Academic literature on the topic 'Irradiation creep'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Irradiation creep.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Irradiation creep"

1

Liu, Ying, Wenbin Liu, Long Yu, Lirong Chen, Haonan Sui, and Huiling Duan. "Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation." Crystals 10, no. 1 (January 17, 2020): 44. http://dx.doi.org/10.3390/cryst10010044.

Full text
Abstract:
Ion irradiation, combined with nanoindentation, has long been recognized as an effective way to study effects of irradiation on the mechanical properties of metallic materials. In this research, hardening and creep of ion irradiated Chinese low activation martensitic (CLAM) steel are investigated by nanoindentation. Firstly, it is demonstrated that ion irradiation results in the increase of hardness, because irradiation-induced defects impede the glide of dislocations. Secondly, the unirradiated CLAM steel shows indentation creep size effect (ICSE) that the indentation creep strain decreases with the applied load, and ICSE is found to be associated with the variations of geometrical necessary dislocations (GNDs) density. However, ion irradiation results in the alleviation of ICSE due to the irradiation hardening. Thirdly, ion irradiation accelerates nanoindentation creep due to the large numbers of irradiation-induced vacancies whose diffusion controls creep deformation. Meanwhile, owing to the annihilation of vacancies, ion irradiation has a significant influence on the primary creep while only negligible influence has been observed for the steady-state creep.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Zhenbo, Hefei Huang, Jizhao Liu, Linfeng Ye, and Zhiyong Zhu. "Nanoindentation Study on the Creep Characteristics and Hardness of Ion-Irradiated Alloys." Materials 13, no. 14 (July 14, 2020): 3132. http://dx.doi.org/10.3390/ma13143132.

Full text
Abstract:
The Hastelloy N alloy, Alloy 800H and 316H stainless steel were irradiated by Xe20+ ion irradiation with energy of 4 MeV at room temperature (peak damage ranging from 0.5 to 10 dpa). The micromechanical properties, hardness and creep plasticity, of these three investigated alloys were characterized before and after irradiation using nanoindentation. The results show that the hardness increases, and creep plasticity degrades with increasing ion dose in all the samples. In comparison, Hastelloy N has good irradiation damage resistance, while that of the 800H and 316H alloys is slightly worse. Additionally, the approximate positive relationship between irradiation hardening and creep plasticity degradation means that the property of creep plasticity of irradiated materials can be reflected from the nanohardness measurement for the heavy ion irradiation cases.
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, J. L. "Creep and microstructure under irradiation." Radiation Effects 101, no. 1-4 (January 1987): 199–200. http://dx.doi.org/10.1080/00337578708224748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matthews, J. R., and M. W. Finnis. "Irradiation creep models — an overview." Journal of Nuclear Materials 159 (October 1988): 257–85. http://dx.doi.org/10.1016/0022-3115(88)90097-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Burchell, T. D., K. L. Murty, and J. Eapen. "Irradiation induced creep of graphite." JOM 62, no. 9 (September 2010): 93–99. http://dx.doi.org/10.1007/s11837-010-0145-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Antipov, A. A., V. A. Gorokhov, V. V. Egunov, D. A. Kazakov, S. A. Kapustin, and Yu A. Churilov. "NUMERICAL SIMULATION OF HIGH-TEMPERATURE CREEP OF ELEMENTS OF HEAT-RESISTANT ALLOYS STRUCTURES TAKING INTO ACCOUNT NEUTRON IRRADIATION EFFECTS." Problems of strenght and plasticity 81, no. 3 (2019): 345–58. http://dx.doi.org/10.32326/1814-9146-2019-81-3-345-358.

Full text
Abstract:
The technique of numerical research on the basis of FEM processes of deformation and damage accumulation in the structural elements of heat-resistant alloys under conditions of high-temperature creep taking into account the influence of neutron irradiation is developed. The description of the mechanical behavior of the material is carried out within the framework of the previously developed general model of the damaged material and the creep model for non-irradiated heat-resistant alloys, supplemented by taking into account the effect of irradiation on the creep rate and the appearance of brittle fracture in a given range of temperature variation and irradiation intensity. The defining relations of the creep model of the irradiated material were obtained by modifying the creep model of the non-irradiated material: a material function was introduced, taking into account the effect of the flux of neutrons on the rate of thermal creep deformation; a material function was introduced that takes into account the effect of the neutron flux on the creep surface radius; A material function was introduced, which takes into account the effect of the neutron flux on the ultimate value of the dissipation energy at full power. To simulate the processes of brittle fracture during creep under neutron irradiation conditions, it is assumed that the destructive values of effective normal stresses are a function of temperature, flux of neutrons and the current value of accumulated creep. The material functions of the model were obtained from the results of basic experiments conducted at the Research Institute of Mechanics for the heat-resistant alloy without irradiation under consideration and the available experimental data on the study of the creep of this alloy during its irradiation. Based on the proposed model, a numerical method for solving problems of high-temperature creep of structures made of heat-resistant alloys under neutron irradiation was developed and implemented within the UPAKS computing complex. To verify and illustrate the capabilities of the developed methodological and software tools, a number of problems of modeling the processes of high-temperature creep and destruction of structural elements made of the high-temperature alloy under consideration are solved.
APA, Harvard, Vancouver, ISO, and other styles
7

Gorokhov, V. A. "IDENTIFICATION AND VERIFICATION OF MATERIAL FUNCTIONS OF THE CREEP MODEL UNDER THERMAL RADIATION EFFECTS FOR AUSTENITIC STEEL 1X18H10T." Problems of strenght and plasticity 82, no. 1 (2020): 89–99. http://dx.doi.org/10.32326/1814-9146-2020-82-1-89-99.

Full text
Abstract:
In the present paper, on the basis of the information available in the scientific literature on the thermal creep rate of 1X18H10T austenitic steel under neutron irradiation conditions, the material functions of the thermal creep model implemented and verified in the framework of the certified software for numerical modeling of structural deformation under thermal and thermal radiation effects of UPAKS software are obtained and verified. The list of identifiable material functions of the thermal creep model includes: a function that characterizes the initial creep strain rate, referred to a unit stress level at a given temperature level and stress parameter; the radius of the creep surface, which is a function of temperature; the hardening function, characterizing the change in the initial creep rate from the hardening parameter at a given temperature; a function that takes into account the effect of a fast neutron flux on the creep rate at a given temperature. Using an analytical approximation of experimental data describing the rate of thermal creep of steels under neutron irradiation depending on the stresses, temperature, and flux of fast neutrons, we obtained relations for determining the values of all the functions of the thermal creep model. The value of the radius of the creep surface for a fixed temperature was determined from the condition that the creep deformation for a selected period of time and the neutron flux accumulated during this time will not exceed 0.2%. Using the UPAKS software, the creep model and the obtained material functions implemented in them, numerical simulation of the deformation of 1X18H10T steel under conditions of prolonged thermal load and neutron irradiation was performed. The results of numerical modeling are in good agreement with the analytical dependences that describe the creep of a given material under uniaxial SSS. A numerical creep simulation was also carried out under the assumption of the absence of neutron irradiation. As in the case of neutron irradiation, good agreement is obtained between the calculated and experimental data.
APA, Harvard, Vancouver, ISO, and other styles
8

Karlsen, Wade, Mykola Ivanchenko, Ulla Ehrnsten, and Ken R. Anderson. "Post-Irradiation Examinations of Irradiation Creep Tested Zircaloy-2." Microscopy and Microanalysis 21, S3 (August 2015): 749–50. http://dx.doi.org/10.1017/s1431927615004547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bystrov, L. N., L. I. Ivanov, and A. B. Tsepelev. "Irradiation-induced transient Creep of metals during pulsed irradiation." Radiation Effects 97, no. 1-2 (September 1986): 127–48. http://dx.doi.org/10.1080/00337578608208727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pouchon, Manuel A., Jia Chao Chen, and W. Hoffelner. "Microcharacterization of Damage in Materials for Advanced Nuclear Fission Plants." Advanced Materials Research 59 (December 2008): 269–74. http://dx.doi.org/10.4028/www.scientific.net/amr.59.269.

Full text
Abstract:
Miniature and sub-miniature samples were used for determination of mechanical properties of materials for advanced fission plants. Results from indentation and focused ion beam prepared micro-samples, punch tests and thin strip (irradiation) creep tests are shown. The results allow conclusions concerning materials damage. Irradiation damage profiles were determined with indentation. Results from micro-pillar tests showed a good agreement with results from conventional samples in case of oxide dispersion strengthened steels. Thin strip irradiation creep experiments revealed a negligible influence of dispersoid size/distribution on creep rates. Punch tests of fibre reinforced materials showed consistent results which still need quantitative analysis.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Irradiation creep"

1

Salerni, Ronie. "Continuous UV irradiation process for producing low-creep polyethylene." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ45468.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lapouge, Pierre. "Etude expérimentale du fluage d'irradiation dans les métaux et alliages grâce au couplage de la technologie MEMS et d’irradiations aux particules chargées." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI082/document.

Full text
Abstract:
Les matériaux de structure utilisés dans le cœur des REP, comme par exemple les aciers austénitiques ou bien les alliages de zirconium, sont soumis à la fois à une forte irradiation neutronique ainsi qu’à divers chargements mécaniques. A l’échelle macroscopique, le comportement mécanique sous irradiation de ces matériaux est bien caractérisé. Cependant, à l’échelle microscopique, les mécanismes de déformation sous irradiation restent encore mal connus. De nombreux mécanismes de fluage d’irradiation ont été envisagés du point de vue théorique mais les données expérimentales existantes n’ont pu, pour l’heure, permettre de déterminer le mécanisme pertinent contrôlant la déformation.L'objectif de ce travail de thèse est justement d’apporter une contribution à la compréhension des mécanismes de fluage d’irradiation des métaux et alliages par la mise en œuvre d’une méthode expérimentale originale. Les irradiations sont reproduites par des irradiations aux ions lourds. Ces irradiations ont l’avantage de créer un dommage rapide sans activer la matière. Cependant l’épaisseur irradiée n’est que de plusieurs centaines de nanomètres. De telles épaisseurs nécessitent un dispositif expérimental spécifique pour l’application d’une charge sur l’échantillon. Le dispositif utilisé est basé sur l’utilisation de contraintes internes dans un film mince de nitrure de silicium pour déformer des films minces métalliques. Cette méthode a été conçue et développée par les équipes de Thomas Pardoen et Jean-Pierre Raskin à l’université catholique de Louvain, en Belgique.Après une démonstration de la faisabilité de l’étude et une adaptation du dispositif aux conditions d’irradiation, cette méthode a pu être utilisée avec succès pour reproduire une expérience de fluage d’irradiation à température ambiante sur un matériau modèle, le cuivre. Une loi de fluage en puissance 5 selon la contrainte a été trouvée sous irradiation sur des films de 200 et 500 nm d’épaisseur. Les observations au microscope électronique à balayage et en transmission suggèrent que les mécanismes de déformation reposent sur le glissement assisté par la montée.Cette loi apparait indépendante de la microstructure et de l’historique de chargement des éprouvettes. La montée, si elle intervient, ne semble pas contrôlée par des mécanismes de diffusion à longue distance mais par des interactions directes entre la cascade déplacements et les dislocations.Hors irradiation et après irradiation, le comportement mécanique des films a également pu être évalué. Les mécanismes de déformation semblent identiques dans les deux conditions. A vitesse de déformation modérée, la déformation est contrôlée par le glissement intragrannulaire des dislocations tandis qu’à basse vitesse un changement de mécanisme se produit. Le nouveau mécanisme reste toujours basé sur les dislocations mais une composante de glissement aux joints de grains semble apparaitre. Un durcissement post irradiation est observé du fait d’une densité importante de SFT dans les éprouvettes irradiées qui agissent comme des obstacles au glissement des dislocations
Structural materials used in the PWR cores, such as austenitic stainless steels or zirconium alloys, are exposed to a significant neutron flux and, at the same time, a stress from various mechanical loadings. At the macroscopic scale, the mechanical behavior under irradiation is well characterized. However, at a microscopic scale, the deformation mechanisms under irradiation still remain unknown. Many irradiation creep mechanisms have been proposed from a theoretical point of view but the available experimental data have not, for now, permitted to identify the relevant mechanism leading to the deformation.The objective of this thesis is precisely to improve our understanding of the irradiation creep mechanisms of metals and alloys by the development of a novel experimental method. In this method, the irradiation is produced by the use of heavy ions. This kind of irradiation has the advantage of a fast damage rate without an activation of the material. However the irradiated area is confined in a few hundreds of nanometers. Such thickness requires a specific experimental device to apply a stress on the specimen. This device is based on the release of internal stress in a silicon nitride film to deform a metallic thin film. This method was designed and developed at the Université Catholique de Louvain in Belgium by the teams of Thomas Pardoen and Jean-Pierre Raskin.After proving the feasibility of the study and adapting the device to the irradiation environment, the method has been used with success to reproduce an irradiation creep experiment at room temperature on a model material : copper. A single creep power law with a stress exponent of 5 has been found under irradiation on 200 and 500 nm thick films. The SEM and TEM observations suggest that the deformation mechanism rely on the glide of dislocations assisted by climb.This law seems to be independent of the microstructure and the loading history. The dislocation climb, if it occurs, would not be controlled by diffusion process at long distance but by direct interaction between displacement cascades and dislocations.The mechanical behavior of unirradiated and irradiated copper films have also been assessed. The deformation mechanisms seem to be the same in both cases. At a moderate strain rate, the deformation is controlled by the intragrannular glide of dislocations whereas at slow strain rate a change of mechanism takes place. The new mechanism still remains based on dislocations but a component of grain boundary sliding may appear. A post irradiation hardening has been observed on a 200 nm thick film due to the presence, in the irradiated samples, of a high density of SFT which act as obstacles against dislocation glide
APA, Harvard, Vancouver, ISO, and other styles
3

Villani, Aurélien. "Modélisation multiphysique de l'endommagement par irradiation de laminés nanocristallins." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0002/document.

Full text
Abstract:
L'endommagement par irradiation mène à la ruine d'un matériaux, il est donc impératif de savoir prévoir son évolution afin de garantir la sécurité des réacteurs nucléaires.Bien que le comportement mécanique sous irradiation ait fait l'objet de nombreuses recherches, les capacités de prédiction actuelles restent limitées.L'agrégation des défauts ponctuels, tels que les lacunes et les auto-interstitiels, provoque du fluage, du gonflement et fragilise le matériau.Les nano-composites multicouches métalliques cristallins sont capables d'évacuer ces défauts ponctuels grâce à leur densité d'interface élevée, et permettent de retarder les phénomènes délétères précédemment cités.Ils ont, de plus, une résistance mécanique élevée.L'objectif de cette thèse est de développer un cadre thermodynamique à l'échelle continue meso et nano-scopique, rendant compte des principaux phénomènes physiques à l'oeuvre dans ces laminés irradiés.Principalement trois points sont abordés: le couplage diffusion-mécanique et le fluage, la nucléation et croissance de cavités sous irradiation, et le comportement mécanique des multicouches.La micro-structure du matériau est ici entièrement modélisée, afin de précisément rendre compte de son influence sur le comportement du matériau.Le fluage par diffusion est traité via une approche originale où le tenseur des vitesses de déformation est directement relié au gradient du flux de lacunes.Un modèle de type Cahn-Hilliard est utilisé afin de prédire la nucléation et la croissance des cavités.Les équations de diffusion y sont complétées pour prendre en compte la production des défauts ponctuels dus à l'irradiation, ainsi que leur recombinaison.Dans les systèmes multicouches, une zone affecté par l'interface est définie, dans laquelle les dislocations peuvent être annihilées.De plus, l'interface elle même est traitée comme un plan de glissement cristallographique.Le modèle est implémenté numériquement via la méthode des éléments finis.Des simulations de fluage couplé à la diffusion de lacunes sont pour la première fois réalisé sur des agrégats polycristallins, prédisant des champs de déformation intra-granulaire fortement hétérogènes.De plus, la vitesse de fluage macroscopique obtenue met en évidence les dépendances classiques à la taille de grain ainsi qu'à la contrainte appliquée.Lors des simulations d'irradiation de multicouches, des zones libres de cavités sont prédites de part et d'autre des interfaces, en accord avec les observations expérimentales.Enfin, des essais de traction sont simulés sur des systèmes Cu-Nb en 3D, mettant en évidence un mode de déformation complexe, et un effet moindre de l'anisotropie élastique
Radiation damage is known to lead to material failure and thus is of critical importance to lifetime and safety within nuclear reactors.While mechanical behaviour of materials under irradiation has been the subject of numerous studies, the current predictive capabilities of such phenomena appear limited.The clustering of point defects such as vacancies and self interstitial atoms gives rise to creep, void swelling and material embrittlement.Nanoscale metallic multilayer systems have be shown to have the ability to evacuate such point defects, hence delaying the occurrence of critical damage.In addition, they exhibit outstanding mechanical properties.The objective of this work is to develop a thermodynamically consistent continuum framework at the meso and nano-scales, which accounts for the major physical processes encountered in such metallic multilayer systems and is able to predict their microstuctural evolution and behavior under irradiation.Mainly three physical phenomena are addressed in the present work: stress-diffusion coupling and diffusion induced creep, the void nucleation and growth in multilayer systems under irradiation, and the interaction of dislocations with the multilayer interfaces.In this framework, the microstructure is explicitly modeled, in order to account accurately for their effects on the system behavior.The diffusion creep strain rate is related to the gradient of the vacancy flux.A Cahn-Hilliard approach is used to model void nucleation and growth, and the diffusion equations for vacancies and self interstitial atoms are complemented to take into account the production of point defects due to irradiation cascades, the mutual recombination of defects and their evacuation through grain boundaries.In metallic multilayers, an interface affected zone is defined, with an additional slip plane to model the interface shearable character, and where dislocations cores are able to spread.The model is then implemented numerically using the finite elements method.Simulations of biaxial creep of polycrystalline aggregates coupled with vacancy diffusion are performed for the first time, and predict strongly heterogeneous viscoplastic strain fields.The classical macroscopic strain rate dependence on the stress and grain size is also retrieved.Void denuded zones close to the multilayer interfaces are obtained in irradiation simulations of a multilayer, in agreement with experimental observations.Finally, tensile tests of Cu-Nb multilayers are simulated in 3D, where it is shown that the effect of elastic anisotropy is negligible, and evidencing a complex deformation mode
APA, Harvard, Vancouver, ISO, and other styles
4

Ozaltun, Hakan. "An Energy Based Fatigue Lifing Method for In-Service Components and Numerical Assessment of U10Mo Alloy Based Fuel Mini Plates." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1309210033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MIKOU, MOHAMMED. "Defauts crees par irradiation aux ions lourds rapides dans l'arseniure de gallium : etude par effet hall et photoluminescence." Caen, 1995. http://www.theses.fr/1995CAEN2018.

Full text
Abstract:
Plusieurs echantillons de gaas de type n et de type p elabores par differentes techniques (cz, mocvd et mbe) ont ete irradies a ganil avec des ions des plus legers (oxygene) aux plus lourds (plomb) et avec des energies comprises entre 163mev et 5730mev. Les mesures in situ de resistivite et d'effet hall realisees au cours de l'irradiation ont revele la diminution de la densite des porteurs et la degradation de leur mobilite dans le cas des deux types de materiaux. Ces effets sont dus aux defauts crees par l'irradiation aux ions rapides. Des mesures de spectroscopie transitoire des niveaux profonds (dlts) dans le cas du materiau de type n ont permis de deduire la nature discrete de ces defauts crees qui sont essentiellement lies a la paire lacune-interstitiel d'arsenic. Ces defauts sont representes electriquement par des niveaux profonds crees dans la bande interdite du semi-conducteur avec differents etats de charge. Ces niveaux piegent les porteurs libres et conduisent a l'augmentation de la resistivite du materiau. La degradation de la mobilite est due a la diffusion des porteurs sur les defauts crees par irradiation (en particulier, les defauts charges). Des modeles de simulation des variations, avec la fluence, de la concentration et de la mobilite de hall sont developpes et font en particulier appel a un modele de conduction a deux bandes (de conduction et d'impuretes) pour le type n. Les resultats permettent de preciser les etats de charge de la lacune d'arsenic et fournissent des taux de production de defauts identiques pour les irradiations effectuees a 77k et a 300k. L'analyse par photoluminescence des echantillons irradies montre que l'intensite des raies observees decroit en fonction de la fluence des ions incidents. Cette decroissance est due a la creation par irradiation d'autres niveaux non radiatifs qui conduisent a la diminution de l'efficacite quantique des transitions radiatives et aussi a la diminution de la concentration des centres radiatifs. Enfin, les resultats normalises des variations, en fonction de la fluence, de la resistivite et de la photoluminescence des echantillons irradies, associes aux resultats de la comparaison entre les taux de creation de defauts deduits des calculs de simulations et les taux theoriques de deplacements atomiques (ndpa/e), calcules uniquement a partir des collisions nucleaires, revelent que le pouvoir d'arret electronique ne contribue pas de facon notable a la creation de defauts, mais il conduit peut etre au recuit d'une partie de ces derniers
APA, Harvard, Vancouver, ISO, and other styles
6

BERNARD-LABARRE, MONIQUE. "Etude des defauts crees par irradiation dans les halogenures alcalino-terreux et alcalins : centres de type v dans les iodures et les bromures." Nantes, 1995. http://www.theses.fr/1995NANT2029.

Full text
Abstract:
Ce travail presente l'etude de defauts crees dans des cristaux d'iodures et de bromures alcalins ou alcalino-terreux par irradiation aux rayons x. Une attention particuliere est apportee aux defauts dits de type v, c'est-a-dire a trous positifs. Ces defauts peuvent en effet etre etudies en utilisant la diffusion raman resonnante comme technique d'identification de ces defauts. Le travail de these est constitue dans une premiere phase par une etude bibliographique complete des defauts crees dans ces matrices cristallines, qu'ils soient a electrons ou a trous. Ces defauts, appeles centres colores ont en effet fait l'objet d'etudes poussees, notamment pour la realisation de lasers solides emettant dans l'infrarouge proche. Dans une deuxieme partie, la these decrit l'approche experimentale specifique aux iodures et bromures alcalins, avec l'utilisation de la diffusion raman resonnante. C'est la seule technique en effet qui a permis d'identifier des especes de type (i#3#-) (i#5#-) et (i#2)#n ou br#3#- et br#5#-. Les conditions de formation de ces defauts de type v, leur concentration respective ont donc pu etre suivis et decrits, en liaison avec les resultats d'absorption d'optique, dans divers cristaux tels que ki, rbi ou mixte k#x rb#i#-#x i, de meme que dans les bromures nabr, kbr, rbbr et csbr, ou l'influence de la taille du cation a pu etre etudiee. De meme, les effets de la temperature d'irradiation, de la dose ont pu etre abordes
APA, Harvard, Vancouver, ISO, and other styles
7

FITTE, REY JACQUES. "Determination de la fonction de distribution spatiale et des parametres de photo-ionisation des photo-electrons crees par irradiation vuv de dielectriques liquides non polaires." Toulouse 3, 1998. http://www.theses.fr/1998TOU30150.

Full text
Abstract:
Dans une description classique du processus de photo-ionisation des dielectriques liquides non polaires les photo-electrons chauds crees par irradiation vuv des dielectriques liquides perdent leur energie cinetique en exces au dessus du seuil de photo-ionisation par interactions inelastiques avec les molecules du milieu ou quasi-elastique avec les modes de vibration du reseau liquide. L'electron, cree avec un certain rendement quantique se trouve thermalise a une certaine distance r de son ion parent appelee distance de thermalisation. En realite cette distance est distribuee suivant une fonction de distribution spatiale qui regit le comportement ulterieur de la paire dite geminee - ion electron -. En particulier cette paire peut se recombiner ou etre separee sous l'effet d'un champ applique, suivant un processus de diffusion migration conforme au modele d'onsager. Les travaux exposes ici : - precisent des etudes anterieures menees sur la determination des parametres de photo-ionisation : rendement quantique d'ionisation et distance de thermalisation. On examine en particulier l'evolution de ces parametres en fonction de l'energie des photons incidents. Le liquide etudie est le 2-2-4 trimethylpentane. - dans une deuxieme partie on utilise la methode dite semi-empirique, proposee par baird, pour etablir la fonction de distribution spatiale des electrons a thermalisation. Il s'avere que certaines exponentielles modifiees sont les plus aptes a representer la distribution spatiale des photo-electrons. - dans une troisieme partie l'on utilise une methode de monte carlo appuyee sur un modele relativement fruste, pour simuler le processus de thermalisation que les electrons soient emis par irradiation vuv du liquide lui-meme (3-d) ou a partir d'une photo-cathode (1-d). La simulation permet de mettre en evidence le role de la retro-diffusion dans le cas de l'injection 1-d.
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Richard Whiting. "Microstructural modeling of irradiation creep and swelling in single crystal nickel." 1985. http://catalog.hathitrust.org/api/volumes/oclc/68787596.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Irradiation creep"

1

Salerni, Ronie. Continuous UV irradiation process for producing low creep polyethylene. Ottawa: National Library of Canada, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Causey, A. R. Irradiation-enhanced creep of cold-worked Zr-2.5Nb tubes and helical-springs. Chalk River, Ont: Reactor Materials Research Branch, Chalk River Laboratories, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ansari, Iqbal. Irradiation-Induced Creep and Microstructural Development in Precipitation-Hardened Nickel-Aluminum Alloys. Julich, W. Ger: Zentralbibliothek der Kernforschungsanlage, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Samoorganizat︠s︡ii︠a︡ v radiat︠s︡ionnoĭ fizike. Kiev: OOO "Vydavnyt︠s︡tvo 'Aspekt-Polīhraf'", 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scholz, R. Light Ion Irradiation Creep in Torsion. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1951-, Christodoulou Nicholas C., ed. Modelling irradiation creep of zirconium alloys. Chalk River, Ont: Reactor Materials Research Branch, Chalk River Laboratories, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sch<129>le, W., H. Hausen, and M. R. Cundy. Irradiation Creep Experiments on Fusion Reactor Candidate Structural Materials. European Communities / Union (EUR-OP/OOPEC/OPOCE), 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hardt, P. Von Der. Measurement of Irradiation-Enhanced Creep in Nuclear Materials: Proceedings of an International Conference Organized by the Commission of the European Communities at the Joint Research Centre, Petten, the Netherlands, May 5-6 1976. Elsevier Science & Technology Books, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Irradiation creep"

1

Was, Gary S. "Irradiation Creep and Growth." In Fundamentals of Radiation Materials Science, 735–91. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3438-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Griffiths, M., G. A. Bickel, R. DeAbreu, and W. Li. "Irradiation Creep of Zr-Alloys." In Mechanical and Creep Behavior of Advanced Materials, 165–82. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51097-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murakami, S., and M. Mizuno. "Mechanical Modeling of Irradiation Creep and its Application to the Analysis of Creep Crack Growth." In Creep in Structures, 237–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84455-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nishiura, T., S. Nishijima, K. Katagiri, T. Okada, J. Yasuda, and T. Hirokawa. "Creep Test of Composite Materials Under Irradiation Condition." In 11th International Conference on Magnet Technology (MT-11), 708–13. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0769-0_122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nishiura, T., S. Nishijima, S. Ueno, Y. Tsukasaki, and T. Okada. "Enhanced Creep of Epoxy Resin During Irradiation at Cryogenic Temperatures." In Advances in Cryogenic Engineering Materials, 291–97. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9056-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Foster, John Paul, and Rita Baranwal. "ZIRLO® Irradiation Creep Stress Dependence in Compression and Tension." In Zirconium in the Nuclear Industry: 16th International Symposium, 853–74. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp49286t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Foster, John Paul, and Rita Baranwal. "ZIRLO® Irradiation Creep Stress Dependence in Compression and Tension." In Zirconium in the Nuclear Industry: 16th International Symposium, 853–74. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp49384s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foster, John Paul, and Rita Baranwal. "ZIRLO® Irradiation Creep Stress Dependence in Compression and Tension." In Zirconium in the Nuclear Industry: 16th International Symposium, 853–74. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2011. http://dx.doi.org/10.1520/stp152920120034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, N., A. Alsabbagh, C. S. Seok, and K. L. Murty. "Synergistic Effects of Neutron Irradiation and Interstitial Nitrogen on Strain Aging in Ferritic Steels." In Mechanical and Creep Behavior of Advanced Materials, 151–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51097-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garzarolli, F., P. Dewes, S. Trapp-Pritsching, and J. L. Nelson. "Irradiation Creep Behavior of High-Purity Stainless Steels and Ni-Base-Alloys." In Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1027–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118787618.ch107.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Irradiation creep"

1

Yao, Huan, Tianzhou Ye, Junmei Wu, Yingwei Wu, Chunyu Yin, and Ping Chen. "Creep Properties of FeCrAl Alloy at High Temperature Under Neutron Irradiation." In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-89079.

Full text
Abstract:
Abstract Nuclear fuel cladding is subjected to neutron irradiation in a high-temperature stress environment, and the structural integrity of the cladding is very important for the safe operation of nuclear reactors. FeCrAl alloy has become a promising candidate cladding material for the accident tolerance fuel development in view of its excellent irradiation resistance and high temperature strength. This work aims to study the creep properties of FeCrAl alloy at high temperatures under neutron irradiation. Thermal and irradiation creep behavior in nanocrystalline FeCrAl samples is examined using molecular dynamics simulation method. And the effects of temperature, stress, irradiation dose rate on the creep rate and parameters of the creep constitutive equations are discussed. The results show that the thermal creep rate is greater than irradiation creep rate. The effect of temperature on the thermal creep stress exponent is relatively small at low stress, but is obvious when stress exceeds 0.8 GPa. The higher the temperature, the larger the thermal creep stress exponent. The irradiation creep rate increases almost linearly with the dose rate, that is, the exponent of dose rate for irradiation creep approach 1.0. Irradiation creep stress exponent fluctuates very little around 1.1 within the scope of the present research. Besides, higher temperature accelerates the linear increase of irradiation creep rate with dose rate, and the irradiation creep pre-factor becomes higher.
APA, Harvard, Vancouver, ISO, and other styles
2

Fedorov, Alexander, Kevin Zwijsen, and Sander van Til. "Modelling of the H2020 INSPYRE Fuel Creep Experiment." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16231.

Full text
Abstract:
Abstract To better understand irradiation creep of nuclear fuel, NRG has prepared, as part of the H2020 European project INSPYRE, a separate effect irradiation experiment in the High Flux Reactor (HFR) in Petten (the Netherlands) aiming to measure fuel creep in-pile as a function of temperature, flux, burn-up and axial pressure load. This continuous type of measurement will supply a large data set, leading to more detailed knowledge on fuel behaviour during irradiation. To support the experiment and make optimal use of the generated data, a model is created of the experiment to better predict the behaviour of the fuel samples during irradiation. The current paper describes the numerical model, which couples the 1.5D fuel performance code TRANSURANUS (TU) with a Finite Element Analysis (FEA). The thermal analysis of the experiment is carried out using the FEA. Such approach enables to model a rather complex geometry of the experiment, and to include axial heat transport, which is not implemented in TU. TU is modified in order to use the fuel pellet temperatures obtained using the FEA and to include the axial load present in the experiment. The model is validated against several test cases and used to predict the fuel behaviour during a selection of foreseen irradiation scenario’s. Results of the model will be used in the future for optimization of the irradiation parameters used in the experiment and for analysis of the data obtained during the irradiation.
APA, Harvard, Vancouver, ISO, and other styles
3

Fang, Xiang, Haitao Wang, and Suyuan Yu. "Effect of Irradiation Deformation and Graphite Varieties on the Irradiation Equivalent Stress and Life of Nuclear Graphite." In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-30359.

Full text
Abstract:
Graphite is selected as moderator, reflector and major internal structural material in high temperature gas-cooled reactors (HTRs) because of its unique characteristics. Inside the core, both high temperature and fast neutron irradiation can influence the mechanical property, thermal property, dimensional change and some other characteristics of graphite in evidence, while the creep of graphite plays an important role in the whole process. There have been several kinds of creep models, and the creep process is divided into two parts in most of models: primary creep and secondary creep. The primary is always treated as exponential function while the secondary is linear. A code based on user subroutines of MSC.MARC is developed in INET in order to perform three-dimensional finite element analysis of irradiation behavior of the graphite components for the HTRs. In this paper, the irradiation behavior of nuclear graphite was simulated, and the impact of irradiation-induced deformation of various kinds of graphite on the irradiation-induced stresses and lives is discussed. In order to describe the creep behavior, the linear elastic model is chosen while the influence of high temperature and irradiation to the dimensional change, physical parameters and creep property of nuclear graphite is used as original data.
APA, Harvard, Vancouver, ISO, and other styles
4

UENO, KEIKO, JOHSEI NAGAKAWA, NORIKAZU YAMAMOTO, and YOSHIHARU MURASE. "EFFECT OF DISLOCATION ON THE IRRADIATION CREEP OF SUS 316L." In Proceedings of the Seventh China–Japan Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705198_0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hattar, Khalid, Eric Lang, and Shen Dillon. "Irradiation Creep and Fatigue Observed via In-situ Electron Microscopy." In Proposed for presentation at the MiNES 21: Materials in Nuclear Energy Systems 2021 held November 8-12, 2021 in Pittsburgh, PA US. US DOE, 2021. http://dx.doi.org/10.2172/1899488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Margolin, B. Z., A. G. Gulenko, and A. A. Buchatsky. "Prediction of Creep-Rupture Properties for Austenitic Steels Undergone Neutron Irradiation." In ASME 2009 Pressure Vessels and Piping Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/pvp2009-77084.

Full text
Abstract:
The paper presents the physical and mechanical model that allows predicting fracture of materials subjected to neutron irradiation under creep. The model is based on the equations of void nucleation and growth on grain boundaries that were proposed earlier. The equations are developed for the case of neutron irradiation of a material. The constitutive equations describing viscoplastic deformation of a material with regard to void evolution are formulated. The criterion of microplastic collapse of a unit cell is used as a fracture criterion. The creep-rupture strength and ductility of austenitic materials in the initial and irradiated conditions with different neutron flux levels are predicted on the basis of the model. The calculated results are compared with the available experimental data.
APA, Harvard, Vancouver, ISO, and other styles
7

Sprouster, D., L. Snead, Y. Katoh, and T. Koyanagi. "X-Ray Characterization of Atomistic Defects Causing Irradiation Creep of SiC." In 2020 ANS Virtual Winter Meeting. AMNS, 2020. http://dx.doi.org/10.13182/t123-33154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jang, Young Ki, Kyeong Lak Jeon, Jae Ik Kim, Jung Cheol Shin, Yong Hwan Kim, Sun Tack Hwang, Man Soo Kim, Tae Hyoung Lee, Yong Bae Yoon, and Tae Wan Kim. "Irradiation Performance Update on Advanced Nuclear Fuel of PLUS7™." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57927.

Full text
Abstract:
An advanced nuclear fuel of PLUS7™ for OPR1000s and APR1400s in Korea has been developed and irradiated in PWR nuclear power reactors. It has high performance characteristics from the safety and economy points of view comparing to the current fuel. Zirconium-based nuclear fuel structural components are grown and/or deformed under the circumstances of high temperature and irradiation. Excessive growth or deformation should be prevented not to interfere with adjacent fuels or reactor internals. After development for three (3) years from 1999, this fuel was verified successfully using four (4) LTAs in Ulchin unit 3. After each cycle, irradiation-related performance items were measured using the precise measurement systems in poolside and evaluated. After three (3) cycle irradiations, one discharged fuel assembly was disassembled and examined in detail. Finally, ten (10) rods including skeleton were sent to PIE test facility for further detailed examination. After in-reactor verification using LTAs, eight (8) OPR1000s were replaced with this advanced fuel. In the mean while, the surveillance program using the commercially supplied fuels was launched to reconfirm irradiation-related parameters such as growth, creep, corrosion and deformation, etc. Four (4) fuel assemblies which consist of two (2) assemblies to be discharged after two (2) cycle irradiations and the other two (2) to be discharged after three (3) cycle irradiations were selected for this surveillance program. In this paper, irradiation-induced parameters such as fuel assembly width and length growth, assembly bow and twist etc. are updated.
APA, Harvard, Vancouver, ISO, and other styles
9

Xiao, Hongxing, Chongsheng Long, Le Chen, and Bo Liang. "Behavior of the Ag-In-Cd Alloy Control Rod Under Irradiation." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15857.

Full text
Abstract:
Increase of control rod diameters may occur under Pressurized Water Reactors (PWR) operational conditions. This increase constitutes a limitation on the life-time of control rod assemblies and the safety of reactor. In order to understand the contribution of the irradiation to this damage, SIMROD (simulated the irradiated control rod: Silver-indium-cadmium alloy with the tin additive which aim to simulate the effect of irradiation) and non-irradiated control rod are investigated. The density, microstructure, thermal diffusivity, conductivity and steady compressive creep rate have been measured by Archimedes principle method, optical microscope (OM), scanning electron microscope (SEM), laser bombard method and creep testing machine in this work. The results show that the thermal diffusivity and conductivity of SIMROD alloy increases with the increase of temperature as well as the non-irradiated control rod alloy, fcc alloy of Ag-In-Cd will transform to an hcp phase similar to the zeta phase of the silver alloys while the Sn as the additive. In order to understand the creep mechanism of as-cast alloys, the stress exponent n and activation energy Qc are calculated by the data of stress and temperature dependence of steady creep rate. Grain boundary sliding is the rate controlling mechanism for the alloy at the temperature of 300°C and dislocation creep is the rate controlling mechanism for the alloy at the temperatures of 350–400°C, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

BONDARENKO, A. V., A. A. PRODAN, YU T. PETRUSENKO, V. N. BORISENKO, F. DWORSCHAK, and U. DEDEK. "EFFECT OF ELECTRON IRRADIATION ON ANISOTROPY OF VORTEX CREEP IN YBCO SINGLE CRYSTALS." In Proceedings of the First Regional Conference. World Scientific Publishing Company, 2000. http://dx.doi.org/10.1142/9789812793676_0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Irradiation creep"

1

Ubic, Rick, Darryl Butt, and William Windes. Irradiation Creep in Graphite. Office of Scientific and Technical Information (OSTI), March 2014. http://dx.doi.org/10.2172/1128528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kennedy, C. R. (Irradiation creep of graphite). Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6410826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Was, Gary S., and Anne Campbell. Proton Irradiation Creep in Pyrocarbon. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1236831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsai, H., M. C. Billone, R. V. Strain, D. L. Smith, and H. Matsui. Irradiation creep of vanadium-base alloys. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/335380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Windes, William E., David T. Rohrbaugh, and W. David Swank. AGC 2 Irradiation Creep Strain Data Analysis. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1374497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Windes, William E., David T. Rohrbaugh, and W. David Swank. AGC 3 Irradiation Creep Strain Data Analysis. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/1599770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, H., R. V. Strain, and D. L. Smith. Study of irradiation creep of vanadium alloys. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/543201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pokrovsky, A. S., V. R. Barabash, and S. A. Fabritsiev. Irradiation creep of dispersion strengthened copper alloy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/543294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kelly, B. T. The Analysis of Irradiation Creep in Reactor Graphite. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/1366725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woo, C. H., and F. A. Garner. Contribution to irradiation creep arising from gas-driven bubbles. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/335410.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography