to study drive performance under unbalanced conditions as well as for normal balanced operation. There is no perceived limit to the size, or complexity, of the converter systems which can be studied using this method. The only cost would be increased computer run times.
APA, Harvard, Vancouver, ISO, and other styles
6

Sarar, Stephen F. "A galvanically isolated power converter module for DC Zonal Electric Distribution Systems." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FSarar.pdf.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, March 2006.
Thesis Advisor(s): Robert W. Ashton, Andrew A. Parker. "March 2006." Includes bibliographical references (p. 73). Also available online.
APA, Harvard, Vancouver, ISO, and other styles
7

Soon, John Long. "Fault-Tolerant Design and Implementation for Non-Isolated Reconfigurable DC/DC Converters." Thesis, The University of Sydney, 2019. http://hdl.handle.net/2123/20266.

Full text
Abstract:
This thesis mainly focuses on improving the conventional DC-DC converter topology by utilizing the redundancy concept (N+1) and fault-tolerant design to maintain an uninterrupted output operation even on primary switch failure. The proposed fault-tolerant converter (FTC) involves merging three configurations namely buck, boost and buck-boost to derive a new converter structure along with bidirectional capabilities. The proposed FTC is equipped with a single redundant switch and shared with one coupled inductor and one capacitor (1L-1C) to be capable of achieving the step-up and step-down operation. The major faults of the converter system are highly related to the power switching devices, which can be categorized as open circuit fault (OCF), and short circuit fault (SCF). The proposed fault diagnosis scheme is able to detect the OCF and SCF in less than half of the switching period by sampling the rising and failing edge of the pulsating signal to identify the switch fault behavior. Therefore, remedial action of the proposed FTC can be associated with the fault detection unit to anticipate the moment when the converter requires the activation of the redundant switches by providing a back-up operation. However, any reconfigurable decision is necessary to electrically isolate the faulty component in order to avoid the subsequent fault current within the circuit loop. The proposed method of isolation design adopts the joule-integral principle for selecting an appropriate rating between fuse and MOSFET pair. It provides the satisfactory result for protecting the proposed FTC. Finally, a converter reliability model is carried out based on Markov chain theory to formulate the mean time to failure (MTTF) profile for the proposed FTC. The reliability analysis shows that the proposed FTC can surpass the reliability performance of the conventional DC-DC converter through optimization of the circuit topology.
APA, Harvard, Vancouver, ISO, and other styles
8

Moon, Seung-Ryul. "Multiphase Isolated DC-DC Converters for Low-Voltage High-Power Fuel Cell Applications." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/32442.

Full text
Abstract:
Fuel cells provide a clean and highly efficient energy source for power generation; however, in order to efficiently utilize the energy from fuel cells, a power conditioning system is required. Typical fuel cell systems for stand-alone and utility grid-tied stationary power applications are found mostly with low nominal output voltages around 24 V and 48 V, and power levels are found to be 3 to 10 kW [1][2]. A power conditioning system for such applications generally consists of a dc-dc converter and a dc-ac inverter, and the dc-dc converter for low-voltage, high-power fuel cells must deal with a high voltage step-up conversion ratio and high input currents. Although many dc-dc converters have been proposed, most deal with high input voltage systems that focus on step-down applications, and such dc-dc converters are not suitable for low-voltage, high-power fuel cell applications. Multiphase isolated dc-dc converters offer several advantages that are very desirable in low-voltage, high-power fuel cell applications. First, a multiphase is constructed with paralleled phases, which increase power rating and current handling capability for high input current. Second, an interleaving control scheme produces a high operating frequency with a low switching frequency, and the high operating frequency reduces size of passive components. Thirdly, use of a transformer provides electrical isolation and a high conversion ratio. Lastly, several multiphase converters are capable of soft-switching operation, which increases converter efficiency. This thesis examines two highly efficient, soft-switching dc-dc converters that are targeted for fuel cell applications. The thesis also describes the convertersâ basic operating principles and analyzes performance for low-voltage, high-power fuel cell applications. 5-kW prototypes for each converter are built and tested with a fuel cell simulator. Experimental switching waveforms and efficiency profiles are shown to support the described basic principles and the analysis. Major features and differences between these two converters are also discussed.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Sterk, Douglas Richard. "Compact Isolated High Frequency DC/DC Converters Using Self-Driven Synchronous Rectification." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9648.

Full text
Abstract:
In the early 1990's, with the boom of the Internet and the advancements in telecommunications, the demand for high-speed communications systems has reached every corner of the world in forms such as, phone exchanges, the internet servers, routers, and all other types of telecommunication systems. These communication systems demand more data computing, storage, and retrieval capabilities at higher speeds, these demands place a great strain on the power system. To lessen this strain, the existing power architecture must be optimized. With the arrival of the age of high speed and power hungry microprocessors, the point of load converter has become a necessity. The power delivery architecture has changed from a centralized distribution box delivering an entire system's power to a distributed architecture, in which a common DC bus voltage is distributed and further converted down at the point of load. Two common distributed bus voltages are 12 V for desktop computers and 48 V for telecommunications server applications. As industry strives to design more functionality into each circuit or motherboard, the area available for the point of load converter is continually decreasing. To meet industries demands of more power in smaller sizes power supply designers must increase the converter's switching frequencies. Unfortunately, as the converter switching frequency increases the efficiency is compromised. In particular, the switching, gate drive and body diode related losses proportionally increase with the switching frequency. This thesis introduces a loss saving self-driven method to drive the secondary side synchronous rectifiers. The loss saving self-driven method introduces two additional transformers that increase the overall footprint of the converter. Also, this thesis proposes a new magnetic integration method to eliminate the need for the two additional gate driver magnetic cores by allowing three discrete power signals to pass through one single magnetic structure. The magnetic integration reduces the overall converter footprint.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Gallardo, Angelo Miguel Asuncion. "Design and Construction of 1800W Modular Multiple Input Single Output Non-Isolated DC-DC Converters." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1739.

Full text
Abstract:
This thesis report details the design and construction of non-isolated DC-DC converters to create a Multiple Input Single Output (MISO) converter for combining multiple renewable energy sources into one single output. This MISO uses the four-switch buck-boost topology to output a single 48V from multiple nominal 24V inputs. The MISO converter implements a modular approach to deliver 1800W output power. Each module in the MISO is rated at 600W and they share the output power equally. Hardware results show that the converter produces 1800W of output power from three sources with 96.4% efficiency. Each module also demonstrates equal sharing feature of the MISO converter.
APA, Harvard, Vancouver, ISO, and other styles
11

Kathi, Lokesh. "Small-Signal Analysis of Non-isolated Cuk DC-DC Converter." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1598899911848989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tan, Zheyuan. "Four-Output Isolated Power Supply for the Application of IGBT Gate Drive." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32925.

Full text
Abstract:
This thesis focuses on the design issues of the multiple-output boost full-bridge converter, which is constructed by cascading the boost regulator with the inductor-less full-bridge converter. The design of the boost regulator has been proposed briefly with component selection and compensator design. After that, the inductor-less full-bridge converter is analyzed extensively. In the first place, the operation principle of the inductor-less full-bridge converter is introduced. Later, the effect of parasitic resistance and inductance is analyzed in an L-R series circuit model as step-response, which relates the drop of output voltage to the load current. Then, the effects of the dc blocking capacitor for the unbalanced load condition and unbalanced duty cycle are tackled. The theoretical results are compared with the experimental results and the simulation results to verify the relationship between the output voltage drop and load current. The overall efficiency of the converter is tested under various conditions.

The design of the planar transformer is critical to limit the profile of the converter and the leakage phenomenon. A planar transformer fit for the inductor-less full-bridge converter is designed and analyzed in 3D FEA software. An N-port transformer model is proposed to implement the inductance matrix into the leakage inductance matrix for circuit analysis. Based on this N-port model several measurements to extract the parameters in this model are proposed, where only the impedance analyzer is needed. Finally, the effects of trace layout and encapsulation on breakdown voltage in PCB are summarized from experimental results.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
13

Zhao, Shishuo. "High Frequency Isolated Power Conversion from Medium Voltage AC to Low Voltage DC." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/74969.

Full text
Abstract:
Modern data center power architecture developing trend is analyzed, efficiency improvement method is also discussed. Literature survey of high frequency isolated power conversion system which is also called solid state transformer is given including application, topology, device and magnetic transformer. Then developing trend of this research area is clearly shown following by research target. State of art wide band gap device including silicon carbide (SiC) and gallium nitride (GaN) devices are characterized and compared, final selection is made based on comparison result. Mostly used high frequency high power DC/DC converter topology dual active bridge (DAB) is introduced and compared with novel CLLC resonant converter in terms of switching loss and conduction loss point of view. CLLC holds ZVS capability over all load range and smaller turn off current value. This is beneficial for high frequency operation and taken as our candidate. Device loss breakdown of CLLC converter is also given in the end. Medium voltage high frequency transformer is the key element in terms of insulation safety, power density and efficiency. Firstly, two mostly used transformer structures are compared. Then transformer insulation requirement is referred for 4160 V application according to IEEE standard. Solid insulation material are also compared and selected. Material thickness and insulation distance are also determined. Insulation capability is preliminary verified in FEA electric field simulation. Thirdly two transformer magnetic loss model are introduced including core loss model and litz wire winding loss model. Transformer turn number is determined based on core loss and winding loss trade-off. Different core loss density and working frequency impact is carefully analyzed. Different materials show their best performance among different frequency range. Transformer prototype is developed following designed parameter. We test the developed 15 kW 500 kHz transformer under 4160 V dry type transformer IEEE Std. C57.12.01 standard, including basic lightning test, applied voltage test, partial discharge test. 500 kHz 15 kW CLLC converter gate drive is our design challenge in terms of symmetry propagation delay, cross talk phenomenon elimination and shoot through protection. Gate drive IC is carefully selected to achieve symmetrical propagation delay and high common mode dv/dt immunity. Zero turn off resistor is achieved with minimized gate loop inductance to prevent cross talk phenomenon. Desaturation protection is also employed to provide shoot through protection. Finally 15 kW 500 kHz CLLC resonant converter is developed based on 4160V 500 kHz transformer and tested up to full power level with 98% peak efficiency.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
14

Yeh, Chih-Shen. "Synchronous-Conduction-Mode Tapped-Inductor Buck Converter for Low-Power, High-Density Application." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/81722.

Full text
Abstract:
General-purpose step-down converter is essential in electronic system for processing energy from high-voltage rail to low-voltage circuits. The applications can be found at the auxiliary supplies in automobile, industrial and communication systems. Buck converter is a common circuit topology to fulfill step-down conversion, especially in low-power application since it is well-studied and straightforward. However, it suffers from low duty cycle under high step-down condition, and typically operates in continuous conduction mode (CCM) that generates large switching loss. On the other hand, as an extension of the buck converter, tapped-inductor (TI) buck converter has larger duty cycle while maintaining the structural simplicity. Therefore, the main objective of this thesis is to explore the potential of TI buck converter as a wide conversion range, high power density and high efficiency topology for low power application. To achieve high efficiency at switching frequency of MHz-level, synchronous conduction mode (SCM) is applied for turn-on losses elimination. The operation principle and power stage design of SCM TI buck is first introduced. The design of high switching frequency coupled inductor is emphasized since its size plays a critical role in power density. Loss breakdown is also provided to perform a comprehensive topological study. Secondly, detailed zero-voltage-switching (ZVS) condition of SCM TI buck is derived so that the converter does not experience redundant circulating energy. The experimental results of 15-W SCM TI buck converter prototypes are provided with 90.7% of peak power stage efficiency. The size of coupled inductor is down to 116 mm3. To enhance light-load efficiency, a variable frequency control scheme based on derived ZVS conditions is implemented with the switching frequency ranging from 2 MHz to 2.9 MHz.
Master of Science
General-purpose step-down converter is essential in electronic system for processing energy from high-voltage rail to low-voltage circuits. The applications can be found at the auxiliary supplies in automobile, industrial and communication systems. Typically, the ultimate goals of general-purpose step-down converter are versatility, high efficiency and compact size. Recently, tapped-inductor (TI) buck converter is studied since it could overcome the drawback of commonly used buck converter under high step-down conversion. Therefore, the potential of TI buck converter as a general-purpose step-down converter candidate is explored in this thesis, including control method, hardware design, etc. The thesis verifies that TI buck converter could have compact size while remaining efficient and adaptable.
APA, Harvard, Vancouver, ISO, and other styles
15

Brandelero, Julio Cezar. "Conception et réalisation d'un convertisseur multicellulaire DC/DC isolé pour application aéronautique." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14246/1/Brandelero.pdf.

Full text
Abstract:
L’électricité prend une place de plus en plus importante dans les systèmes énergétiques embarqués. L’électricité est une forme d’énergie très malléable, facile à transporter et réglable ou transformable avec un très faible taux de pertes. L’énergie électrique, associée à des convertisseurs statiques, est plus facile à maîtriser que, par exemple, l’énergie hydraulique et/ou pneumatique, permettant un réglage plus fin et une réduction des coûts de maintenance. L’évolution de la puissance dans les modèles avioniques est marquante. Avec le nombre croissant de charges électroniques, un avion plus électrique avec un réseau à courant alternatif inclurait un grand nombre de redresseurs AC/DC qui devront respecter les normes de qualité secteur. Une solution pour la réduction de la masse serait de préférer un réseau HVDC (High Voltage DC Bus). Sur les futurs modèles avioniques plus électriques, les concepteurs envisageront des conversions HVDC/DC à partir de l’unité appelée BBCU (Buck Boost Converter Unit). Dans ce cas d’étude, un réseau de distribution en tension continue (±270Vdc) est connecté à un réseau de sécurité basse tension (28Vdc) avec un échange bidirectionnel de puissance pouvant atteindre 10kW. Le convertisseur statique assurant cette liaison représente de nouveaux défis pour l’électronique de puissance en termes de fiabilité, sûreté, détection de panne, rendement et réduction de masse et de coût. Le dimensionnement du convertisseur doit prendre en compte une conception optimale, en aéronautique ce critère est la masse. Dans le processus de dimensionnement et d’optimisation du convertisseur, il est donc impératif de prendre en compte trois facteurs principaux : 1) l’évolution des topologies de conversion, 2) l’évolution des composants actifs et passifs et 3) l’intégration de puissance. La réunion de ces trois facteurs permettra ainsi la miniaturisation des convertisseurs statiques. Dans un premier temps, nous préciserons la démarche adoptée pour le dimensionnement d’un convertisseur en prenant en compte : les topologies actives, les filtres différentiels et le système de refroidissement. Les différents éléments qui composent le convertisseur sont décrits dans un langage informatique orienté objet. Des facteurs de performances seront également introduits afin de faciliter le choix des semi-conducteurs, des condensateurs et du dissipateur pour un convertisseur statique. Dans un deuxième temps, nous présenterons le fonctionnement d’une topologie multicellulaire DC/DC, isolée pour l’application proposée. Nous présenterons les avantages du couplage de différentes phases de ce convertisseur. Nous introduirons les différentes associations des cellules et leurs avantages, possibles grâce à l’isolement, comme la mise en série et en parallèle. Puisque la caractérisation des pertes des semi-conducteurs est essentielle pour le dimensionnement du convertisseur statique, nous proposerons deux approches : un modèle de simulation relativement simple et paramétré à l’aide de seules notices constructeurs ; et une méthode de mesure des pertes dans les semi-conducteurs qui est à la fois précise et compatible avec les composants les plus rapides. En ce qui concerne les composants magnétiques, une surface de réponse des matériaux ferrites sera présentée. Nous allons décrire, par le biais analytique et de simulation, des modèles pour la détermination du champ magnétique à l’intérieur du noyau et des ondulations de courant engendrés. Finalement, en profitant des modèles et des résultats obtenus dans les sections précédentes, nous montrerons le dimensionnement et la réalisation de chaque partie du convertisseur BBCU 100kHz / 10kW. Une perspective d’un design idéal est également présentée.
APA, Harvard, Vancouver, ISO, and other styles
16

Lombardo, Pierpaolo. "Fully Integrated Data and Power Transfer Systems with Galvanic Isolation." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3943.

Full text
Abstract:
My principal activity was focused on the design of galvanically isolated integrated systems as a part of a research project at the RF ADC by exploiting STMicroelectronics technology platforms providing on chip galvanic isolation. This technology was previously addressed to the implementation of isolated data transfer and it is currently used for mass production. In this context, the principal purpose of my work was the investigation on a fully integrated dc-dc power converter with half-duplex data communications providing on chip galvanic isolation in silicon technologies. This research is mainly interested in increasing the level of integration for the next generation of power converters with data transfer and several other applications requiring galvanic isolation. Autonomous sensors and/or control circuits, typically require a few tens of Mbps for data communication and an output power from tens to hundreds of mW. In this context, fully integrated interfaces can provide several advantages, including higher reliability, lower PCB area, lower system complexity and lower costs, especially if only silicon technology is exploited.
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Kunrong. "High-Frequency Quasi-Single-Stage (QSS) Isolated AC-DC and DC-AC Power Conversion." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29394.

Full text
Abstract:
The generic concept of quasi-single-stage (QSS) power conversion topology for ac-dc rectification and dc-ac inversion is proposed. The topology is reached by direct cascading and synchronized switching of two variety of buck or two variety of boost switching networks. The family of QSS power converters feature single-stage power processing without a dc-link low-pass filter, a unidirectional pulsating dc-link voltage, soft-switching capability with minimal extra commutation circuitry, simple PWM control, and high efficiency and reliability. A new soft-switched single-phase QSS bi-directional inverter/rectifier (charger) topology is derived based on the QSS power conversion concept. A simple active voltage clamp branch is used to clamp the otherwise high transient voltage on the current-fed ac side, and at the same time, to achieve zero-voltage-switching (ZVS) for the switches in the output side bridge. Seamless four-quadrant operation in the inverter mode, and rectifier operation with unity power factor in the charger (rectifier) mode are realized with the proposed uni-polar center-aligned PWM scheme. Single-stage power conversion, standard half-bridge connection of devices, soft-switching for all the power devices, low conduction loss, simple center-aligned PWM control, and high reliability and efficiency are among its salient features. Experimental results on a 3 kVA bi-directional inverter/rectifier prototype validate the reliable operation of the circuit. Other single-phase and three-phase QSS bi-directional inverters/rectifiers can be easily derived as topological extensions of the basic QSS bi-directional inverter/rectifier. A new QSS isolated three-phase zero-voltage/zero-current-switching (ZVZCS) buck PWM rectifier for high-power off-line applications is also proposed. It consists of a three-phase buck bridge switching under zero current and a phase-shift-controlled full-bridge with ZVZCS, while no intermediate dc-link is involved. Input power and displacement factor control, input current shaping, tight output voltage regulation, high-frequency transformer isolation, and soft-switching for all the power devices are realized in a unified single stage. Because of ZVZCS and single-stage power conversion, it can operate at high switching frequency while maintaining reliable operation and achieving higher efficiency than standard two-stage approaches. A family of isolated ZVZCS buck rectifiers are obtained by incorporating various ZVZCS schemes for full-bridge dc-dc converters into the basic QSS isolated buck rectifier topology. Experimental and simulation results substantiate the reliable operation and high efficiency of selected topologies. The concept of charge control (or instantaneous average current control) of three-phase buck PWM rectifiers is introduced. It controls precisely the average input phase currents to track the input phase voltages by sensing and integrating only the dc rail current, realizes six-step PWM, and features simple implementation, fast dynamic response, excellent noise immunity, and is easy to realize with analog circuitry or to integrate. One particular merit of the scheme is its capability to correct any duty-cycle distortion incurred on only one of the two active duty-cycles which often happens in the soft-switched buck rectifiers, another merit is the smooth transition of the input currents between the 60o sectors. Simulation and preliminary experimental results show that smooth operations and high quality sinusoidal input currents in the full line cycle are achieved with the control scheme.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
18

Ram, Prakash Ranjithh Raj. "Study of an Isolated and a Non-Isolated Modular DC/DC Converter : In Multi-Terminal HVDC/MVDC grid systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278495.

Full text
Abstract:
För sammankoppling av multi-terminala HVDC-system med punkt-till-punkt kopplingar ärDC-DC-omvandlaren den enda möjliga sammankopplingen. Därför genomgår problemenmed spänningsmatchning och likspänningsströmbegränsning i högspännings DC-systemomfattande forskning samt ligger i fokus för denna avhandling. Först analyseras toppmodernatopologier för högspännings DC-DC-omvandlare som används för samtrafik av flera terminalaHVDC-system. De analyserade topologierna jämförs sedan baserat på dess olika funktioner.Topologin för en konventionell icke-isolerad DC-DC-omvandlare analyseras när det gäller design,kostnad, storlek, förlust och effektstyrningskapacitet. Först skapas en matematisk modell ochsedan utförs en numerisk analys för olika arbetsområden. Därefter görs en jämförelse av entvåfas-icke-isolerad DC-omvandlare baserad på energilagring, maximal likströmsöverföring ochtotala förluster. Simulering utförs av en tvåfas och en trefas icke-isolerad DC-omvandlare iPSCAD med olika typer av styrenheter. Dessutom tas en isolerad omvandlartopologi och analyserasi detalj från matematisk modellering till validering med hjälp av simuleringsresultat.Olika typer av felanalyser för både isolerad och icke-isolerad omvandlartopologi görs. Slutligenutförs även analyser av DC-felet i olika möjliga anslutningar av omvandlaren i Multi-TerminalGrid, dvs Monopole, Bipole med både symmetriska och asymmetriska konfigurationer.
For interconnection of multi-terminal HVDC systems involving point-to-point links, aDC-DC converter is the only possible way to interconnect. Therefore, the issues of voltagematching and DC fault current limiting in high voltage DC systems are undergoing extensiveresearch and are the focus of this thesis. Starting with analyzing the state of the art highvoltage DC-DC converter topologies for interconnection of multi-terminal HVDC systems andbenchmarking each converter topology based on different functionalities. A basic non-isolatedDC-DC converter topology is analyzed in terms of design, cost, sizing, losses and power controlcapability. First, starting with the mathematical modeling and then the numerical analysis isdone for different operating regions. Next, it is compared with the two-phase non-isolated DCconverter based on energy storage, maximum DC power transfer, and total losses. Simulation oftwo-phase and three-phase non-isolated DC converter is done in PSCAD incorporating differenttypes of controllers. Then, an isolated converter topology is taken and analyzed in detail startingfrom mathematical modeling to validation using simulation results. Different types of faultsanalysis for both isolated and non-isolated converter topology is done. Finally, analyzing the DCfault in different possible connection of the converter in the multi-terminal grid, i.e. monopole,bipole in both symmetric and asymmetric configurations.
APA, Harvard, Vancouver, ISO, and other styles
19

Enomoto, Bruno Yukio. "Conversores DC-DC Dual-Active-Bridge isolados bidirecionais." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-17072018-092952/.

Full text
Abstract:
Este trabalho visa o estudo das regiões de operação de conversores CC/CC isolados bidirecionais do tipo DAB (Dual Active Bridge). É feito um estudo do comportamento do circuito com a variação dos valores das reatâncias de acoplamento, avaliando-se aspectos como eficiência, fator de potência, reativos, entre outros. A seguir é proposta uma estrutura de controle que permite a operação com tensões nos barramentos DC diferentes das nominais, minimizando as correntes absorvidas. Além disso, propõe-se uma estratégia de controle para regular a potência transferida. O trabalho inclui modelagem teórica, implementação em simulação computacional e medidas em protótipo experimental.
This work investigates operation regions of Dual Active Bridge DC-DC isolated bidirectional converters, studying circuit behavior with the variation of the coupling reactance, evaluating parameters like efficiency, power factor, reactive flow etc. A control structure is proposed which allows operating with DC voltages different from nominal voltages, reducing the AC currents. Furthermore, a control strategy to regulate the power transferred is proposed. Methodology includes theoretical modeling, computer simulation and experimental prototype measurements.
APA, Harvard, Vancouver, ISO, and other styles
20

Khanaki, Razieh. "Integration of non-isolated converters in battery storage systems: Topology development, evaluation and optimisation." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/208259/1/Razieh_Khanaki_Thesis.pdf.

Full text
Abstract:
This thesis examines topological variations of non-isolated DC-DC converters and their implications on design parameters and configurations of battery-integrated-converter systems. Furthermore, the opportunity of increased reliability with battery-integrated-converter systems is discussed with examples for both DC-DC and DC-AC converter applications, by taking into account the module voltage, redundancy level, scheduled maintenance and converter topology factors. Moreover, the optimisation and other practical trade-offs associated with the selection of the voltage rating of battery power modules (BPMs) in a battery-integrated-converter-system from an efficiency perspective is investigated.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhao, Xiaonan. "High-Efficiency and High-Power Density DC-DC Power Conversion Using Wide Bandgap Devices for Modular Photovoltaic Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89025.

Full text
Abstract:
With the development of solar energy, power conversion systems responsible for energy delivering from photovoltaic (PV) modules to ac or dc grid attract wide attentions and have significantly increased installations worldwide. Modular power conversion system has the highest efficiency of maximum power point tacking (MPPT), which can transfer more solar power to electricity. However, this system suffers the drawbacks of low power conversion efficiency and high cost due to a large number of power electronics converters. High-power density can provide potentials to reduce cost through the reduction of components and potting materials. Nowadays, the power electronics converters with the conventional silicon (Si) based power semiconductor devices are developed maturely and have limited improvements regarding in power conversion efficiency and power density. With the availability of wide bandgap devices, the power electronics converters have extended opportunities to achieve higher efficiency and higher power density due to the desirable features of wide bandgap devices, such as low on-state resistance, small junction capacitance and high switching speed. This dissertation focuses on the application of wide bandgap devices to the dc-dc power conversion for the modular PV applications in an effort to improve the power conversion efficiency and power density. Firstly, the structure of gallium-nitride (GaN) device is studied theoretically and characteristics of GaN device are evaluated under testing with both hard-switching and soft-switching conditions. The device performance during steady-state and transitions are explored under different power level conditions and compared with Si based devices. Secondly, an isolated high-efficiency GaN-based dc-dc converter with capability of wide range regulation is proposed for modular PV applications. The circuit configuration of secondary side is a proposed active-boost-rectifier, which merges a Boost circuit and a voltage-doubler rectifier. With implementation of the proposed double-pulse duty cycle modulation method, the active-boost-rectifier can not only serve for synchronous rectification but also achieve the voltage boost function. The proposed converter can achieve zero-voltage-switching (ZVS) of primary side switches and zero-current-switching (ZCS) of secondary side switches regardless of the input voltages or output power levels. Therefore, the proposed converter not only keeps the benefits of highly-efficient series resonant converter (SRC) but also achieves a higher voltage gain than SRC and a wide range regulation ability without adding additional switches while operating under the fixed-frequency condition. GaN devices are utilized in both primary and secondary sides. A 300-W hardware prototype is built to achieve a peak efficiency of 98.9% and a California Energy Commission (CEC) weighted efficiency of 98.7% under nominal input voltage condition. Finally, the proposed converter is designed and optimized at 1-MHz switching frequency to pursue the feature of high-power density. Considering the ac effects under high frequency, the magnetic components and PCB structure are optimized with finite element method (FEM) simulations. Compared with 140-kHz design, the volume of 1-MHz design can reduce more than 70%, while the CEC efficiency only drops 0.8% at nominal input voltage condition. There are also key findings on circuit design techniques to reduce parasitic effects. The parasitic inductances induced from PCB layout of primary side circuit can cause the unbalanced resonant current between positive and negative half cycles if the power loops of two half cycles have asymmetrical parasitic inductances. Moreover, these parasitic inductances reflecting to secondary side should be considered into the design of resonant inductance. The parasitic capacitances of secondary side could affect ZVS transitions and increase the required magnetizing current. Because of large parasitic capacitances, the dead-time period occupies a large percentage of entire switching period in MHz operations, which should be taken into consideration when designing the resonant frequency of resonant network.
Doctor of Philosophy
Solar energy is one of the most promising renewable energies to replace the conventional fossils. Power electronics converters are necessary to transfer power from solar panels to dc or ac grid. Since the output of solar panel is low voltage with a wide range and the grid side is high voltage, this power converter should meet the basic requirements of high step up and wide range regulation. Additionally, high power conversion efficiency is an important design purpose in order to save energy. The existing solutions have limitations of narrow regulating range, low efficiency or complicated circuit structure. Recently, the third-generation power semiconductors attract more and more attentions who can help to reduce the power loss. They are named as wide band gap devices. This dissertation proposed a wide band gap devices based power converter with ability of wide regulating range, high power conversion efficiency and simple circuit structure. Moreover, this proposed converter is further designed for high power density, which reduces more than 70% of volume. In this way, small power converter can merge into the junction box of solar panel, which can reduce cost and be convenient for installations.
APA, Harvard, Vancouver, ISO, and other styles
22

LaBella, Thomas Matthew. "A High-Efficiency Hybrid Resonant Microconverter for Photovoltaic Generation Systems." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50526.

Full text
Abstract:
The demand for increased renewable energy production has led to increased photovoltaic (PV) installations worldwide. As this demand continues to grow, it is important that the costs of PV installations decrease while the power output capability increases. One of the components in PV installations that has lots of room for improvement is the power conditioning system. The power conditioning system is responsible for converting the power output of PV modules into power useable by the utility grid while insuring the PV array is outputting the maximum available power. Modular power conditioning systems, where each PV module has its own power converter, have been proven to yield higher output power due to their superior maximum power point tracking capabilities. However, this comes with the disadvantages of higher costs and lower power conversion efficiencies due to the increased number of power electronics converters. The primary objective of this dissertation is to develop a high-efficiency, low cost microconverter in an effort to increase the output power capability and decrease the cost of modular power conditioning systems. First, existing isolated dc-dc converter topologies are explored and a new topology is proposed based on the highly-efficient series resonant converter operating near the series resonant frequency. Two different hybrid modes of operation are introduced in order to add wide input-voltage regulation capability to the series resonant converter while achieving high efficiency through low circulating currents, zero-current switching (ZCS) of the output diodes, zero-voltage switching (ZVS) and/or ZCS of the primary side active switches, and direct power transfer from the source to the load for the majority of the switching cycle. Each operating mode is analyzed in detail using state-plane trajectory plots. A systematic design approach that is unique to the newly proposed converter is presented along with a detailed loss analysis and loss model. A 300-W microconverter prototype is designed to experimentally validate the analysis and loss model. The converter featured a 97.7% weighted California Energy Commission (CEC) efficiency with a nominal input voltage of 30 V. This is higher than any other reported CEC efficiency for PV microconverters in literature to date. Each operating mode of the proposed converter can be controlled using simple fixed-frequency pulse-width modulation (PWM) based techniques, which makes implementation of control straightforward. Simplified models of each operating mode are derived as well as control-to-input voltage transfer functions. A smooth transition method is then introduced using a two-carrier PWM modulator, which allows the converter to transition between operating modes quickly and smoothly. The performance of the voltage controllers and transition method were verified experimentally. To ensure the proposed converter is compatible with different types of modular power conditioning system architectures, system-level interaction issues associated with different modular applications are explored. The first issue is soft start, which is necessary when the converter is beginning operation with a large capacitive load. A novel soft start method is introduced that allows the converter to start up safely and quickly, even with a short-circuited output. Maximum power point tracking and double line frequency ripple rejection are also explored, both of which are very important to ensuring the PV module is outputting the maximum amount of available power. Lastly, this work deals with efficiency optimization of the proposed converter. It is possible to use magnetic integration so that the resonant inductor can be incorporated into the isolation transformer by way of the transformer leakage inductance in order to reduce parts count and associated costs. This chapter, however, analyzes the disadvantages to this technique, which are increased proximity effect losses resulting in higher conduction losses. A new prototype is designed and tested that utilizes an external resonant inductor and the CEC efficiency was increased from 97.7% to 98.0% with a marginal 1.8% total cost increase. Additionally, a variable frequency efficiency optimization algorithm is proposed which increases the system efficiency under the high-line and low-line input voltage conditions. This algorithm is used for efficiency optimization only and not control, so the previously presented simple fixed-frequency modeling and control techniques can still be utilized.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
23

Baglan, Fuat Onur. "Design Of An Educational Purpose Multifunctional Dc/dc Converter Board." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12610103/index.pdf.

Full text
Abstract:
In this thesis a multifunctional DC/DC converter board will be developed for utilization as an educational experiment set in the switched-mode power conversion laboratory of power electronic courses. The board has a generic power-pole structure allowing for easy configuration of various power converter topologies and includes buck, boost, buck-boost, flyback, and forward converter topologies. All the converters can be operated in the open-loop control mode with a switching frequency range of 30-100 kHz and a maximum output power of 20 W. Also the buck converter can be operated in voltage mode control and the buck-boost converter can be operated in peak-current-mode control for the purpose of demonstrating the closed loop control performance of DC/DC converters. The designed board allows for experimentation on the DC/DC converters to observe the macroscopic (steadystate/ dynamic, PWM cycle and low frequency) and microscopic (switching dynamic) behavior of the converters. In the experiments both such characteristics can be clearly observed such that students at basic learning level (involving only the macroscopic behavior), and students at advanced learning level (additionally involving the parasitic effects) can benefit from the experiments. The thesis reviews the switch mode conversion principles, gives the board design and proceeds with the experiments illustrating the capabilities of the experimental system.
APA, Harvard, Vancouver, ISO, and other styles
24

Hamdad, Fatemeh-Soheila. "Three-phase AC-to-DC soft-switching HF transformer isolated converters with power factor correction and low harmonic distortion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0005/NQ40540.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Meier, Stephan. "System Aspects and Modulation Strategies of an HVDC-based Converter System for Wind Farms." Doctoral thesis, Stockholm : Skolan för elektro- och systemteknik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Filho, Herminio Miguel de Oliveira. "Soft switching bidirectional isolated three-phase DC-DC converter using dual phase-shift control with variable duty cycle." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16346.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
This work presents the analysis, design example, simulations and experimental results on a soft-switching bidirectional isolated three-phase dc-dc converter using dual phase-shift control with variable duty cycle. The topology uses three single H-bridges in the primary side and a three-phase inverter in the secondary side. High-frequency isolation is ensured by using three single-phase transformers connected in open delta-wye configuration. The variation of both phase-shift (PS) angles between the H-bridge legs and/or primary and secondary sides allows controlling the power flow, while reduced reactive power flow is possible. The variable duty cycle is used to ensure a constant voltage bus and/or zero voltage switching (ZVS) operation. A detailed analysis is presented considering a model based on the fundamental components for the voltages and currents in the transformer and, aiming its validation, a second analysis from the operation stages of the converter has also been developed. Besides, the dynamic model of the converter, based on fundamental components and employing the gyrator theory has been developed. A design example with nominal values assumptions, stresses and specifications for components, discrete control system characterization and its FPGA programming are presented. Simulation and experimental results in steady state and closed-loop performance are presented and discussed to validate the proposed approach.
Este trabalho apresenta a anÃlise, exemplo de projeto, simulaÃÃes e resultados experimentais de um conversor CC-CC trifÃsico isolado bidirecional com comutaÃÃo suave, dual phase shift (DPS) e razÃo cÃclica variÃvel. A topologia utiliza trÃs pontes H monofÃsicas no lado primÃrio e um inversor trifÃsico no lado secundÃrio. A isolaÃÃo em alta frequÃncia à garantida utilizando-se trÃs transformadores monofÃsicos conectados em uma configuraÃÃo delta aberto/estrela. A variaÃÃo de ambos os Ãngulos de deslocamento de fase, entre os braÃos de uma ponte H e/ou entre os lados primÃrio e secundÃrio, permitem o controle do fluxo de potÃncia. Esta flexibilidade garante a obtenÃÃo de um baixo conteÃdo reativo na anÃlise de projeto da topologia. A razÃo cÃclica variÃvel à utilizada para assegurar um barramento constante e uma operaÃÃo dos interruptores com comutaÃÃo suave. Uma anÃlise matemÃtica da estrutura à apresentada considerando um modelo baseado em componentes fundamentais e, com o propÃsito de comprovar a validade deste modelo, uma segunda anÃlise a partir das etapas de operaÃÃo do conversor tambÃm foi desenvolvida. O modelo dinÃmico do conversor, baseado nas componentes fundamentais, tambÃm foi concebido com auxÃlio da teoria do gyrator. Um exemplo de projeto, com a obtenÃÃo de valores nominais, esforÃos e especificaÃÃes dos componentes, caracterizaÃÃo do sistema de controle discreto e sua programaÃÃo atravÃs de FPGA sÃo desenvolvidos. SimulaÃÃes e resultados experimentais do conversor operando em regime permanente e dinÃmico sÃo apresentados para validar o modelo proposto.
APA, Harvard, Vancouver, ISO, and other styles
27

Yao, Liangbin. "HIGH CURRENT DENSITY LOW VOLTAGE ISOLATED DC-DC CONVERTERSWITH FAST TRANSIENT RESPONSE." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3205.

Full text
Abstract:
With the rapid development of microprocessor and semiconductor technology, industry continues to update the requirements for power supplies. For telecommunication and computing system applications, power supplies require increasing current level while the supply voltage keeps decreasing. For example, the Intel's CPU core voltage decreased from 2 volt in 1999 to 1 volt in 2005 while the supply current increased from 20A in 1999 to up to 100A in 2005. As a result, low-voltage high-current high efficiency dc-dc converters with high power-density are demanded for state-of-the-art applications and also the future applications. Half-bridge dc-dc converter with current-doubler rectification is regarded as a good topology that is suitable for high-current low-voltage applications. There are three control schemes for half-bridge dc-dc converters and in order to provide a valid unified analog model for optimal compensator design, the analog state-space modeling and small signal modeling are studied in the dissertation and unified state-space and analog small signal model are derived. In addition, the digital control gains a lot of attentions due to its flexibility and re-programmability. In this dissertation, a unified digital small signal model for half-bridge dc-dc converter with current doubler rectifier is also developed and the digital compensator based on the derived model is implemented and verified by the experiments with the TI DSP chip. In addition, although current doubler rectifier is widely used in industry, the key issue is the current sharing between two inductors. The current imbalance is well studied and solved in non-isolated multi-phase buck converters, yet few discusse this issue in the current doubler rectification topology within academia and industry. This dissertation analyze the current sharing issue in comparison with multi-phase buck and one modified current doubler rectifier topology is proposed to achieve passive current sharing. The performance is evaluated with half bridge dc-dc converter; good current sharing is achieved without additional circuitry. Due to increasing demands for high-efficiency high-power-density low-voltage high current topologies for future applications, the thermal management is challenging. Since the secondary-side conduction loss dominates the overall power loss in low-voltage high-current isolated dc-dc converters, a novel current tripler rectification topology is proposed. Theoretical analysis, comparison and experimental results verify that the proposed rectification technique has good thermal management and well-distributed power dissipation, simplified magnetic design and low copper loss for inductors and transformer. That is due to the fact that the load current is better distributed in three inductors and the rms current in transformer windings is reduced. Another challenge in telecommunication and computing applications is fast transient response of the converter to the increasing slew-rate of load current change. For instance, from Intel's roadmap, it can be observed that the current slew rate of the age regulator has dramatically increased from 25A/uS in 1999 to 400A/us in 2005. One of the solutions to achieve fast transient response is secondary-side control technique to eliminate the delay of optocoupler to increase the system bandwidth. Active-clamp half bridge dc-dc converter with secondary-side control is presented and one industry standard 16th prototype is built and tested; good efficiency and transient response are shown in the experimental section. However, one key issue for implementation of secondary-side control is start-up. A new zero-voltage-switching buck-flyback isolated dc-dc converter with synchronous rectification is proposed, and it is only suitable for start-up circuit for secondary-side controlled converter, but also for house-keeping power supplies and standalone power supplies requiring multi-outputs.
Ph.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering PhD
APA, Harvard, Vancouver, ISO, and other styles
28

Niedermeier, Markus [Verfasser], Lothar [Akademischer Betreuer] Frey, and Jean-Paul [Akademischer Betreuer] Ferrieux. "ASIC Based Galvanically Isolated Driver Circuit for the Use in Power Converters for Photovoltaic Applications / Markus Niedermeier. Gutachter: Lothar Frey ; Jean-Paul Ferrieux." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2014. http://d-nb.info/1076543766/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jung, Jin Woo. "Modeling and control of fuel cell based distributed generation systems." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1116451881.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2005.
Title from first page of PDF file. Document formatted into pages; contains xvi, 209 p.; also includes graphics. Includes bibliographical references (p. 202-209). Available online via OhioLINK's ETD Center
APA, Harvard, Vancouver, ISO, and other styles
30

Papaioannou, Georgia [Verfasser], Jutta [Akademischer Betreuer] Hanson, and Albert [Akademischer Betreuer] Moser. "Comparison of frequency control concepts in isolated power systems with diesel generators and fully rated wind energy converters / Georgia Papaioannou ; Jutta Hanson, Albert Moser." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2017. http://d-nb.info/1139844032/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

luo, zheng. "Investigation of High Performance AC/DC Front-End Converter with Digital Control for Server Applications." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/30905.

Full text
Abstract:
With the development of information technology, the market for power management of telecom and computing equipment keeps increasing. Distributed power systems are widely adopted in the telecom and computing applications for the reason of high performance and high reliability. Recently industry brought out aggressively high efficiency requirements for a wide load range for power management in telecom and computing equipment. High efficiency over a wide load range is now a requirement. On the other hand, power density is still a big challenge for front-end AC/DC converters. For DPS systems, front-end AC/DC converters are under the pressure of continuous increasing power density requirement. Although increasing switching frequency can dramatically reduce the passive component size, its effectiveness is limited by the converter efficiency and thermal management. Technologies to further increase the power density without compromising the efficiency need to be studied. The industry today is also at the beginning of transferring their design from analog control to full digital control strategy. Although issues are still exist, reducing components count, reducing the development cycle time, increasing the reliability, enhancing the circuit noise immunity and reducing the cost, all of these benefits indicate a great potential of the digital control. This thesis is focusing on how to improve the efficiency and power density by taking the advantages of the digital control. A novel Ï /2 phase shift two Channel interleaving PFC is developed to shrink the EMI filter size while maintain a good efficiency. A sophisticated power management strategy that associates with phase shedding and adaptive phase angle control is also discussed to increase the efficient for the entire load range without compromising the EMI filter size. The method of current sampling is proposed for Ï /2 phase shift two Channel interleaving PFC and multi-channel adaptive phase angle shift PFC is proposed to accurately extract the average total current information. A noise free current sampling strategy is also proposed that adjusting the sampling edge according to duty cycle information. An isolated ZVS dual boost converter is proposed to be the DC/DC stage of the front-end converter. This PWM converter has similar performance as the LLC resonant converter. It has hold up time extension capability without compromising the normal operation efficiency. It can achieve ZVS for all the switches. The current limit and SR implementation is much easier than LLC. State plane method, which potentially can be extent to other complex topologies, is used to fully study this circuit. All the operation modes are understood through the state plane method. The best operation mode is discovered for the front end applications. Light load efficiency is improved by the proposed pulse skipping method to guarantee the ZVS operation meanwhile reduce the switching frequency. Current limit operation is also proposed to restrict a best operation mode by fully taking the advantage of digital control that precisely control the circuit under the over current condition. High efficiency high power density is achieved by new topology, innovative interleaving, and the sophisticated digital control method.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
32

Wanderoild-Morand, Yohan. "Enfouissement d’une alimentation isolée sous contraintes de température et d’isolation." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1193/document.

Full text
Abstract:
Certaines applications haute température telles que le forage, l’aéronautique ou l’aérospatial, amènent à repenser la conception des alimentations isolées permettant la commande des éléments de puissance. Ce mémoire s’articule autour de l’étude de la faisabilité et de l’enfouissement d’un convertisseur isolé possédant une forte isolation statique (10kV) et dynamique (<10 pF), pouvant travailler sous de hautes températures (>250°C), dans les gammes de tension de sortie de la dizaine de volts et de puissance de l’ordre du Watt. Pour ne pas être contraint par la température de Curie d’un matériau magnétique, cette alimentation DC/DC se base sur un transformateur à air. Dans un premier temps, cette thèse détaille l’origine, la mesure et l’estimation des éléments du modèle électrique choisi pour le transformateur. Ensuite, afin de maximiser la transmission de puissance, nous constituons un système résonnant en ajoutant des condensateurs en parallèle ou en série avec le transformateur, puis nous développons une méthode permettant d’accorder l’ensemble. La comparaison entre les topologies nous amène ensuite à choisir compensation série-série. Puis nous constatons que la technologie choisie pour les condensateurs, la contrainte d’isolation statique et dynamique peuvent diviser par plus de deux la puissance transmise au travers d’une surface. Enfin, nous abordons comment redresser et réguler la tension de sortie sans affecter la résonnance ou l’isolation apportée, tout en minimisant les pertes générées. Une dernière partie montre que, moyennant un système de dissipation un processus de fabrication adapté, il est possible d’intégrer la structure complète sur silicium
High temperature applications such as deep drilling, aeronautics or aerospace, lead to rework the isolated power supplies used for the control of the power elements. This work study the feasibility of an embedded converter with high static (10kV) and dynamic (<10 pF) insulation, able to work under high temperatures (> 250 ° C), in the ranges of dozens volts for the output voltage and several Watt of transmitted power. To avoid being constrained by a magnetic material Curie temperature of, we use a coreless transformer based DC/DC power supply. First of all, this thesis details the origin, the measurement and the estimation of the elements of the chosen transformer electric model. Then, to maximize the transferred power, we form a resonant structure by adding capacitors in parallel or in series with the transformer, then we develop a method to tune the whole. The comparison between the topologies leads us to choose a serial-serial compensation. Then we note that the technology chosen for capacitors, the static and dynamic insulation constraint can divide by more than two the power transmitted through a surface. Finally, we discuss how to rectify and regulate the output voltage without affecting the resonance or insulation provided, while minimizing the losses generated. A last part exhibit that with a suitable dissipation system and manufacturing process, it is possible to integrate the complete structure on silicon chips
APA, Harvard, Vancouver, ISO, and other styles
33

Eial, Awwad Abdullah [Verfasser], Sibylle [Akademischer Betreuer] Dieckerhoff, Sibylle [Gutachter] Dieckerhoff, Regine [Gutachter] Mallwitz, and Uwe [Gutachter] Schäfer. "On the perspectives of SiC MOSFETs in high-frequency and high-power isolated DC/DC converters / Abdullah Eial Awwad ; Gutachter: Sibylle Dieckerhoff, Regine Mallwitz, Uwe Schäfer ; Betreuer: Sibylle Dieckerhoff." Berlin : Technische Universität Berlin, 2018. http://d-nb.info/116832405X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sal, y. Rosas Celi Damian. "Étude et conception de convertisseurs réversibles multi sources isolés pour l’interfaçage au réseau de sources d'énergies renouvelables et de moyens de stockage." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAT024/document.

Full text
Abstract:
Les accords internationaux pour la réduction des émissions polluantes dans l’environnement imposent l’insertion de plus en plus importante d’énergies renouvelables intermittentes dans le réseau électrique. De plus, l’intégration de dispositifs de stockage est envisagée dans les réseaux électriques du futur afin de résoudre le problème de l’intermittence et d’optimiser la consommation des utilisateurs. Cependant, du fait des caractéristiques différentes des signaux électriques mis en jeu (courant continu pour les sources renouvelables et les batteries, courant alternatif pour le réseau électrique), les structures actuelles reposent sur plusieurs convertisseurs connectés en cascade. Ceci engendre un coût pour le convertisseur en termes de volume et de pertes. De plus, les différents niveaux de tensions (tensions du pack batterie, des sources de production renouvelables et du réseau électrique) ainsi que des contraintes en termes de sécurité nécessitent souvent l’utilisation de transformateurs pour assurer l’isolation galvanique et l’adaptation des tensions.Cette thèse se focalise sur la conception d’une structure innovante à trois ports permettant les échanges de flux de puissances entre une source de production renouvelable, un pack de batteries et le réseau électrique (monophasé ou triphasé) avec un seul étage de conversion. La structure de type TAB (Triple Active Bridge) a été choisie à cet effet en raison de ses nombreux avantages comme l’isolation galvanique, la commutation douce (ZVS) de tous ses ponts actifs (permettant de travailler à haute fréquence de commutation) et la possibilité de contrôler aisément l’échange de puissance entre les différentes sources. L’analyse réalisée se compose d’une méthodologie pour le dimensionnement, d’une structure TAB DC/DC, d’une structure TAB DC/AC monophasée, d’une structure TAB DC/AC monophasée avec un filtre actif mis en série afin de filtrer la puissance fluctuante et, finalement, d’une structure TAB DC/AC triphasée
International agreements for the reduction of polluting emissions to the environment require the use of renewable energies in the electricity grid. In addition, the integration of storage devices is envisaged in the future electrical networks in order to solve the intermittence problems and to optimize the consumption of the users. However, due to the different characteristics of the electrical signals involved (DC current for renewable sources and batteries, AC current for the electrical network), the current structures consist on several cascaded converters. This results in a low energy density, higher costs and reduced efficiency for the system. In addition, the different voltage levels (battery voltages, renewable sources and power grid) and safety constraints often require the use of transformers to provide galvanic isolation and match the voltages.This thesis focuses on the design of an innovative three-port structure for the bidirectional power flows control between a renewable power source, a battery pack and the power grid (single phase or three-phase) with a single conversion stage. The TAB (Triple Active Bridge) structure has been chosen for this purpose, due to its many advantages such as galvanic isolation, soft switching (ZVS) in all of its active bridges (allowing to work at high switching frequency) and the possibility of an easy power flow control between the different sources. In this way, the analysis has established a methodology for the design of a TAB DC / DC structure, a single-phase TAB DC / AC structure, a single-phase TAB DC / AC structure with a series connected active filter in order to achieve a "single phase power decoupling" and finally, for the design of a three-phase TAB DC / AC structure
APA, Harvard, Vancouver, ISO, and other styles
35

Eleyele, Abidemi Oluremilekun. "Isolated Single-Stage Interleave Resonant PFC Rectifier with Active and Novel Passive Output Ripple Cancellation Circuit." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423117.

Full text
Abstract:
With the increasing demand for fast, cheaper, and efficient power converters come the need for a single-stage power factor correction (PFC) converter. Various single-stage PFC converter proposed in the literature has the drawback of high DC bus voltage at the input side and together with the shift to wide bandgap switches like GaN drives the converter cost higher. However, an interleaved topology with high-frequency isolation was proposed in this research work due to the drastic reduction in the DC bus voltage and extremely low input current ripple thereby making the need for an EMI filter circuit optional.   Meanwhile, this research work focuses on adapting the proposed topology for a high voltage low current application (EV charger - 400V, 7KW) and low voltage high current application (telecom power supply - 58V,  58A) owing to cost benefits. However, all single-stage PFC are faced with the drawback of second-order (100Hz) output harmonic ripple. Therefore, the design and simulation presented a huge peak to peak ripple of about 50V/3A and 26V/26A for the EV charger and telecom power supply case, respectively. This created the need for the design of a ripple cancellation circuit as the research required a peak to peak ripple of 8V and 200mV for the EV - charger and telecom power supply, respectively.   A novel output passive ripple cancellation technique was developed for the EV charger case due to the ease it offers in terms of control, circuit complexity and extremely low THDi when compared with the active cancellation approach. The ripple circuit reduced the 50V ripple to 431mV with the use of a total of 2.2mF capacitance at the output stage.   Despite designing the passive technique, an active ripple cancellation circuit was designed using a buck converter circuit for the telecom power supply. The active approach was chosen because the passive has a slow response and incurs more loss at a high current level. Adding the active ripple cancellation circuit led to a quasi-single stage LLC PFC converter topology. A novel duty-ratio feedforward control was added to synchronize the PFC control of the input side with the buck topology ripple cancellation circuit. The addition of the ripple circuit with the feedforward control offered a peak to peak ripple of 6.7mV and a reduced resonant inductor current by half.   After analysis, an extremely low THDi of 0.47%, PF of 99.99% and a peak efficiency of 97.1% was obtained for the EV charger case. The telecom power supply offered a THDi of 2.3%, PF of 99.96% with a peak efficiency of 95%.
APA, Harvard, Vancouver, ISO, and other styles
36

Bui, Thi Thanh Huyen. "Terminaisons verticales de jonction remplies avec des couches diélectriques isolantes pour des application haute tension utilisant des composants grand-gap de forte puissance." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI061/document.

Full text
Abstract:
Le développement de l’énergie renouvelable loin des zones urbaines demande le transport d'une grande quantité d’énergie sur de longues distances. Le transport d’électricité en courant continu haute tension (HVDC) présente beaucoup d’avantages par rapport à celui en courant alternatif. Dans ce contexte il est nécessaire de développer des convertisseurs de puissance constitués par des composants électroniques très haute tension, 10 à 30 kV. Si les composants en silicium ne peuvent pas atteindre ces objectifs, le carbure de silicium (SiC) se positionne comme un matériau semiconducteur alternatif prometteur. Pour supporter des tensions élevées, une région de "drift", relativement large et peu dopée constitue le cœur du composant de puissance. En pratique l’obtention d’une tension de blocage effective dépend de plusieurs facteurs et surtout de la conception d'une terminaison de jonction adaptée. Cette thèse présente une méthode pour améliorer la tenue en tension des composants en SiC basée sur l’utilisation des terminaisons de jonctions : Deep Trench Termination. Cette méthode utilise une tranchée gravée profonde en périphérie du composant, remplie avec un matériau diélectrique pour supporter l'étalement des lignes équipotentielles. La conception de la diode avec cette terminaison a été faite par simulation TCAD, avec deux niveaux de tension 3 et 20 kV. Les travaux ont pris en compte les caractéristiques du matériau, les charges à l’interface de la tranchée et les limites technologiques pour la fabrication. Ce travail a abouti sur la fabrication de démonstrateurs et leur caractérisation pour valider notre conception. Lors de la réalisation de ces structures, la gravure plasma du SiC a été optimisée dans un bâti ICP de manière à obtenir une vitesse de gravure élevée et en conservant une qualité électronique de l'état des surfaces gravées. Cette qualité est confirmée par les résultats de caractérisation obtenus avec des tenues en tension proches de celle idéale
The development of renewable energy away from urban areas requires the transmission of a large amount of energy over long distances. High Voltage Direct Current (HVDC) power transmission has many advantages over AC power transmission. In this context, it is necessary to develop power converters based on high voltage power electronic components, 10 to 30 kV. If silicon components cannot achieve these objectives, silicon carbide (SiC) is positioned as a promising alternative semiconductor material. To support high voltages, a drift region, relatively wide and lightly doped is the heart of the power component. In practice obtaining an effective blocking voltage depends on several factors and especially the design of a suitable junction termination. This thesis presents a method to improve the voltage withstand of SiC components based on the use of junction terminations: Deep Trench Termination. This method uses a trench deep etching around the periphery of the component, filled with a dielectric material to support the spreading of the equipotential lines. The design of the diode with this termination was done by TCAD simulation, with two voltage levels 3 and 20 kV. The work took into account the characteristics of the material, the interface charge of the trench and the technological limits for the fabrication. This work resulted in the fabrication of demonstrators and their characterization to validate the design. During the production of these structures, plasma etching of SiC has been optimized in an ICP reactor so as to obtain a high etching rate and maintaining an electronic quality of the state of etched surfaces. This quality is confirmed by the results of characterization obtained with blocking voltage close to the ideal one
APA, Harvard, Vancouver, ISO, and other styles
37

Guan, Yeh, and 關曄. "High Power Isolated Full- Bridge DC-DC Converter." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/35323514260858630489.

Full text
Abstract:
碩士
國立清華大學
電機工程學系
93
The full-bridge converters has been found widely use in many applications. With the increment of system power ratings, the soft-switching technique has become much more emphasized. The loss limited full bridge converter has been chosen for the system in this thesis, and the concept of multi-turn coaxial winding transformer is adapted to the system isolation transformer. Two different multi-turn coaxial winding transformer designs is analyzed and fabricated. Several simulations have been made to verify the system. The SYNOPSYS Saber Designer is used to simulate the primary switching waveforms of the full-bridge zero-voltage-switching circuit. Simulation results by using the ANSOFT Maxwell 2D Field Simulator is also provided to verify the multi-turn coaxial transformer design. An elementary test has been made to verify the basic operation of the proposed system. The fabricated multi-turn coaxial winding transformer has been implemented into the system and was tested. The experiment data is compared with the theoretical ones to verify the designs.
APA, Harvard, Vancouver, ISO, and other styles
38

Mallik, Dhara I. "Design of isolated DC-DC and DC-DC-AC converters with reduced number of power switches." Thesis, 2017. https://doi.org/10.7912/C2H652.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
There are various types of power electronic converters available in recent days. In some applications (e.g. PC power supply), it is required to supply more than one load from a single power supply. One of the main challenges while designing a power converter is to increase its e ciency especially when the number of power switches employed is relatively large. While several loads are supplied from a single source, if the power loss in the switches cannot be reduced, then the expected utilization of using a single source is not very feasible. To reduce the loss and increase e ciency, the thesis presents a novel design with reduced number of switches. The scope of this thesis is not limited to the dc-dc converter only, the converter to supply three phase ac loads from a single dc source is also presented. This discussion includes an improved fault tolerant configuration of the inverter part. The generated waveforms from the simulations are included as a demonstration of satisfactory results.
APA, Harvard, Vancouver, ISO, and other styles
39

Lin, Pao-Wei, and 林保偉. "Power Factor Correction Converters and Modeling and Controller for Isolated Zeta Converters." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/5et228.

Full text
Abstract:
碩士
國立成功大學
工程科學系碩博士班
90
Abstract The power factor correction (PFC) circuits are primarily divided into passive and active types. For the passive type, a filter composed of inductor and capacitor is used to improve the phase lag of the input current. On the other hand, a power converter is added between the rectifier and the voltage regulation stage to achieve a good power factor for the active type. In comparison with the two types of PFC circuits, the active PFC circuit exhibits the advantages of small volume, light weight and high efficiency. Some power converters, operating in discontinuous conduction mode, has the gift of PFC without any controller. First of all, the PFC capabilities of the basic power converters are discussed in this thesis. Two approaches, including the characteristic curve plotting of input voltage/averaging current and LFR (Loss-Free Resistor), are applied to analyze the PFC capabilities for these basic power converters. Among them, it is worthy to note that the zeta power converter, operating in three modes of DCMLm>Lo, DCMLmLo mode. Then the equivalent circuit related to the derived small-signal model can be obtained. In addition, the proposed model is also verified by the measurements of spectral analyser and simulation results of IsSpice. Finally, a PI controller is designed for the derived model. It is shown from the experimental results that the variations of load are insensitive to the closed-loop system, and excellent voltage regulation can also be exhibited. The PFC capability with unity power factor of the converter can still be maintained.
APA, Harvard, Vancouver, ISO, and other styles
40

Chen, Wei-Yuan, and 陳威遠. "An isolated SEPIC converter analysis of high power factor and uninterruptible power system." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/29884030548847518551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hsiao, Chia-Hsien, and 蕭嘉賢. "Development of Non-isolated Power Converters with High Conversion Ratio." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/57p9t5.

Full text
Abstract:
碩士
國立臺北科技大學
電機工程系優質電力產業研發專班
99
This thesis is focused on the design and implementation of a digital-signal-processor based bi-directional DC-DC power converter and a single-phase full bridge DC-AC power converter. These two converters are integrated as a hybrid power conversion system and applicable for bi-directional power conversion, stand-alone power supply, and battery charging. According to the closed-loop voltage control strategy, the designed DC-DC power converter can supply a steady DC link voltage to DC loads or to a single-phase full bridge DC-AC power converter to provide AC power for which the output voltage is not affected by load change. A digitized mathematical model is derived in this thesis and the controller design is built and simulated by PSIM accordingly. The high performance and low cost digital signal processor TMS320F28035 is used as the control core to implement the converters. All control strategies of power converters are implemented by the software. The voltage sensing circuit feeds the acquired voltage data back to the digital signal processor for feedback control. This software-based controller can reduce the circuit cost and increase the system precision. A prototype of 200W hybrid power conversion system has developed. In the discharging mode, the input battery voltage is 24V, the output DC link voltage is 200V and the output AC voltage is 110V. In the charge mode, the external input is 110V AC power, and the output DC voltage is 24V, produced by the full bridge rectifier and cascade buck DC-DC power converter. Finally, the experimental results are presented to verify the effectiveness and correctness of the proposed system and designed control rules.
APA, Harvard, Vancouver, ISO, and other styles
42

Mokhalodi, Kopano. "Development of a universal bidirectional galvanic isolated switch module for power converter applications." Thesis, 2013. http://hdl.handle.net/10352/235.

Full text
Abstract:
M. Tech. (Engineering: Electrical, Department Electronic Engineering, Faculty of Engineering and Technology), Vaal University of Technology
The global trends towards energy efficiency have facilitated the need for technological advancements in the design and control of power electronic converters for energy processing. The proposed design is intended to make the practical implementation of converters easier. The development of a universal bidirectional galvanic isolated switch module will be used to drive any MOSFET or IGBT in any position in any topology whether the load is AC or DC. Semiconductor switches are required and are also integrated for fast switching times in power converter applications The structure of the power switch module consists of an opto-coupler which will provide an isolation barrier for maximum galvanic isolation between the control circuitry and power stage. It also consists of a high performance gate drive circuit for high speed switching applications with a floating supply.
Telkom South Africa Ltd, TFMC Pty Ltd, M-TEC, THRIP
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Zhi-Hao, and 劉智豪. "Modeling and Controller Design for Single-Stage Isolated High Power Factor Converters." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/90272814144793705068.

Full text
Abstract:
碩士
國立成功大學
工程科學系
88
Abstract Generally speaking, the electricity of electronic devices is supplied by a switching power supply. However the power supply will generate impulsive current with high harmonic distortion due to the influences between diode rectifier and capacitor filter. This makes the power factor degraded and leads to large amount of energy losses of power company. In order to avoid energy waste and promote electricity quality, the high power factor correction (PFC) circuits are required to be added to the power supply. There are two kinds of PFC circuits. One is passive, and the other is active. Comparing with the passive PFC circuits, active PFC circuits have inherent advantages of small volume, light weight, high efficiency and high power factor. The conventional PFC circuits are commonly two-stage. The first stage is PFC stage, and the second stage is power regulation stage. To this end, it needs two switches to be controlled. This causes more expensive and complicated. To improve the defect, we combine the two switches to form a single-stage PFC power supply. In the process of combination, the concept of dither is used. The single-stage power circuit studied in this dissertation is the combination of boost converter and flyback converter. Both of them are operating in discontinuous conduction mode. The power converter in this dissertation has inherent gift of PFC, so it needs no PFC controller. But the proper elements are of essence to make it work in right mode. We drive the small-signal model of the converter when the flyback stage working in discontinuous/continuous conduction mode. The model is verified by experimental results. Finally, Based on this model, a classical controller and variable-structure controller are designed. The experimental results show that both controllers can regulate the output voltage and keep the inherent ability of PFC of the converter. However the latter is superior to the former.
APA, Harvard, Vancouver, ISO, and other styles
44

Hsu, Cheng-Wei, and 許正煒. "Implementation of An Isolated Multi-Input Power Converter with Battery Energy Storage." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/16652165576358059377.

Full text
Abstract:
碩士
國立彰化師範大學
電機工程學系
101
The major object of this thesis is to develop an isolated multi-input converter for the renewable energy and grid hybrid power system. A lead acid battery tank is used as the energy storage of the power system. The developed isolated multi-input converter is derived from the flyback dc converter for low number of active switches and isolation between each power sources. A multi-windings transformer is adopted in the converter. The renewable energy, grid and lead acid battery tank are connected to the three primary side windings respectively. The only one secondary winding is connected to the load. Moreover, a relay is integrated into the lead acid battery side for bidirectional power flow. While the output power to the load is not required, the renewable energy can continuously deliver the power to the battery energy storage. Then, the energy stored in the battery tank can be transferred to the load at the next output power requirement. Therefore, the utilization of the renewable energy can be further improved. In this thesis, the operation modes of the multi-input converter are analyzed firstly. A prototype with 400W rated output power is practically constructed to verify the validity of the converter. The measured efficiency under 400W output power is about 80%. The constant current/ constant voltage charging testing is also carried out to verify that the multi-input converter can be operated at battery charging mode to store the additional renewable energy while the load is not requesting.
APA, Harvard, Vancouver, ISO, and other styles
45

Tsai, Tsan-Hung, and 蔡璨鴻. "Modeling for Single-Stage Isolated High Power Factor Converters with Magnetic Switch." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/35971387488856285138.

Full text
Abstract:
碩士
國立成功大學
工程科學系
89
Abstract The power supplies are applied to various consumer electronics. The full-bridge rectifiers or voltage doubler circuits are of importance in dc power supply circuit. However, diode rectifier and capacitor filter generate impulsive current with high harmonic distortion, and thus cause lower power factor. For the purpose of energy saving and quality improving, the high power factor correction (PFC) circuits are essential to be added to the power supply. Active PFC circuit has inherent advantages of small volume, light weight, high efficiency, and high power factor. The traditional PFC circuit is generally two stages, it thereby needs two control switches which make the circuit more complicated. To reduce the circuit topology, two switches are integrated to form a single-stage PFC power circuit. In this thesis, the single-stage high power converter is composed of boost converter and flyback converter. The former is used for power factor correction, and the latter for output voltage regulation. The boost converter is operating in discontinuous conduction mode, which has inherent gift of PFC. The flyback converter is operating in continuous conduction mode. If it works at light load, the bulk capacitor will generate high voltage stresses, and thus cause conduction losses. As a result, the lifetime of the circuit elements may reduce. To overcome the problem, magnetic switch element is added to single-stage high power converter to reduce high voltage stresses. They are referred to as single-stage magnetic switch power converters. Although voltage stresses are removed, the power factor is somewhat lower. All circuit components of the single-stage magnetic switch power converter are well designed in the thesis. In addition, the nonlinear average model based on one line period is established. Then average power balance and IsSpice software are used to successfully verify the derived model.
APA, Harvard, Vancouver, ISO, and other styles
46

Joannou, Andrew John Lucas. "An investigation of primary tap changing transformers in high frequency isolated converters." Thesis, 2012. http://hdl.handle.net/10210/5363.

Full text
Abstract:
M.Ing.
In this thesis, a new isolated DC-DC converter topology is designed which implements a high frequency primary tap changing transformer. This converter is designed to be implemented into renewable energy applications. Renewable or alternative energy resources are becoming more popular by necessity. The voltage generated by renewable energy resources is dependent on the weather conditions, thus the voltage may vary. This novel topology can maintain a regulated DC output voltage for a wide input voltage range by implementing a high frequency primary tap changing transformer. This converter is thus designed to accommodate the voltage changing conditions of renewable energy resources. This converter only requires output bus capacitance for DC bus stiffening. The overall required bus capacitance is therefore effectively reduced compared to other converter topologies. This isolated topology also improves the fundamental power quality. Other power quality components of this new converter are also analysed.
APA, Harvard, Vancouver, ISO, and other styles
47

"Soft-Switching Techniques of Power Conversion System in Automotive Chargers." Doctoral diss., 2017. http://hdl.handle.net/2286/R.I.44235.

Full text
Abstract:
abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same.
Dissertation/Thesis
Doctoral Dissertation Electrical Engineering 2017
APA, Harvard, Vancouver, ISO, and other styles
48

Yu, Sheng Yang. "Isolated multiple-input single ended primary inductor converter (SEPIC) and applications." Thesis, 2010. http://hdl.handle.net/2152/ETD-UT-2010-05-1226.

Full text
Abstract:
This document explores the isolated multiple-input single ended primary inductor converter (IMISEPIC) and discusses its application. This thesis proposes the following control methods such as current feed-forward control, voltage feedback control and maximum power point control to analyze the IMISEPIC. Zero-ripple technique is also applied to IMISEPIC in order to increase the converter’s life-time. Design strategy and concerns about the IMISEPIC are also presented, and simulations and circuit experiments are conducted to verify the analysis. Finally, the discussion about control limitation is used for future design consideration.
text
APA, Harvard, Vancouver, ISO, and other styles
49

Essakiappan, Somasundaram. "Bi-directional Current-fed Medium Frequency Transformer Isolated AC-DC Converter." Thesis, 2010. http://hdl.handle.net/1969.1/ETD-TAMU-2010-05-7743.

Full text
Abstract:
The use of high power converters has increased tremendously. Increased demand for transportation, housing and industrial needs means that more number of power converters interact with the utility power grid. These converters are non-linear and they draw harmonic currents, significantly affecting power quality. To reduce harmonics, filters, power factor correction circuits and capacitor banks are required. And the development of hybrid technologies and renewable energy power stations trigger a demand for power converters with bi-directional capabilities. The objective of this thesis is to develop a high power quality, bi-directional AC-DC power converter that is a solution to the aforementioned problems. This thesis studies an existing topology for a high power AC-DC power conversion with transformer isolation. The topology consists of an uncontrolled rectifier followed by a DC-DC converter to produce a set voltage output. A design example of the topology is simulated using the PSIM software package (version 6). Critical performance characteristics such as power factor and total harmonic distortion are analyzed. Following that study a new topology is proposed, which is an improvement over the older design, with reduced power conversion stages. The new topology has a fully controlled current source Pulse Width Modulation (PWM) rectifier at the front end to replace the uncontrolled rectifier and DC-DC combination. This topology has multiquadrant operational capabilities and the controller employs Selective Harmonic Elimination techniques to produce the programmed PWM switching functions for the rectifier. A design example of the converter and the digital controller are simulated in PSIM environment. The converter input current THD (Total Harmonic Distortion) and input power factor are within IEEE 519 and DoE standards. The converter is simulated in both first and fourth quadrant operations. A side-by-side comparison of the two topologies is done with respect to design and performance features such as power factor, THD, filter size, etc. The new topology converter provides performance superior to that of the older topology. Finally the thesis explores possible applications for the converter in power supplies, renewable energy and hybrid technologies.
APA, Harvard, Vancouver, ISO, and other styles
50

Lin, Hua-Wei, and 林華偉. "Analysis and Implementation of an Isolated SEPIC Converter with High Power Factor Correction." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/2hey9a.

Full text
Abstract:
碩士
崑山科技大學
電機工程研究所
96
The isolated SEPIC converter working as a high-power-factor preregulator is studied in this thesis. The converter exhibits high power-factor inherently without extra current control when it operates in DCM(L1&gt;L2) mode. The converter exhibits the desirable characteristics including input-output isolation, theoretical unity power factor, and well output voltage regulation when it is well output feedback control design. The converter can be divided into three linear stages in one switching period for circuit analysis when it in operates in the steady state. The IsSpice simulation is used to verify the theoretical analysis after the components design. The two-time scale averaging method and current injected equivalent circuit approach are used to derive the small signal model. They obtain the coincide results. The mathematical models are verified by the experimental measurements of the dynamic signal analyzer. Eventually, a controller is designed to eliminate the effect of the variations in line voltage and load on the output voltage. Furthermore, the load current injected control is employed to improve the output voltage response when the load is step change. A prototype of the converter with an input voltage of AC110V, an output voltage of DC48V, operating at a switching frequency of 50kHz and maximal power 100W is implemented. The performances of high power-factor and well output voltage regulation are verified by experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography