Academic literature on the topic 'Iron-Oxide Cu-Au (IOCG)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Iron-Oxide Cu-Au (IOCG).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Iron-Oxide Cu-Au (IOCG)"

1

Anand, Abhishek, Sahendra Singh, Arindam Gantait, Amit Srivastava, Girish Kumar Mayachar, and Manoj Kumar. "Geological Constraints on the Genesis of Jagpura Au-Cu Deposit NW India: Implications from Magnetite-Apatite Mineral Chemistry, Fluid Inclusion and Sulfur Isotope Study." Minerals 12, no. 11 (October 24, 2022): 1345. http://dx.doi.org/10.3390/min12111345.

Full text
Abstract:
The Jagpura Au-Cu deposit is situated within the Aravalli craton in the northwestern part of India. In the present work, petrography, mineral chemistry, fluid inclusion and sulfur isotopic compositions were used to study the Jagpura Au-Cu deposit. The ore mineral association of the deposit is arsenopyrite, loellingite, chalcopyrite, pyrrhotite and pyrite, along with native gold, magnetite and apatite. The gold fineness ranges from 914–937‰ (avg. 927‰). The presence of Au-Bi-Te phases, pyrite (>1 Co/Ni ratio), magnetite (≥1 Ni/Cr ratio, <1 Co/Ni ratio) and apatite (>1 F/Cl ratio) suggest the hydrothermal origin Au-Cu mineralization. A fluid inclusion study indicates the different episodes of fluid immiscibility with the homogenization temperatures varying between 120–258 °C and salinities range within the 8.86–28.15 wt% NaCl eq. The sulfur isotopic composition of sulfides varies from 8.98 to 14.58‰ (avg. 11.16‰). It is inferred that the variation in the sulfur isotopic compositions of sulfides is due to the cooling and dilution of the metalliferous fluid of mixed origin, derived from the basement meta-sedimentary rocks and the high saline basinal fluid. The iron oxide-copper-gold-apatite associations, structural control of mineralization, pervasive hydrothermal alteration, fluid salinity and sulfur isotope compositions indicate that the Jagpura Au-Cu deposit is similar to the iron oxide-copper-gold (IOCG)-iron oxide-apatite (IOA)types of deposits. Based on the ore geochemistry and the trace elements systematic of magnetite, the deposit is further classified as an IOCG-IOA type: IOCG-Co (reduced) subtype.
APA, Harvard, Vancouver, ISO, and other styles
2

Reid, Anthony. "The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity." Minerals 9, no. 6 (June 20, 2019): 371. http://dx.doi.org/10.3390/min9060371.

Full text
Abstract:
The Olympic Cu-Au Province is a metallogenic province in South Australia that contains one of the world’s most significant Cu-Au-U resources in the Olympic Dam deposit. The Olympic Cu-Au Province also hosts a range of other iron oxide-copper-gold (IOCG) deposits including Prominent Hill and Carrapateena. This paper reviews the geology of the Olympic Cu-Au Province by investigating the lithospheric architecture, geodynamic setting and alteration systematics. In addition, since the province is almost entirely buried by post-mineral cover, the sedimentary cover sequences are also reviewed. The Olympic Cu-Au Province formed during the early Mesoproterozoic, ca. 1.6 Ga and is co-located with a fundamental lithospheric boundary in the eastern Gawler Craton. This metallogenic event was driven in part by melting of a fertile, metasomatized sub-continental lithospheric mantle during a major regional tectonothermal event. Fluid evolution and multiple fluid mixing resulted in alteration assemblages that range from albite, magnetite and other higher temperature minerals to lower temperature assemblages such as hematite, sericite and chlorite. IOCG mineralisation is associated with both high and low temperature assemblages, however, hematite-rich IOCGs are the most economically significant. Burial by Mesoproterzoic and Neoproterozoic-Cambrian sedimentary successions preserved the Olympic Cu-Au Province from erosion, while also providing a challenge for mineral exploration in the region. Mineral potential modelling identifies regions within the Olympic Cu-Au Province and adjacent Curnamona Province that have high prospects for future IOCG discoveries. Exploration success will rely on improvements in existing potential field and geochemical data, and be bolstered by new 3D magnetotelluric surveys. However, drilling remains the final method for discovery of new mineral resources.
APA, Harvard, Vancouver, ISO, and other styles
3

Rodriguez-Mustafa, Maria A., Adam C. Simon, Irene del Real, John F. H. Thompson, Laura D. Bilenker, Fernando Barra, Ilya Bindeman, and David Cadwell. "A Continuum from Iron Oxide Copper-Gold to Iron Oxide-Apatite Deposits: Evidence from Fe and O Stable Isotopes and Trace Element Chemistry of Magnetite." Economic Geology 115, no. 7 (November 1, 2020): 1443–59. http://dx.doi.org/10.5382/econgeo.4752.

Full text
Abstract:
Abstract Iron oxide copper-gold (IOCG) and iron oxide-apatite (IOA) deposits are major sources of Fe, Cu, and Au. Magnetite is the modally dominant and commodity mineral in IOA deposits, whereas magnetite and hematite are predominant in IOCG deposits, with copper sulfides being the primary commodity minerals. It is generally accepted that IOCG deposits formed by hydrothermal processes, but there is a lack of consensus for the source of the ore fluid(s). There are multiple competing hypotheses for the formation of IOA deposits, with models that range from purely magmatic to purely hydrothermal. In the Chilean iron belt, the spatial and temporal association of IOCG and IOA deposits has led to the hypothesis that IOA and IOCG deposits are genetically connected, where S-Cu-Au–poor magnetite-dominated IOA deposits represent the stratigraphically deeper levels of S-Cu-Au–rich magnetite- and hematite-dominated IOCG deposits. Here we report minor element and Fe and O stable isotope abundances for magnetite and H stable isotope abundances for actinolite from the Candelaria IOCG deposit and Quince IOA prospect in the Chilean iron belt. Backscattered electron imaging reveals textures of igneous and magmatic-hydrothermal affinities and the exsolution of Mn-rich ilmenite from magnetite in Quince and deep levels of Candelaria (&gt;500 m below the bottom of the open pit). Trace element concentrations in magnetite systematically increase with depth in both deposits and decrease from core to rim within magnetite grains in shallow samples from Candelaria. These results are consistent with a cooling trend for magnetite growth from deep to shallow levels in both systems. Iron isotope compositions of magnetite range from δ56Fe values of 0.11 ± 0.07 to 0.16 ± 0.05‰ for Quince and between 0.16 ± 0.03 and 0.42 ± 0.04‰ for Candelaria. Oxygen isotope compositions of magnetite range from δ18O values of 2.65 ± 0.07 to 3.33 ± 0.07‰ for Quince and between 1.16 ± 0.07 and 7.80 ± 0.07‰ for Candelaria. For cogenetic actinolite, δD values range from –41.7 ± 2.10 to –39.0 ± 2.10‰ for Quince and from –93.9 ± 2.10 to –54.0 ± 2.10‰ for Candelaria, and δ18O values range between 5.89 ± 0.23 and 6.02 ± 0.23‰ for Quince and between 7.50 ± 0.23 and 7.69 ± 0.23‰ for Candelaria. The paired Fe and O isotope compositions of magnetite and the H isotope signature of actinolite fingerprint a magmatic source reservoir for ore fluids at Candelaria and Quince. Temperature estimates from O isotope thermometry and Fe# of actinolite (Fe# = [molar Fe]/([molar Fe] + [molar Mg])) are consistent with high-temperature mineralization (600°–860°C). The reintegrated composition of primary Ti-rich magnetite is consistent with igneous magnetite and supports magmatic conditions for the formation of magnetite in the Quince prospect and the deep portion of the Candelaria deposit. The trace element variations and zonation in magnetite from shallower levels of Candelaria are consistent with magnetite growth from a cooling magmatic-hydrothermal fluid. The combined chemical and textural data are consistent with a combined igneous and magmatic-hydrothermal origin for Quince and Candelaria, where the deeper portion of Candelaria corresponds to a transitional phase between the shallower IOCG deposit and a deeper IOA system analogous to the Quince IOA prospect, providing evidence for a continuum between both deposit types.
APA, Harvard, Vancouver, ISO, and other styles
4

Kostin, Aleksey. "Iron Oxide Cu-Au (IOCG) Mineralizing Systems: The Eastern Yakutia (Russia) Perspective." IOP Conference Series: Earth and Environmental Science 609 (December 16, 2020): 012005. http://dx.doi.org/10.1088/1755-1315/609/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sillitoe, Richard H., Georgi Magaranov, Veselin Mladenov, and Robert A. Creaser. "ROSEN, BULGARIA: A NEWLY RECOGNIZED IRON OXIDE-COPPER-GOLD DISTRICT." Economic Geology 115, no. 3 (May 1, 2020): 481–88. http://dx.doi.org/10.5382/econgeo.4731.

Full text
Abstract:
Abstract The Rosen copper veins in southeastern Bulgaria are recognized for the first time as an iron oxide-copper-gold (IOCG) district. The veins are located in the East Srednogorie segment of the Carpathian-Balkan calc-alkaline volcano-plutonic arc and were formed during an end-stage interval of extreme slab rollback and intra-arc rifting, which gave rise farther east to seafloor spreading in the Western Black Sea basin. The resulting submarine volcano-sedimentary rift basin is dominated by intermediate to mafic shoshonitic to ultrapotassic volcanism and subsidiary gabbro to syenite intrusion. The E- to NE-striking veins define a NW-striking alignment along the western contact of the syenite-dominated Rosen pluton, inferred to be part of a large ring dike. More than 40 veins, the most important formerly mined to depths as great as 1,000 m, contain an early, pegmatoidal, calcic-potassic assemblage followed by predominant magnetite (including the mushketovite variety), chlorite, and carbonates but also quartz, chalcopyrite, pyrite, and numerous other metallic minerals, which combine to give an unusual Fe-Cu-Au-Mo-Co-Ni-U-light rare earth element (LREE)-W-Bi-Zn-Pb geochemical signature. The close correlation between Fe, Cu, U, and LREEs is evident even in the flotation tailings. Vein molybdenite was dated during this study at 80.6 ± 0.4 Ma, which is similar to a U-Pb zircon age for monzosyenite from the Rosen pluton. The mineralogic and compositional features of the Rosen district are comparable to those of well-known IOCG deposits worldwide and geometrically similar to the vertically extensive IOCG veins in the Coastal Cordillera province of northern Chile. The subsidiary granitophile signature that accompanies the characteristic siderophile IOCG suite was also recognized recently at the giant Olympic Dam deposit in South Australia and elsewhere. Although no exposed intrusion is definitively implicated in the genesis of the Rosen veins, coexisting gabbro and syenite fluid sources may be hypothesized at depth in or beneath the coeval ring dike.
APA, Harvard, Vancouver, ISO, and other styles
6

Kostin, Aleksey. "A new mineral assemblage from the diorite complex in the Fe-Oxide-Cu-Au ores of the Kis-Kuel deposit (Eastern Yakutia, Russia)." IOP Conference Series: Earth and Environmental Science 906, no. 1 (November 1, 2021): 012007. http://dx.doi.org/10.1088/1755-1315/906/1/012007.

Full text
Abstract:
Abstract This research continues our investigations of the iron-oxide copper-gold deposits in the Western Verkhoyansk region, where recent years efforts of the IGABM SB RAS led to the discovery of a new gold Kiskuel deposit. The Kis-Kuel intrusion-related IOCG deposit in Eastern Yakutia (Russia) with a wide range of mineral styles has a direct genetic link with a cooling intrusion during its formation. The IOCG worldwide and the Kis-Kuel deposit have common features for this style - the abundance of iron oxides and low of sulfides. Magmatic contribution to the Kis-Kuel deposit is significant. Intrusive rocks range from diorite to granodiorite in composition. The Kiskuel deposit hosted in diorites and granodiorites; xenoliths confirming deep mineralization represented by pyrrhotite (main), pyrite, chalcopyrite, and clinosafflorite (Co, Fe, Ni)As2, chromite, pentlandite. Clinosafflorite localized at the contact of pyrrhotite and chalcopyrite and at the contact of pyrrhotite and biotite. Chalcopyrite is found in intergrowth with pyrrhotite, were it forms bands and lenses. Parallel to the biotite cleavage, the thinnest layers of chalcopyrite are common. Clinosafflorite is rare and discovered in hydrothermal cobalt-nickel ores of the Bou-Azzer (Morocco), Cobalt (Canada), Glassberg (Germany), Silver Mine (England) and several others. Mineralization of rich mica processes occur in connection with the chromite, pentlandite, chalcopyrite, pyrite, and pyrrhotite; a common feature of the mineralized dark-colored rock is phlogopite abundance, ilmenite, potassium feldspar, calcite, rarely quartz; clinoenstatite metasomaticaly replaced with phlogopite and dolomite. This new evidence supports a magmatic-hydrothermal model for the formation of IOCG deposit in the Kis-Kuel, where iron-oxide mineralization sourced from intermediate magmas. The deep complex predominantly composed of chromite, ilmenite, magnetite, pentlandite, and clinocafflorite; less of galena and sphalerite. Many diverse mineraization systems from Kis-Kuel classified together as iron oxide copper-gold (IOCG) deposits. The obtained data suggest deep ore-bearing structure of the Kis-Kuel ore-magmatic cluster with the potential for discovering of a new mineral ores style. All of this help in developing a new robust prospecting model.
APA, Harvard, Vancouver, ISO, and other styles
7

Austin, James R., Phillip W. Schmidt, and Clive A. Foss. "Magnetic modeling of iron oxide copper-gold mineralization constrained by 3D multiscale integration of petrophysical and geochemical data: Cloncurry District, Australia." Interpretation 1, no. 1 (August 1, 2013): T63—T84. http://dx.doi.org/10.1190/int-2013-0005.1.

Full text
Abstract:
Magnetite-rich iron oxide copper-gold deposits (IOCGs) are geologically and geochemically complex and present major challenges to geophysical investigation. They often sit beneath significant cover, exhibit magnetic remanence, and suffer from self-demagnetization effects. Because remanence in magnetite-bearing drill core samples is commonly overprinted by drilling, in situ natural remanent magnetization is difficult to measure accurately, and thus IOCGs cannot be modeled definitively using geophysics alone. We examined structural controls on a magnetite-rich IOCG in northwest Queensland and the relationships between structure, alteration, Fe oxides, and mineralization at core to deposit scale. Magnetite within the deposit has a multidomain structure, and thus it would commonly have an in situ magnetization parallel to the earth’s field. In contrast, pyrrhotite has a pseudosingle-domain structure and so it is the predominant carrier of stable remanence within the ore system. Geophysical lineament analyses are used to determine structural controls on mineralization, geophysical filters (e.g., analytic signal amplitude) are used to help define structural extent of the deposit, and basement geochemistry is used to map mineral footprints beneath cover. These techniques identified coincident anomalies at the intersection of north and northwest lineaments. Leapfrog™ interpolations of downhole magnetic susceptibility and Cu, Au, and Fe assay data were used to map the distribution of magnetite, copper, gold, and sulfur in 3D. The analysis revealed that Cu and Au mineralization were coupled with the magnetite net-vein architecture, but that Cu was locally enriched in the east–northeast-trending demagnetized zone. The results from this suite of geophysical, petrophysical, and geochemical techniques were integrated to constrain modeling of the Brumby IOCG. Brumby can be described as a breccia pipe sitting at the intersection of north-striking, east-dipping, and northwest-striking, southeast-dipping structures that plunges moderately to the south–southeast. The breccia pipe was overprinted by a relatively late net-vein magnetite breccia and crosscut by a later, magnetite-destructive, east–northeast-striking fault.
APA, Harvard, Vancouver, ISO, and other styles
8

Berdnikov, Nikolai, Victor Nevstruev, Pavel Kepezhinskas, Ivan Astapov, and Natalia Konovalova. "Gold in Mineralized Volcanic Systems from the Lesser Khingan Range (Russian Far East): Textural Types, Composition and Possible Origins." Geosciences 11, no. 2 (February 20, 2021): 103. http://dx.doi.org/10.3390/geosciences11020103.

Full text
Abstract:
While gold partitioning into hydrothermal fluids responsible for the formation of porphyry and epithermal deposits is currently well understood, its behavior during the differentiation of metal-rich silicate melts is still subject of an intense scientific debate. Typically, gold is scavenged into sulfides during crustal fractionation of sulfur-rich mafic to intermediate magmas and development of native forms and alloys of this important precious metal in igneous rocks and associated ores are still poorly documented. We present new data on gold (Cu-Ag-Au, Ni-Cu-Zn-Ag-Au, Ti-Cu-Ag-Au, Ag-Au) alloys from iron oxide deposits in the Lesser Khingan Range (LKR) of the Russian Far East. Gold alloy particles are from 10 to 100 µm in size and irregular to spherical in shape. Gold spherules were formed through silicate-metal liquid immiscibility and then injected into fissures surrounding the ascending melt column, or emplaced through a volcanic eruption. Presence of globular (occasionally with meniscus-like textures) Cu-O micro-inclusions in Cu-Ag-Au spherules confirms their crystallization from a metal melt via extremely fast cooling. Irregularly shaped Cu-Ag-Au particles were formed through hydrothermal alteration of gold-bearing volcanic rocks and ores. Association of primarily liquid Cu-Ag-Au spherules with iron-oxide mineralization in the LKR indicates possible involvement of silicate-metallic immiscibility and explosive volcanism in the formation of the Andean-type iron oxide gold-copper (IOCG) and related copper-gold porphyry deposits in the deeper parts of sub-volcanic epithermal systems. Thus, formation of gold alloys in deep roots of arc volcanoes may serve as a precursor and an exploration guide for high-grade epithermal gold mineralization at shallow structural levels of hydrothermal-volcanic environments in subduction zones.
APA, Harvard, Vancouver, ISO, and other styles
9

Rodriguez-Mustafa, Maria A., Adam C. Simon, Laura D. Bilenker, Ilya Bindeman, Ryan Mathur, and Edson L. B. Machado. "The Mina Justa Iron Oxide Copper-Gold (IOCG) Deposit, Peru: Constraints on Metal and Ore Fluid Sources." Economic Geology 117, no. 3 (May 1, 2022): 645–66. http://dx.doi.org/10.5382/econgeo.4875.

Full text
Abstract:
Abstract Iron oxide copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe oxides, and may contain Au, Ag, Co, rare earth elements (REEs), U, and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the hydrothermal unit and manto orebodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three types of magnetite: magnetite with inclusions (type I) is only found in the manto, is the richest in trace elements, and crystallized between 459° and 707°C; type Dark (D) has no visible inclusions and formed at around 543°C; and type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443°C. Temperatures were estimated using the Mg content in magnetite. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n = 9), an average δ18O ± 2σ value of 2.19 ± 0.45‰ (n = 9), and Δ’17O values that range between –0.075 and –0.047‰. Sulfide separates yielded δ65Cu values that range from –0.32 to –0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an iron oxide-apatite (IOA) style mineralization that was overprinted by a younger, structurally controlled IOCG event that formed the hydrothermal unit orebody. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude significant input from meteoric water and basinal brines.
APA, Harvard, Vancouver, ISO, and other styles
10

Logan, Leslie, Joel B. H. Andersson, Martin J. Whitehouse, Olof Martinsson, and Tobias E. Bauer. "Energy Drive for the Kiruna Mining District Mineral System(s): Insights from U-Pb Zircon Geochronology." Minerals 12, no. 7 (July 11, 2022): 875. http://dx.doi.org/10.3390/min12070875.

Full text
Abstract:
The Kiruna mining district, Sweden, known for the type locality of Kiruna-type iron oxide–apatite (IOA) deposits, also hosts several Cu-mineralized deposits including iron oxide–copper–gold (IOCG), exhalative stratiform Cu-(Fe-Zn), and structurally controlled to stratabound Cu ± Au. However the relationship between the IOA and Cu-systems has not been contextualized within the regional tectonic evolution. A broader mineral systems approach is taken to assess the timing of energy drive(s) within a regional tectonic framework by conducting U-Pb zircon geochronology on intrusions from areas where Cu-mineralization is spatially proximal. Results unanimously yield U-Pb ages from the early Svecokarelian orogeny (ca. 1923–1867 Ma including age uncertainties), except one sample from the Archean basement (2698 ± 3 Ma), indicating that a distinct thermal drive from magmatic activity was prominent for the early orogenic phase. A weighted average 207Pb/206Pb age of 1877 ± 10 Ma of an iron-oxide-enriched gabbroic pluton overlaps in age with the Kiirunavaara IOA deposit and is suggested as a candidate for contributing mafic signatures to the IOA ore. The results leave the role of a late energy drive (and subsequent late Cu-mineralization and/or remobilization) ambiguous, despite evidence showing a late regional magmatic-style hydrothermal alteration is present in the district.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Iron-Oxide Cu-Au (IOCG)"

1

Kreiner, Douglas Cory. "Epithermal Style Iron Oxide(-Cu-Au) (=IOCG) Vein Systems and Related Alteration." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/203504.

Full text
Abstract:
The Copiapó region in northern Chile contains numerous intrusion- and volcanichosted IOCG vein systems. These veins share many features with larger IOCG systems in the region (e.g., Candelaria, Punta del Cobre), including abundant hydrothermal magnetite or hematite ± Cu, Au, REE, and other elements, and exhibit similar styles of mineralization including voluminous breccias, stockwork, and massive veins. The relatively simple geometries and small size of veins offer advantages for study of zoning and genesis in an IOCG system; and, they also provide an interesting counterpoint to classic epithermal Ag-Au veins. The vein systems exhibit systematic patterns in the alteration and mineralization zoning in both time and space. Deeper exposures are characterized by high-temperature styles of sodic and sodic(-calcic) alteration with Fe and Cu depleted vein fill assemblages. This passes upwards through a proximal zone of magnetite-dominated vein fill with sparse to absent copper, and into a magnetite-dominated, copper-bearing portion of the vein. Copper is best developed at intermediate to shallow levels in association with the hematite-dominated portions of the system. More distal, carbonate dominated facies with minor hematite and chalcopyrite are also present. Shallow levels of the vein system may be characterized by a low-sulfur style of advanced argillic alteration, that may be stratabound, in discordant breccia bodies, or structurally controlled on faults. The assemblages differ from other ore forming environments by their lack of sulfide and/or sulfate minerals, and the abundance of hypogene iron oxide phases (hematite and/or magnetite). Vein systems are dominated by brecciation events that record repeated, cyclic pulses of mineralizing fluids. Stable and radiogenic isotopic analyses, combined with fluid inclusion and mineral phase equilibria indicate the fluids were hypersaline brines (generally >40 wt% NaCl(eq)) over a temperature range of 200º-450ºC. The shallow formation, structural styles, repeated mineralization events, and size of the IOCG vein systems have many parallels to the classic precious-metal rich Ag-Au epithermal systems. Nonetheless, the two types of veins differ in their geochemistry, reflecting the large differences in fluid salinities, commonly <10 wt% NaCl(eq) in epithermal settings as compared to 15 to > 50 wt% NaCl(eq) in IOCG systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Feltus, H. "New approaches to exploration for IOCG-style mineralisation, Middleback Ranges, S.A." Thesis, 2013. http://hdl.handle.net/2440/100074.

Full text
Abstract:
This item is only available electronically.
Iron oxide copper gold (IOCG) systems display well-developed spatial zonation with respect to alteration assemblages, mineralogy and the distribution of rare earth elements (REE). The Middleback Ranges, South Australia, located in the Olympic Province, Gawler Craton, hosts anomalous Fe-oxide-bearing Cu-Au mineralisation, and are considered potentially prosperous for larger IOCG-style deposits. This study investigates whether the distribution of REE and other trace elements within selected minerals represents a potential exploration tool in the area. Iron-oxides (hematite and magnetite), potassium feldspar, albite and accessory minerals have been analysed by laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) from two prospects (Moola and Princess) and in samples of the Myola Volcanics. The resultant multi-element datasets are compared to other IOCG systems. The results support the presence of sizeable and/or multiple IOCG alteration envelopes within the Middleback Ranges. Significant evolving hydrothermal events resulted in hydrolithic alteration and remobilisation of REE within the Moola Prospect and Myola Volcanics. Replacement of early magnetite by hematite (martitisation) in the Myola Volcanics is accompanied by an influx of REE visible on LA-ICP-MS element maps showing partial martitisation at the grain-scale. It is thus inferred the initial generation of magnetite must have pre-dated introduction of oxidised, REE-enriched hydrothermal fluids into the system. Sulphide assemblages observed within the Moola Prospect are complex and record sequential recrystallisation under evolving fS2 and fO2 conditions. Trace minerals, cycles of brecciation and replacement, and distributions of REE within minerals are similar to that observed in other IOCG domains. The Princess Prospect displays REE distributions in minerals which are dissimilar to the Moola Prospect, the Myola Volcanics and also those reported from other IOCG domains. This is interpreted as indicating that the Moola Prospect and Myola Volcanics in the south of the Middleback Ranges are more prospective IOCG targets.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 2013
APA, Harvard, Vancouver, ISO, and other styles
3

Skirrow, Roger. "The genesis of gold-copper-bismuth deposits, Tennant Creek, Northern Territory." Phd thesis, 1993. http://hdl.handle.net/1885/7562.

Full text
Abstract:
The Au-Cu-Bi- deposits of the Proterozoic Tennant Creek Inlier share geological and geochemical characteristics that indicate strong links in their genesis, yet the diversity in alteration assemblages, metal ratios and zonation patterns reflect variations in ore forming processes that previously have not been explained in detail. The West Peko deposit is representative of Cu-rich, pyrrhotite-bearing mineralisation with intermediate gold grades, in magnetite+ hematite-rich syntectonic ‘ironstones’. By contrast, the high grade Eldorado Au deposit contains minor sulfides and very low Cu grades, similar to several of the larger gold producers in the field (e.g. Juno, White Devil, Nobles Nob), and is also hematite-rich. Au, Chalcopyrite and Bi-sulfosalts were introduced into pre-existing ironside during progressive shearing, either late in the first regional deformation event (D1) or during a second phase of deformation. The occurrence of some Au zones outside ironstones suggests the ore fluids in part followed different flow paths to hose of the ironside-forming fluids. Three chemically and isotopically distinct fluids have been characterised. (i) Ironstone-forming fluids at West Peko and Eldorado were Ca-Na-Cl (-Fe?) brines containing 12-20 weight % total dissolved salts, and reached temperatures of 350-400°C during magnetite deposition. Oxygen and hydrogen isotope compositions of minerals formed at the ironside stage are consistent with an origin of ironstones from formation or metamorphic waters. (ii) The inferred Au-Bi+Cu transport fluid in he Cu- and sulphide-rich West Peko deposit was of low to moderate salinity (3-10 eq. wt. % Na Cl), ~300-350°C and N2 + CH4 – rich. Newly represented phase equilibria among the Fe-silicates stilpnomelane and minnesotaite, chlorite, biotite, sulfides, oxides and carbonates as well as fluid inclusion vapour compositions indicate that the Au-Bi+Cu transport fluid was relatively reducing with near-neutral pH and total dissolved sulphur contents of 0.001m to 0.01m. In the Eldorado Deeps Au- and hematite-rich deposit the Au-transporting fluid also may have been of low-moderate salinity, with Au deposition occurring at ~300°C. The reducing Au-Bi+Cu transport fluid at West Peko resembles primary magmatic or metamorphic water in oxygen and hydrogen isotopic composition. Carbon isotope ratios of Au-sulfide stage carbonates at West Peko point to involvement f organic carbon, probably sourced outside the host Warramunga Formation. (iii) A regionally distributed, oxidising Ca-Na-Cl brine with 20-35 weight percent total dissolved salts, was present prior to, after and probably during ore deposition. Mixing with lower salinity reducing Au-Bi+Cu transport fluid is inferred at West Peko and us suggested to have caused effervescence of N2+CH4 by ‘salting out’, relatively late in the Au depositional stage. An hypothesis of metal transport and deposition is proposed for the Tennant Creek deposits in which gold, copper and bismuth were transported in a reducing fluid and were deposited in the Cu- and sulphide-rich deposits dominantly by oxidation, desulfidation and initial pH increase as the reducing fluid reacted with magnetite+hematite ironstone. Mass transfer modelling indicates that relatively small amounts of ironstone are required to precipitate Au + Bi-sulfides, such as Eldorado, the oxidising brine may have played a significant role in ore deposition either by mixing with a reducing Au-Cu-Bi-transporting fluid, or by producing hematite oxidant additional to any already present in the ironstones. The greater extent of oxidation of the ore fluid in such deposits may have generally prevented saturation of copper minerals, resulting in low Cu grades. Gold is inferred to have been transported dominantly as uncharged bisulfide complexes, although biselenide complexes were potentially important. New thermodynamic data estimated for bismuth complexes are consistent with bismuth transport as uncharged S-H-O-bearing species in the Tenant Creek ore fluids. The existence of high grade Au-Bi deposits outside ironstones is predicted by chemical modelling of mixing between reducing and oxidising fluids, located where structures allowed focused flow of both fluids.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Iron-Oxide Cu-Au (IOCG)"

1

Corriveau, L., J. F. Montreuil, O. Blein, E. Potter, M. Ansari, J. Craven, R. Enkin, et al. Metasomatic iron and alkali calcic (MIAC) system frameworks: a TGI-6 task force to help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/329093.

Full text
Abstract:
Australia's and China's resources (e.g. Olympic Dam Cu-U-Au-Ag and Bayan Obo REE deposits) highlight how discovery and mining of iron oxide copper-gold (IOCG), iron oxide±apatite (IOA) and affiliated primary critical metal deposits in metasomatic iron and alkali-calcic (MIAC) mineral systems can secure a long-term supply of critical metals for Canada and its partners. In Canada, MIAC systems comprise a wide range of undeveloped primary critical metal deposits (e.g. NWT NICO Au-Co-Bi-Cu and Québec HREE-rich Josette deposits). Underexplored settings are parts of metallogenic belts that extend into Australia and the USA. Some settings, such as the Camsell River district explored by the Dene First Nations in the NWT, have infrastructures and 100s of km of historic drill cores. Yet vocabularies for mapping MIAC systems are scanty. Ability to identify metasomatic vectors to ore is fledging. Deposit models based on host rock types, structural controls or metal associations underpin the identification of MIAC-affinities, assessment of systems' full mineral potential and development of robust mineral exploration strategies. This workshop presentation reviews public geoscience research and tools developed by the Targeted Geoscience Initiative to establish the MIAC frameworks of prospective Canadian settings and global mining districts and help de-risk exploration for IOCG, IOA and affiliated primary critical metal deposits. The knowledge also supports fundamental research, environmental baseline assessment and societal decisions. It fulfills objectives of the Canadian Mineral and Metal Plan and the Critical Mineral Mapping Initiative among others. The GSC-led MIAC research team comprises members of the academic, private and public sectors from Canada, Australia, Europe, USA, China and Dene First Nations. The team's novel alteration mapping protocols, geological, mineralogical, geochemical and geophysical framework tools, and holistic mineral systems and petrophysics models mitigate and solve some of the exploration and geosciences challenges posed by the intricacies of MIAC systems. The group pioneers the use of discriminant alteration diagrams and barcodes, the assembly of a vocab for mapping and core logging, and the provision of field short courses, atlas, photo collections and system-scale field, geochemical, rock physical properties and geophysical datasets are in progress to synthesize shared signatures of Canadian settings and global MIAC mining districts. Research on a metamorphosed MIAC system and metamorphic phase equilibria modelling of alteration facies will provide a foundation for framework mapping and exploration of high-grade metamorphic terranes where surface and near surface resources are still to be discovered and mined as are those of non-metamorphosed MIAC systems.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography