Academic literature on the topic 'Ising spins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ising spins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ising spins"
Reungyos, Jutarop, and Yongyut Laosiritaworn. "Random Walk Monte Carlo Simulation of Diffusive Ferromagnetic Ising Spin under Lennard-Jones Interaction." Applied Mechanics and Materials 431 (October 2013): 57–60. http://dx.doi.org/10.4028/www.scientific.net/amm.431.57.
Full textMurthy, Ganpathy, and R. Shankar. "Redundant operators for Ising spins." Physical Review B 32, no. 9 (November 1, 1985): 5851–57. http://dx.doi.org/10.1103/physrevb.32.5851.
Full textBaillie, C. F., D. A. Johnston, and J. P. Kownacki. "Ising spins on thin graphs." Nuclear Physics B 432, no. 3 (December 1994): 551–70. http://dx.doi.org/10.1016/0550-3213(94)90033-7.
Full textAMBJØRN, J., B. DURHUUS, and T. JONSSON. "A SOLVABLE 2D GRAVITY MODEL WITH γ>0." Modern Physics Letters A 09, no. 13 (April 30, 1994): 1221–28. http://dx.doi.org/10.1142/s0217732394001040.
Full textJabar, A., and R. Masrour. "Magnetic Properties of the Spins-5/2 and 3/2 Ising Octahedral Chain: A Monte Carlo Simulation." SPIN 08, no. 04 (December 2018): 1850017. http://dx.doi.org/10.1142/s2010324718500170.
Full textJohnston, Desmond A., and Ranasinghe P. K. C. M. Ranasinghe. "(Four) Dual Plaquette 3D Ising Models." Entropy 22, no. 6 (June 8, 2020): 633. http://dx.doi.org/10.3390/e22060633.
Full textHOANG, DANH-TAI, YANN MAGNIN, and H. T. DIEP. "SPIN RESISTIVITY IN THE FRUSTRATED J1 - J2 MODEL." Modern Physics Letters B 25, no. 12n13 (May 30, 2011): 937–45. http://dx.doi.org/10.1142/s0217984911026644.
Full textBERMAN, G. P., D. I. KAMENEV, R. B. KASSMAN, C. PINEDA, and V. I. TSIFRINOVICH. "METHOD FOR IMPLEMENTATION OF UNIVERSAL QUANTUM LOGIC GATES IN A SCALABLE ISING SPIN QUANTUM COMPUTER." International Journal of Quantum Information 01, no. 01 (March 2003): 51–77. http://dx.doi.org/10.1142/s0219749903000085.
Full textSZETO, K. Y. "PHASE TRANSITION IN TWO-DIMENSIONAL DILUTE ISING COULOMB GAS." International Journal of Modern Physics B 02, no. 06 (December 1988): 1443–45. http://dx.doi.org/10.1142/s0217979288001281.
Full textBittner, E., W. Janke, H. Markum, and J. Riedler. "Ising spins on discrete Regge lattices." Physica A: Statistical Mechanics and its Applications 277, no. 1-2 (March 2000): 204–14. http://dx.doi.org/10.1016/s0378-4371(99)00487-2.
Full textDissertations / Theses on the topic "Ising spins"
Godoy, Maurício. "Comportamento dinâmico de modelos de spins mistos." Florianópolis, SC, 2004. http://repositorio.ufsc.br/xmlui/handle/123456789/86636.
Full textMade available in DSpace on 2012-10-21T09:02:36Z (GMT). No. of bitstreams: 1 201220.pdf: 1117800 bytes, checksum: 3e9aa6c23e2d84fc294945607454ec46 (MD5)
Harris, Martin Guy. "Random surfaces : multiple Ising spins coupled to 2d quantum gravity." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260140.
Full textMari, Pierre-Olivier. "Etude numérique de verres de spins Ising en dimension trois." Paris 11, 2001. http://www.theses.fr/2001PA112364.
Full textSpin glasses are magnetic materials that exhibit at low enough temperatures a number of unique properties, some of which arise from the combination of disorder and conflicting constraints. The ease with which one can modelize such systems for an analytic or numerical investigation has promoted spin glasses to the rank of archetype for disordered systems. However, the complexity and the extent of what is known on glassy materials hides a frustrating fact: the understanding of the physics that governs their behaviour and of the nature of glassy phase transitions often remains incomplete. This thesis is a study of the dynamical properties and phase transition of Ising spin glass models by means of Monte-Carlo simulations. The analysis of our results and of those taken from the literature falls into three parts and follows our main goals. First of all, to explore the validity of two alternative approaches (the Damage spreading and the effective exponent method) for the study of the critical behaviour of spin glass models and, in doing so, to point out the need to allow for corrections to finite size scaling by showing their effect on the determination of critical exponents. Secondly, using this array of alternative methods, to contribute to the ensemble of numerical evidences that indicate a violation of standard Universality rules in Ising spin glasses. Finally, to compare the dynamical properties of several Ising spin glasse models with experimental data on the dynamics of a range of glass forming polymers. The similarities observed in the dynamical behaviour of these very different systems is interpreted by using a unique scenario that describes glass-like transitions in phase space by means of a random walk on a diluted hypercube
Brito, Rejane Alves de. "Método variacional de Bogoliubov Aplicado a modelos de Spins: Ising e Blume-Capel." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9830.
Full textMade available in DSpace on 2018-04-30T14:54:08Z (GMT). No. of bitstreams: 1 Arquivototal.pdf: 981715 bytes, checksum: 76897646d0930b35e6a38674ac2d9ec2 (MD5) Previous issue date: 2017-03-03
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
The spin-1=2 and spin-1 Ising models, as well as the spin-1 Blume-Capel model have been studied in one-, two-, and three-dimensional lattices. A variational method based on Bogoliubov inequality for the free-energy has been employed. The trial Hamiltonians consist of clusters of free spins, pairs of spins, and a combination of free spins and pairs of spins. For the three approximations, the thermodynamic quantities of interest have been calculated, together with the critical transition temperature and the behavior close to the transition, in the latter case in order to compute the corresponding critical exponents. The results have been compared to each other as well with exact results, when available, or results coming from more reliable approximate methods. It has been noted that as more interactions are taken into account in the trial Hamiltonian, better results are obtained for the transition temperature, although the critical exponents are always the mean eld like ones.
Os modelos de Ising de spin-1=2 e spin-1, e o de Blume-Capel de spin-1 foram estudados em redes de uma, duas e três dimensões. Foi empregado o método variacional baseado na desigualdade de Bogoliubov para a energia livre. Os hamiltonianos tentativa utilizados consistem em blocos de spins livres, de pares de spins, e da combinacão de spins livres mais pares de spins. Para as três aproximacões, foram obtidas as quantidades termodinâmicas de interesse, bem como a temperatura crítica e o comportamento perto da transição, neste ultimo caso para se obter os respectivos expoentes críticos. Os resultados foram comparados entre si, bem como com os resultados exatos, quando dispon veis, ou provenientes de outras aproxima c~oes mais elaboradas. Veri ca-se que a medida que se incorpora mais intera c~oes nos hamiltonianos tentativa, melhores resultados s~ao obtidos para a temperatura de transi c~ao, embora os expoentes cr ticos continuem sempre sendo os mesmo de campo médio usual. Palavras-Chave: Modelo de Ising,Blume-Capel,desigualdade de Bogoliubov, campo médio.
Godoy, Maurício. "Dinâmica do modelo de Ising ferromagnetico com spins mistos o = 1/2 e S= 1 /." Florianópolis, SC, 1999. http://repositorio.ufsc.br/xmlui/handle/123456789/80472.
Full textMade available in DSpace on 2012-10-18T14:58:08Z (GMT). No. of bitstreams: 0Bitstream added on 2016-01-09T03:54:45Z : No. of bitstreams: 1 144132.pdf: 1639773 bytes, checksum: a5105f67864d1062154a319632c45e80 (MD5)
Mirza, Behrouz. "On the transition between crystalline and gravitational phases in two dimensional theories with matter fields." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318930.
Full textSouza, Estefano Alves de. "Simulação perfeita e aproximações de alcance finito em sistemas de spins com interações de longo alcance." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-27052013-192003/.
Full textOur object of interest are spin systems with long-range interactions. As a special case, we are interested in systems whose invariant measure is the Ising model on A^S, where A = {-1, 1} is the space of spins and S = Z^d is the space of sites. We present two original results that are byproducts of the application of Perfect Simulation and Coupling algorithms in the context of the construction of these spin systems and their respective invariant measures.
Gabriel, Roberto Vila. "Representações gráficas para sistemas de spins com presença de campo externo : algumas relações em teoria de probabilidades." reponame:Repositório Institucional da UnB, 2016. http://repositorio.unb.br/handle/10482/22471.
Full textSubmitted by Albânia Cézar de Melo (albania@bce.unb.br) on 2016-12-23T12:19:10Z No. of bitstreams: 1 2016_RobertoVilaGabriel.pdf: 9781683 bytes, checksum: 3fe0f89ca8df223ebdacbaf2a11fb635 (MD5)
Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-02-10T21:03:00Z (GMT) No. of bitstreams: 1 2016_RobertoVilaGabriel.pdf: 9781683 bytes, checksum: 3fe0f89ca8df223ebdacbaf2a11fb635 (MD5)
Made available in DSpace on 2017-02-10T21:03:00Z (GMT). No. of bitstreams: 1 2016_RobertoVilaGabriel.pdf: 9781683 bytes, checksum: 3fe0f89ca8df223ebdacbaf2a11fb635 (MD5)
Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da agência de fomento à pesquisa, CNPq.
Este trabalho é concernente à teoria básica de percolação e representações gráficas para o modelo de Ising/Potts sobre látices com presença de campos externos invariantes e não invariantes por translação. Descrevemos, explicitamente, em termos do modelo de aglomerados aleatórios, a função distribuição e, em consequência, o valor esperado de um único spin para os modelos de Ising e de Potts de q-estados com campos externos gerais. Consideramos, também, os estados de Gibbs para a representação do modelo de Potts com campo magnético invariante e não invariante por translação, e provamos uma versão da desigualdade FKG para o chamado modelo de aglomerados aleatórios geral (modelo GRC), com condição de fronteira livre e conectada no caso invariante e não invariante translacional. Adicionando a hipótese de amenabilidade sobre o látice, obtemos a unicidade do aglomerado infinito e a quase-localidade (quase certa) das medidas de Gibbs para o modelo GRC com tais campos magnéticos. Como uma aplicação da teoria desenvolvida, mostramos a unicidade das medidas de Gibbs para o modelo de Ising ferromagnético, com campo magnético decaindo segundo uma lei de potência com potência suficientemente pequena, como conjecturado em [23]. Finalmente, apresentamos uma pequena introdução e alguns resultados sobre distância Mallows, dando algumas relações com as medidas de Gibbs apresentadas previamente.
This work is concerned with the basic theory of percolation and graphical representation for the Ising and Potts models over general lattices with invariant and non-translation invariant external field. We explicitly describe in terms of the random-cluster representation the distribution function and, consequently, the expected value of a single spin for the Ising and q-state Potts models with general external fields. We also consider the Gibbs states for the Edwards-Sokal representation of the Potts model with invariant and non-translation invariant magnetic field and prove a version of the FKG inequality for the so called general random-cluster model (GRC model) with free and wired boundary conditions in the invariant and non-translation invariant case. Adding the amenability hypothesis on the lattice, we obtain the uniqueness of the infinite connected component and the almost sure quasilocality of the Gibbs measures for the GRC model with such general magnetic fields. As a application of the theory developed, we show the uniqueness of the Gibbs measures for the ferromagnetic Ising model with a positive power-law decay magnetic field with small enough power, as conjectured in [23]. Finally we present a brief introduction and some results on Mallows distance giving some relationship with Gibbs measures presented previously.
BOUBCHEUR, EL HASSANE. "Transition de phase dans des systemes de spins : effets de la frustration et du couplage magnetoelastique." Cergy-Pontoise, 1998. http://www.theses.fr/1998CERG0053.
Full textSakly, Nahed. "Investigations structurale et physique du système d'oxydes à chaînes de spins Ising (Sr, Ca)1+xCoxMn1-xO3." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC232.
Full textThis manuscript presents the experimental study of structural and physical properties of a spin chain compounds Sr4-xCaxCoMn2O9, belonging to the large oxides family A1+XA'XB1-XO3. In this series, the 1D chains are made up of the octahedra MnO6 (Mn4+) and trigonal prisms CoO6 (Co2+) connected by the faces, and distributed over a triangular lattice with an antiferromagnetic coupling between them. These chains exhibit a strong Ising-type magnetic anisotropy, originating from the cation Co2+ (HS, 3d7, S = 3/2). First of all, the structural study of these chains reveals that they can be immcommensurate, due to a change in the degree of oxidation of cobalt depending on the synthesis conditions. Then, we were interested in the study of the two compounds Sr4CoMn2O9 (x=0) and Sr2Ca2CoMn2O9 (x=2). The x=0 compound showed the absence of long-range magnetic ordering (LRO) and dynamic spin relaxation responses, typical of Single-Ion Magnet (SIM) and Single-Chain Magnet (SCM), of which the amplitude of their characteristic peaks depends on the (in)commensurability. On the other hand, in x = 2, only the SIM response was observed at low temperature, and which coexists with the LRO at TN ~ 28 K. The neutron diffraction data show that this LRO is compatible with a partially disordered antiferromagnetic state (PDA). A particular pre-transitional regime was also observed between TN and T* (~ 32.5 K), which was considered to be a precursor effect of LRO. Furthermore, a magneto-electric (ME) coupling has also been demonstrated within this compound. The mechanism of this ME coupling has been discussed as a result of exchange-striction phenomenon. Finally, we studied the magnetic anisotropy in oriented samples, whose grain morphology was optimized by different heat treatments
Books on the topic "Ising spins"
Barkema, G. T. Transient and asymptotic domain growth in the 3D Ising model with conserved spin. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1994.
Find full textPatzold, Ortwin. Experience in Programming the Brandt/Ron Multi-Level-Algorithm for 2D-Ising Spin Glasses. St.Augustin: Gesellschaft fur Mathematik und Datenverarbeitung, 1989.
Find full text1973-, Warzel Simone, ed. Random operators: Disorder effects on quantum spectra and dynamics. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBoudreau, Joseph F., and Eric S. Swanson. Classical spin systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0020.
Full textWu, Wenhao. From classical to quantum glass. 1993.
Find full textMasui, Sayuri. Metastable states of Ising spin glasses and other random systems. 1990.
Find full textW, Lovesey S., Rutherford Appleton Laboratory, and Council For The Central Laboratory of The Research Councils., eds. A theory of spin correlations and neutron scattering from paramagnetic materials based on the Ising-Heisenberg model in one, two and three space dimensions. Chilton: Rutherford Appleton Laboratory, 1996.
Find full textBook chapters on the topic "Ising spins"
Söderberg, B. "Random Surfaces with Ising Spins." In Probabilistic Methods in Quantum Field Theory and Quantum Gravity, 325–29. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3784-7_26.
Full textJanke, Wolfhard, and Ramon Villanova. "Ising Spins on 3D Random Lattices." In Springer Proceedings in Physics, 22–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60095-1_3.
Full textSuzuki, Sei, Jun-ichi Inoue, and Bikas K. Chakrabarti. "Transverse Ising Spin Glass and Random Field Systems." In Quantum Ising Phases and Transitions in Transverse Ising Models, 123–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33039-1_6.
Full textDe Dominicis, C., and P. Mottishaw. "On replica symmetric Ising spin glasses." In Heidelberg Colloquium on Glassy Dynamics, 237. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0057519.
Full textGudyma, Iu, A. Maksymov, and V. Ivashko. "Spin-Crossover Nanocrystals and Ising Model." In Springer Proceedings in Physics, 165–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18543-9_10.
Full textDe Dominicis, C., and P. Mottishaw. "On the replica symmetric Ising spin glasses." In Fluctuations and Stochastic Phenomena in Condensed Matter, 121–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17206-8_5.
Full textDe Dominicis, C., and I. Kondorf. "On the Ising spin glass II. Fluctuations." In Applications of Field Theory to Statistical Mechanics, 91–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-13911-7_76.
Full textBaity Jesi, Marco. "The Ising Spin Glass in a Field." In Springer Theses, 45–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41231-3_2.
Full textMelnikov, Nikolai B., and Boris I. Reser. "Spin Fluctuation Theory in the Ising Model." In Dynamic Spin-Fluctuation Theory of Metallic Magnetism, 77–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92974-3_7.
Full textKarandashev, Iakov M. "Planar Ising-Spin Models in Probabilistic Machine Learning." In Advances in Neural Computation, Machine Learning, and Cognitive Research II, 14–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01328-8_2.
Full textConference papers on the topic "Ising spins"
Pierangeli, D., G. Marcucci, and C. Conti. "Spatial photonic Ising machine with thousands of interacting spins." In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.nth1a.5.
Full textPelikan, Martin, and Alexander K. Hartmann. "Obtaining ground states of ising spin glasses via optimizing bonds instead of spins." In the 9th annual conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1276958.1277088.
Full textBello, Leon, Marcello Calvanese Strinati, Emanuele G. Dalla Torre, and Avi Pe’er. "Persistent beating in coupled parametric oscillators - new coherent dynamics beyond Ising spins." In Quantum 2.0. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/quantum.2020.qth7b.3.
Full textSu, Yuqi, Junjie Mu, Hyunjoon Kim, and Bongjin Kim. "A 252 Spins Scalable CMOS Ising Chip Featuring Sparse and Reconfigurable Spin Interconnects for Combinatorial Optimization Problems." In 2021 IEEE Custom Integrated Circuits Conference (CICC). IEEE, 2021. http://dx.doi.org/10.1109/cicc51472.2021.9431401.
Full textInagaki, Takahiro, Kyo Inoue, Yoshihisa Yamamoto, and Hiroki Takesue. "Simulating one-dimensional Ising spins with optically-coupled time-division-multiplexed optical parametric oscillators." In Nonlinear Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/nlo.2015.ntu1b.6.
Full textAngelsky, Oleg, Viktor Ivashko, and Petro Maksimyak. "Study of magnetic properties of a nano-graphene monolayer within Ising ferromagnetic model with mixed spins." In Low-Dimensional Materials and Devices 2019, edited by Nobuhiko P. Kobayashi, A. Alec Talin, and Albert V. Davydov. SPIE, 2019. http://dx.doi.org/10.1117/12.2528101.
Full textMiki, T., M. Ito, Y. Hirata, Y. Kushitani, M. Shimada, and J. Shirakashi. "Computational Properties of Ising Spin Model on Spin Connection Parameters." In 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2019. http://dx.doi.org/10.1109/nano46743.2019.8993915.
Full textKim, Minhyuk, Kangheun Kim, and Jaewook Ahn. "Atomic Quantum Wires in Ising-spin Chain Models." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_qels.2021.sth1d.5.
Full textAlbertini, Francesca, and Domenico D'Alessandro. "Subspace Controllability of Quantum Ising Spin Networks with a Central Spin." In 2019 18th European Control Conference (ECC). IEEE, 2019. http://dx.doi.org/10.23919/ecc.2019.8795643.
Full textIwashita, T., K. Uragami, K. Goto, A. Shimizu, T. Kasama, and T. Idogaki. "Magnetic Properties of an Ising Spin System with Two-Spin and Four-Spin Interactions." In LOW TEMPERATURE PHYSICS: 24th International Conference on Low Temperature Physics - LT24. AIP, 2006. http://dx.doi.org/10.1063/1.2355077.
Full text