Academic literature on the topic 'Isoclinic planes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Isoclinic planes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Isoclinic planes"
Et-Taoui, Boumediene. "Quaternionic equiangular lines." Advances in Geometry 20, no. 2 (April 28, 2020): 273–84. http://dx.doi.org/10.1515/advgeom-2019-0021.
Full textEt-Taoui, B. "Equi-isoclinic planes of Euclidean spaces." Indagationes Mathematicae 17, no. 2 (June 2006): 205–19. http://dx.doi.org/10.1016/s0019-3577(06)80016-9.
Full textBlokhuis, Aart, Ulrich Brehm, and Boumediene Et-Taoui. "Complex conference matrices and equi-isoclinic planes in Euclidean spaces." Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 59, no. 3 (December 19, 2017): 491–500. http://dx.doi.org/10.1007/s13366-017-0374-2.
Full textWong, Yung-Chow, and Kam-Ping Mok. "Normally related n-planes and isoclinic n-planes in R2n and strongly linearly independent matrices of order n." Linear Algebra and its Applications 139 (October 1990): 31–52. http://dx.doi.org/10.1016/0024-3795(90)90386-q.
Full textEt-Taoui, Boumediene. "Infinite family of equi-isoclinic planes in Euclidean odd dimensional spaces and of complex symmetric conference matrices of odd orders." Linear Algebra and its Applications 556 (November 2018): 373–80. http://dx.doi.org/10.1016/j.laa.2018.07.014.
Full textYang, Jian Hui, Rong Ling Sun, Zheng Hao Yang, Xin Yang Lin, and Hai Cheng Niu. "Constitutive Relations of Concrete under Plane Stresses Based on Generalized Octahedral Theory." Applied Mechanics and Materials 71-78 (July 2011): 342–52. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.342.
Full textMorley, C. K., S. Jitmahantakul, C. von Hagke, J. Warren, and F. Linares. "Development of an intra-carbonate detachment during thrusting: The variable influence of pressure solution on deformation style, Khao Khwang Fold and Thrust Belt, Thailand." Geosphere 17, no. 2 (January 21, 2021): 602–25. http://dx.doi.org/10.1130/ges02267.1.
Full textSRIVASTAVA, DEEPAK C. "Geometrical similarity in successively developed folds and sheath folds in the basement rocks of the northwestern Indian Shield." Geological Magazine 148, no. 1 (August 20, 2010): 171–82. http://dx.doi.org/10.1017/s0016756810000610.
Full textHicock, Stephen R., and Aleksis Dreimanis. "Deformation till in the Great Lakes region: implications for rapid flow along the south-central margin of the Laurentide Ice Sheet." Canadian Journal of Earth Sciences 29, no. 7 (July 1, 1992): 1565–79. http://dx.doi.org/10.1139/e92-123.
Full textBorradaile, G., P. Sarvas, R. Dutka, R. Stewart, and M. Stubley. "Transpression in slates along the margin of an Archean gneiss belt, northern Ontario—magnetic fabrics and petrofabrics." Canadian Journal of Earth Sciences 25, no. 7 (July 1, 1988): 1069–77. http://dx.doi.org/10.1139/e88-104.
Full textDissertations / Theses on the topic "Isoclinic planes"
Lehbab, Imène. "Problèmes métriques dans les espaces de Grassmann." Electronic Thesis or Diss., Mulhouse, 2023. http://www.theses.fr/2023MULH6508.
Full textThis work contributes to the field of metric geometry of the complex projective plane CP2 and the real Grassmannian manifold of the planes in R6. More specifically, we study all p-tuples, p ≥ 3, of equiangular lines in C3 or equidistant points in CP2, and p-tuples of equi-isoclinic planes in R6. Knowing that 9 is the maximum number of equiangular lines that can be constructed in C3, we develop a method to obtain all p-tuples of equiangular lines for all p ϵ [3,9]. In particular, we construct in C3 five congruence classes of quadruples of equiangular lines, one of which depends on a real parameter ɣ, which we extend to an infinite family of sextuples of equiangular lines depending on the same real parameter ɣ. In addition, we give the angles for which our sextuples extend beyond and up to 9-tuples. We know that there exists a p-tuple, p ≥ 3, of equi-isoclinic planes generating Rr, r ≥ 4, with parameter c, 0< c <1, if and only if there exists a square symmetric matrix, called Seidel matrix, of p × p square blocks of order 2, whose diagonal blocks are all zero and the others are orthogonal matrices in O(2) and whose smallest eigenvalue is equal to - 1/c and has multiplicity 2p-r. In this thesis, we investigate the case r=6 and we also show that we can explicitly determine the spectrum of all Seidel matrices of order 2p, p ≥ 3 whose off-diagonal blocks are in {R0, S0} where R0 and S0 are respectively the zero-angle rotation and the zero-angle symmetry. We thus show an unexpected link between some p-tuples of equi-isoclinic planes in Rr and simple graphs of order p
Conference papers on the topic "Isoclinic planes"
Wilde, D. J. "Two Generalizations of the Isometric Projection in Geometric Design." In ASME 1987 Design Technology Conferences. American Society of Mechanical Engineers, 1987. http://dx.doi.org/10.1115/detc1987-0045.
Full textStjepan Bogdan. "Fuzzy Controller Design Based on the Phase Plane Isoclines." In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.235699.
Full textBogdan, Stjepan, and Zdenko Kovacic. "Fuzzy Controller Design Based on the Phase Plane Isoclines." In 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/med.2006.328846.
Full textNoufal, Abdelwahab, Safeya Alkatheeri, Khalid Obaid, Abdulla Shehab, Hamda Al Shehhi, and Saleh Al Hadarem. "Abu Dhabi Tectonic Evolution: Novel Model Impacting Hydrocarbon Potentiality and Trapping Mechanism." In ADIPEC. SPE, 2023. http://dx.doi.org/10.2118/216263-ms.
Full text