Journal articles on the topic 'Iron oxide microparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Iron oxide microparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bica, Ioan, Eugen Mircea Anitas, Hyoung Jin Choi, and Paula Sfirloaga. "Microwave-assisted synthesis and characterization of iron oxide microfibers." Journal of Materials Chemistry C 8, no. 18 (2020): 6159–67. http://dx.doi.org/10.1039/c9tc05687d.
Full textCarrelo, Henrique, André R. Escoval, Tânia Vieira, Mercedes Jiménez-Rosado, Jorge Carvalho Silva, Alberto Romero, Paula Isabel P. Soares, and João Paulo Borges. "Injectable Thermoresponsive Microparticle/Hydrogel System with Superparamagnetic Nanoparticles for Drug Release and Magnetic Hyperthermia Applications." Gels 9, no. 12 (December 15, 2023): 982. http://dx.doi.org/10.3390/gels9120982.
Full textKrajewski, M., K. Brzozka, W. S. Lin, H. M. Lin, M. Tokarczyk, J. Borysiuk, G. Kowalski, and D. Wasik. "High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles." Physical Chemistry Chemical Physics 18, no. 5 (2016): 3900–3909. http://dx.doi.org/10.1039/c5cp07569f.
Full textKoudelkova, Zuzana, Zuzana Bytesnikova, Kledi Xhaxhiu, Monika Kremplova, David Hynek, Vojtech Adam, and Lukas Richtera. "Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide." Molecules 24, no. 6 (March 18, 2019): 1063. http://dx.doi.org/10.3390/molecules24061063.
Full textŽaimis, Uldis, Jūratė Jolanta Petronienė, Andrius Dzedzickis, and Vytautas Bučinskas. "Stretch Sensor: Development of Biodegradable Film." Sensors 24, no. 2 (January 21, 2024): 683. http://dx.doi.org/10.3390/s24020683.
Full textKabiri, Shervin, Mahaveer D. Kurkuri, Tushar Kumeria, and Dusan Losic. "Frit-free PDMS microfluidic device for chromatographic separation and on-chip detection." RSC Adv. 4, no. 29 (2014): 15276–80. http://dx.doi.org/10.1039/c4ra01393j.
Full textMatsunaga, H., M. Kiguchi, B. Roth, and P. D. Evans. "Visualisation of Metals in Pine Treated with Preservative Containing Copper and Iron Nanoparticles." IAWA Journal 29, no. 4 (2008): 387–96. http://dx.doi.org/10.1163/22941932-90000193.
Full textTronc, E., and D. Bonnin. "Magnetic coupling among spinel iron oxide microparticles by Mössbauer spectroscopy." Journal de Physique Lettres 46, no. 10 (1985): 437–43. http://dx.doi.org/10.1051/jphyslet:019850046010043700.
Full textRodríguez, Cristian F., Paula Guzmán-Sastoque, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma, and Juan C. Cruz. "Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA." Micromachines 15, no. 8 (August 22, 2024): 1057. http://dx.doi.org/10.3390/mi15081057.
Full textHavelka, Ondřej, Martin Cvek, Michal Urbánek, Dariusz Łukowiec, Darina Jašíková, Michal Kotek, Miroslav Černík, Vincenzo Amendola, and Rafael Torres-Mendieta. "On the Use of Laser Fragmentation for the Synthesis of Ligand-Free Ultra-Small Iron Nanoparticles in Various Liquid Environments." Nanomaterials 11, no. 6 (June 10, 2021): 1538. http://dx.doi.org/10.3390/nano11061538.
Full textKnoche Gupta, Krysti, Heung Chan Lee, Joshua Richard Coduto, and Johna Leddy. "(Invited) Glassy Carbon Electrodes Modified with Micromagnets: Magnetoelectrocatalysis of HER." ECS Meeting Abstracts MA2022-02, no. 30 (October 9, 2022): 1112. http://dx.doi.org/10.1149/ma2022-02301112mtgabs.
Full textAmara, Daniel, and Shlomo Margel. "Synthesis and characterization of elemental iron and iron oxide nano/microcomposite particles by thermal decomposition of ferrocene." Nanotechnology Reviews 2, no. 3 (June 1, 2013): 333–57. http://dx.doi.org/10.1515/ntrev-2012-0061.
Full textRafieepour, Athena, Mansour R. Azari, Habibollah Peirovi, Fariba Khodagholi, Jalal Pourahmad Jaktaji, Yadollah Mehrabi, Parvaneh Naserzadeh, and Yousef Mohammadian. "Investigation of the effect of magnetite iron oxide particles size on cytotoxicity in A549 cell line." Toxicology and Industrial Health 35, no. 11-12 (November 2019): 703–13. http://dx.doi.org/10.1177/0748233719888077.
Full textMel’nikov, G. Yu, L. M. Ranero, A. P. Safronov, A. Larrañaga, A. V. Svalov, and G. V. Kurlyandskaya. "Epoxy Composites with Iron Oxide Microparticles: Model Materials for Magnetic Detection." Physics of Metals and Metallography 123, no. 11 (November 2022): 1075–83. http://dx.doi.org/10.1134/s0031918x22601330.
Full textDalzon, Torres, Reymond, Gallet, Saint-Antonin, Collin-Faure, Moriscot, et al. "Influences of Nanoparticles Characteristics on the Cellular Responses: The Example of Iron Oxide and Macrophages." Nanomaterials 10, no. 2 (February 5, 2020): 266. http://dx.doi.org/10.3390/nano10020266.
Full textThébault, C., M. Marmiesse, C. Naud, K. Pernet-Gallay, E. Billiet, H. Joisten, B. Dieny, M. Carrière, Y. Hou, and R. Morel. "Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis." Nanoscale Advances 3, no. 21 (2021): 6213–22. http://dx.doi.org/10.1039/d1na00461a.
Full textDresvyannikov, A. F., L. E. Kalugin, M. M. Mironov, and M. F. Shaekhov. "Influence of plasma high-frequency induction discharge on the physical and chemical properties of the Ti – Fe – Ni dispersed system obtained by the electrochemical method." Physics and Chemistry of Materials Treatment 4 (2022): 15–22. http://dx.doi.org/10.30791/0015-3214-2022-4-15-22.
Full textPipíška, Martin, Simona Zarodňanská, Miroslav Horník, Libor Ďuriška, Marián Holub, and Ivo Šafařík. "Magnetically Functionalized Moss Biomass as Biosorbent for Efficient Co2+ Ions and Thioflavin T Removal." Materials 13, no. 16 (August 16, 2020): 3619. http://dx.doi.org/10.3390/ma13163619.
Full textChistè, Elena, Gloria Ischia, Marco Gerosa, Pasquina Marzola, Marina Scarpa, and Nicola Daldosso. "Porous Si Microparticles Infiltrated with Magnetic Nanospheres." Nanomaterials 10, no. 3 (March 4, 2020): 463. http://dx.doi.org/10.3390/nano10030463.
Full textSMIRNOV, V. M., G. P. VORONKOV, V. G. SEMENOV, V. G. POVAROV, and I. V. MURIN. "MÖSSBAUER STUDY OF STRUCTURAL–CHEMICAL TRANSFORMATION IN TWO-DIMENSIONAL IRON–OXYGEN NANOSTRUCTURES IN THE COURSE OF TRANSPORT REDUCTION." Surface Review and Letters 07, no. 01n02 (February 2000): 1–6. http://dx.doi.org/10.1142/s0218625x00000026.
Full textPospiskova, K., G. Prochazkova, and I. Safarik. "One-step magnetic modification of yeast cells by microwave-synthesized iron oxide microparticles." Letters in Applied Microbiology 56, no. 6 (April 4, 2013): 456–61. http://dx.doi.org/10.1111/lam.12069.
Full textMöller, Winfried, Gerhard Scheuch, Knut Sommerer, and Joachim Heyder. "Preparation of spherical monodisperse ferrimagnetic iron-oxide microparticles between 1 and 5μm diameter." Journal of Magnetism and Magnetic Materials 225, no. 1-2 (January 2001): 8–16. http://dx.doi.org/10.1016/s0304-8853(00)01221-x.
Full textOliveira, João Pedro Jenson de, Acelino Cardoso de Sá, and Leonardo Lataro Paim. "Electrocatalysis of Ethanol and Methanol Electrooxidation by Composite Electrodes with NiOOH/FeOOH Supported on Reduced Graphene Oxide onto Composite Electrodes." Chemistry Proceedings 2, no. 1 (November 9, 2020): 2. http://dx.doi.org/10.3390/eccs2020-07523.
Full textKatsnelson, Boris A., Larisa I. Privalova, Sergey V. Kuzmin, Vladimir B. Gurvich, Marina P. Sutunkova, Ekaterina P. Kireyeva, and Ilzira A. Minigalieva. "An Approach to Tentative Reference Levels Setting for Nanoparticles in the Workroom Air Based on Comparing Their Toxicity with That of Their Micrometric Counterparts: A Case Study of Iron Oxide Fe3O4." ISRN Nanotechnology 2012 (August 7, 2012): 1–12. http://dx.doi.org/10.5402/2012/143613.
Full textDolmatov, Arthur V., Sergey S. Maklakov, Anastasia V. Artemova, Dmitry A. Petrov, Artem O. Shiryaev, and Andrey N. Lagarkov. "Deposition of Thick SiO2 Coatings to Carbonyl Iron Microparticles for Thermal Stability and Microwave Performance." Sensors 23, no. 3 (February 3, 2023): 1727. http://dx.doi.org/10.3390/s23031727.
Full textMurashova, Nataliya M., Ayuna A. Dambieva, and Evgeniy V. Yurtov. "EFFECT OF NANO- AND MICROPARTICLES OF IRON (III) OXIDE ON VISCOSITY OF LAMELLAR LIQUID CRYSTALS OF LECITHIN." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 59, no. 5 (July 12, 2018): 41. http://dx.doi.org/10.6060/tcct.20165905.5330.
Full textMcAteer, Martina A., Nicola R. Sibson, Constantin von zur Muhlen, Jurgen E. Schneider, Andrew S. Lowe, Nicholas Warrick, Keith M. Channon, Daniel C. Anthony, and Robin P. Choudhury. "In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide." Nature Medicine 13, no. 10 (September 23, 2007): 1253–58. http://dx.doi.org/10.1038/nm1631.
Full textZhu, Yeqing, You Ling, Jinglian Zhong, Xueguo Liu, Kun Wei, and Suiqiao Huang. "Magnetic resonance imaging of radiation-induced brain injury using targeted microparticles of iron oxide." Acta Radiologica 53, no. 7 (September 2012): 812–19. http://dx.doi.org/10.1258/ar.2012.120040.
Full textXu, Chenjie, David Miranda-Nieves, James A. Ankrum, Mads Emil Matthiesen, Joseph A. Phillips, Isaac Roes, Gregory R. Wojtkiewicz, et al. "Tracking Mesenchymal Stem Cells with Iron Oxide Nanoparticle Loaded Poly(lactide-co-glycolide) Microparticles." Nano Letters 12, no. 8 (July 12, 2012): 4131–39. http://dx.doi.org/10.1021/nl301658q.
Full textYan, Fei, Wei Yang, Xiang Li, Hongmei Liu, Xiang Nan, Lisi Xie, Dongliang Zhou, et al. "Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice." BioMed Research International 2015 (July 21, 2015): 1–10. http://dx.doi.org/10.1155/2015/758616.
Full textKothari, Manisha S., Ashraf Aly Hassan, and Kosha A. Shah. "Three-Dimensional Electrochemical Oxidation of Recalcitrant Dye Using Green Iron Microparticles." Water 13, no. 14 (July 12, 2021): 1925. http://dx.doi.org/10.3390/w13141925.
Full textReibenspies, Joseph H., and Nattamai Bhuvanesh. "X-ray powder diffraction characterization of iron microparticles on a Bruker SMART1000 single-crystal X-ray diffractometer." Powder Diffraction 24, no. 4 (December 2009): 347–50. http://dx.doi.org/10.1154/1.3257614.
Full textThayse, Kathleen, Nadège Kindt, Sophie Laurent, and Stéphane Carlier. "VCAM-1 Target in Non-Invasive Imaging for the Detection of Atherosclerotic Plaques." Biology 9, no. 11 (October 29, 2020): 368. http://dx.doi.org/10.3390/biology9110368.
Full textBai, Meng-Yi, Mu-Hsien Yu, Ting-Teng Wang, Shiu-Hsin Chen, and Yu-Chi Wang. "Plate-like Alginate Microparticles with Disulfiram–SPIO–Coencapsulation: An In Vivo Study for Combined Therapy on Ovarian Cancer." Pharmaceutics 13, no. 9 (August 27, 2021): 1348. http://dx.doi.org/10.3390/pharmaceutics13091348.
Full textAraújo, Jefferson F. D. F., João M. B. Pereira, and Antônio C. Bruno. "Assembling a magnetometer for measuring the magnetic propertiesof iron oxide microparticles in the classroom laboratory." American Journal of Physics 87, no. 6 (June 2019): 471–75. http://dx.doi.org/10.1119/1.5100944.
Full textWassel, Ronald A., Brian Grady, Richard D. Kopke, and Kenneth J. Dormer. "Dispersion of super paramagnetic iron oxide nanoparticles in poly(d,l-lactide-co-glycolide) microparticles." Colloids and Surfaces A: Physicochemical and Engineering Aspects 292, no. 2-3 (January 2007): 125–30. http://dx.doi.org/10.1016/j.colsurfa.2006.06.012.
Full textMöller, Winfried Barth, Martin Kohl, Winfried. "HUMAN ALVEOLAR LONG-TERM CLEARANCE OF FERROMAGNETIC IRON OXIDE MICROPARTICLES IN HEALTHY AND DISEASED SUBJECTS." Experimental Lung Research 27, no. 7 (January 2001): 547–68. http://dx.doi.org/10.1080/019021401753181827.
Full textTewes, Frederic, Carsten Ehrhardt, and Anne Marie Healy. "Superparamagnetic iron oxide nanoparticles (SPIONs)-loaded Trojan microparticles for targeted aerosol delivery to the lung." European Journal of Pharmaceutics and Biopharmaceutics 86, no. 1 (January 2014): 98–104. http://dx.doi.org/10.1016/j.ejpb.2013.09.004.
Full textYassine, O., E. Q. Li, A. Alfadhel, A. Zaher, M. Kavaldzhiev, S. T. Thoroddsen, and J. Kosel. "Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery." International Journal of Polymer Science 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/1219469.
Full textKról, Jarosƚaw E., and Garth D. Ehrlich. "Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms." Microorganisms 11, no. 6 (June 7, 2023): 1515. http://dx.doi.org/10.3390/microorganisms11061515.
Full textМельников, Г. Ю., В. Н. Лепаловский, and Г. В. Курляндская. "Магнитный импеданс пленочных наноструктур для оценки полей рассеяния микрочастиц магнитных композитов." Журнал технической физики 92, no. 2 (2022): 321. http://dx.doi.org/10.21883/jtf.2022.02.52024.259-21.
Full textМельников, Г. Ю., В. Н. Лепаловский, А. П. Сафронов, И. В. Бекетов, А. В. Багазеев, Д. С. Незнахин, and Г. В. Курляндская. "Магнитные композиты на основе эпоксидной смолы с магнитными микро- и наночастицами оксида железа: фокус на магнитное детектирование." Физика твердого тела 65, no. 7 (2023): 1100. http://dx.doi.org/10.21883/ftt.2023.07.55829.22h.
Full textRatajczak, Filip, Bassam Jameel, Rafał Bielas, and Arkadiusz Józefczak. "Ultrasound Control of Pickering Emulsion-Based Capsule Preparation." Sensors 24, no. 17 (September 2, 2024): 5710. http://dx.doi.org/10.3390/s24175710.
Full textYan, Fei, Wei Yang, Xiang Li, Hongmei Liu, Xiang Nan, Lisi Xie, Dongliang Zhou, et al. "Erratum to “Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice”." BioMed Research International 2018 (October 18, 2018): 1–2. http://dx.doi.org/10.1155/2018/8093438.
Full textAl Faraj, Achraf, Florence Gazeau, Claire Wilhelm, Cécile Devue, Coralie L. Guérin, Christine Péchoux, Valérie Paradis, Olivier Clément, Chantal M. Boulanger, and Pierre-Emmanuel Rautou. "Endothelial Cell–derived Microparticles Loaded with Iron Oxide Nanoparticles: Feasibility of MR Imaging Monitoring in Mice." Radiology 263, no. 1 (April 2012): 169–78. http://dx.doi.org/10.1148/radiol.11111329.
Full textBadhe, Ravindra V., Pradeep Kumar, Yahya E. Choonara, Thashree Marimuthu, Olufemi D. Akilo, Pierre P. D. Kondiah, Lisa C. du Toit, and Viness Pillay. "Induction of creep crack morphology in iron oxide microparticles: An outcome of the common-ion effect." Materials Letters 188 (February 2017): 417–22. http://dx.doi.org/10.1016/j.matlet.2016.11.072.
Full textGordon, Andrew C., Robert J. Lewandowski, Riad Salem, Delbert E. Day, Reed A. Omary, and Andrew C. Larson. "Localized Hyperthermia with Iron Oxide–Doped Yttrium Microparticles: Steps toward Image-Guided Thermoradiotherapy in Liver Cancer." Journal of Vascular and Interventional Radiology 25, no. 3 (March 2014): 397–404. http://dx.doi.org/10.1016/j.jvir.2013.10.022.
Full textMcAteer, Martina A., Asim M. Akhtar, Constantin von zur Muhlen, and Robin P. Choudhury. "An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide." Atherosclerosis 209, no. 1 (March 2010): 18–27. http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.009.
Full textDinislamova, Olga A., Antonina V. Bugayova, Tatyana F. Shklyar, Alexander P. Safronov, and Felix A. Blyakhman. "Echogenic Advantages of Ferrogels Filled with Magnetic Sub-Microparticles." Bioengineering 8, no. 10 (October 11, 2021): 140. http://dx.doi.org/10.3390/bioengineering8100140.
Full textMelnikov G. Yu., Lepalovskij V. N., and Kurlyandskaya G. V. "Magnetic impedance of film nanostructures for stray magnetic field evaluation of microparticles in magnetic composites." Technical Physics 92, no. 2 (2022): 266. http://dx.doi.org/10.21883/tp.2022.02.52958.259-21.
Full text