Dissertations / Theses on the topic 'Iron nanoparticles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Iron nanoparticles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Almeelbi, Talal Bakheet. "Phosphate Removal and Recovery Using Iron Nanoparticles and Iron Cross-Linked Biopolymer." Diss., North Dakota State University, 2012. https://hdl.handle.net/10365/26517.
Full textCarenza, Elisa. "Engineering Iron Oxide Nanoparticles For Angiogenic Therapies." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284861.
Full textThe research was developed at the Institute of Materials Science of Barcelona (ICMAB-CSIC) and the Research Institute at Hospital Vall d'Hebron (VHIR) in Barcelona. The main objective of the thesis is to develop materials for non-invasive therapies to promote blood vessel regeneration after an ischemic event. For that we used iron oxide magnetic nanoparticles for imaging (through Magnetic Resonance Imaging) and accumulation of proteins / cells into specific tissues under the influence of an external magnetic field. Two strategies have been developed: the first one by introducing magnetic nanoparticles in endothelial progenitor cells (EPCs) and the second one into polymeric nanocapsules together with a vascular growth factor. The thesis is organized in six chapters: CHAPTER 1 Superparamagnetic iron oxide nanoparticles (SPIONs) are known for their use in clinical diagnosis as contrast agents allowing the visualization of tissues through magnetic resonance imaging (MRI). The chapter contains a brief introduction to nanotechnology and a presentation of the magnetic properties of the materials. It also contains a review of the most common synthetic methods used to obtain superparamagnetic iron oxide nanoparticles. CHAPTER 2 In this chapter is described the synthesis of superparamagnetic iron oxide nanoparticles using two techniques: thermal decomposition and microwave assisted sol-gel route. Both methods allow to obtain monodisperse particles with size less than 20 nm and excellent magnetic properties. Particles have been successfully stabilized in water and different cell media by ionic stabilizers (tetramethylammonium hydroxide and sodium citrate). CHAPTER 3 Cerebral ischaemia is defined as the blockage of cerebral arteries, due to a thrombus or embolus, which produce tissue damage in the zone not perfused with blood. Brain tissue regeneration and repair, based on the improvement of endogenous angiogenesis, could become reality in the near future having identified endothelial progenitors (EPCs) cells in adults. The EPCs are cells that can induce revascularization and / or remodeling of blood vessels by release of angiogenic factors. Our goal is to enhance the therapeutic action of EPCs guiding them toward specific areas of the brain with an external magnetic field to enhance regeneration after cerebral stroke. Experiments of in vitro cell labeling, cell toxicity and functionality are described in this chapter. In addition we showed an in vivo experiment using animal models to demonstrate the accumulation of magnetized EPCs in the brain under a magnetic field due to an external magnet implantation. CHAPTER 4 Another strategy is to encapsulate growth factors together with magnetic nanoparticles (SPIONs) into biodegradable nanocapsules of poly (D,l-lactic-co-glycolic acid) (PLGA), so that these can be guided toward the brain injury by applying an external magnetic field. During the training period in the group of the Ecole de Pharmacie Genève-Lausanne (EPGL) I started the synthesis of polymeric nanocapsules with SPIONs and model proteins. This chapter describes the synthesis and characterization of the nanocapsules. CHAPTER 5 In this chapter are described the most important results obtained during the thesis. The first part regards the following results: 1. The attainment of biocompatible iron oxide nanoparticles suitable for cell therapy; 2. Non toxic labeling of endothelial progenitor cells with SPIONs. Furthermore different efficiencies in cell labeling have been reported depending on the type of EPC cell population (early - and outgrowth). It has also been shown that cell labeling efficiency may vary using different conditions of incubation time, concentration of SPIONs and particle aggregation in the culture media. Still, it has been reported no significant change in tubulogenesis (formation of inter- cellular connections) or migration ability in outgrowth EPC cell population labeled with SPIONs; 3. An increase in the release of angiogenic growth factors in outgrowth EPCs labeled with SPIONs compared to unlabeled cells; 4. A preliminary in vivo study in mice has demonstrated the migration and accumulation of endothelial progenitor cells (early populations) labeled with SPIONs in the area next to the application of the external magnetic field. In the second part of the thesis work have been achieved: 1. The synthesis of biodegradable poly (D,L-lactic - co- glycolic acid) nanocapsules by a double emulsion process, with particle sizes of 200 nm suitable for systemic administration; 2. Co- encapsulation of SPIONs and vascular endothelial growth factor (commercial protein, recombinant human VEGF165) with good efficiency. 3. Endothelial cell proliferation enhanced by the biological activity of VEGF165 encapsulated. CHAPTER 6 It contains the curriculum vitae of the author and the publications obtained during the PhD period.
Howard, Luciano E. M. "Synthesis and characterisation of iron platinum nanoparticles." Thesis, Durham University, 2007. http://etheses.dur.ac.uk/2442/.
Full textStuart, Dale. "Heat Transfer Enhancement using Iron Oxide Nanoparticles." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/425.
Full textSalazar, Alvarez German. "Synthesis, characterisation and applications of iron oxide nanoparticles." Doctoral thesis, KTH, Materials Science and Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-87.
Full textFurther increase of erbium concentrations in Er-doped amplifiers and lasers is needed for the design of efficient, reliable, compact and cost-effective components for telecommunications and other photonic applications. However, this is hindered by Er concentration dependent loss mechanism known as upconversion. The upconversion arises due to non-radiative energy transfer (ET) interactions (migration and energy-transfer upconversion) among the Er ions exited to the metastable level that is used for amplification. The upconversion deteriorates the conversion efficiency of Er doped gain medium and may even totally quench the gain. The upconversion can be significantly intensified if the Er distribution in glass is non-uniform, which can be minimized by optimizing the fabrication process and the glass composition. The optimization requires detailed characterization techniques capable to distinguish between the effects caused by the uniformly distributed ions (homogeneous upconversion, HUC) and non-homogeneously distributed ions (pair induced quenching, PIQ)
The thesis deals with rigorous statistical modeling of the HUC and development of experimental methods that can provide accurate and detailed data about the upconversion, which are needed for the characterization of the upconversion.
The presented model interprets the homogenous upconversion as an interplay of ET interactions between randomly distributed Er ions, which is affected by stimulated emission/absorption of the radiation propagating in the medium. The model correspondingly uses the ET interactions parameters as the main modeling parameters.
The presented analytical model is verified by Monte-Carlo simulations. It explains strongly non-quadratic character of the upconversion observed in experiments and variety of the associated effects. The model is applicable to the interpretation of the upconversion measurements in various experimental conditions, which facilitates the upconversion characterization. The thesis also presents an advanced experimental method for accurate and detailed characterization of the upconversion in both continues-wave pumping conditions and during the decay of Er population inversion. Using the method the upconversion modeling is experimentally verified by correlating the measurements results with the modeling predictions in the whole range of the practical Er doping levels. This also allows to estimate the parameters for the ET interactions in silica. Finally, it is shown that the presented method can serve as a basis for discrimination of HUC and PIQ effects, which is crucial for optimizing the fabrication process and the glass composition.
Zurkiya, Omar. "Magnetic Resonance Molecular Imaging Using Iron Oxide Nanoparticles." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/19848.
Full textSalazar-Alvarez, German. "Synthesis, characterisation and applications of iron oxide nanoparticles /." Stockholm, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-87.
Full textHarris, Steven Scott. "Adiabatic pulse preparation for imaging iron oxide nanoparticles." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47555.
Full textIles, Gail N. "Magnetism of iron nanoparticles in rare Earth matrices." Thesis, University of Leicester, 2007. http://hdl.handle.net/2381/4430.
Full textChen, Suelin Ph D. Massachusetts Institute of Technology. "Polymer-coated iron oxide nanoparticles for medical imaging." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59004.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 144-157).
One of the most versatile and safe materials used in medicine are polymer-coated iron oxide nanoparticles. This dissertation describes several formulations for in vivo imaging applications. The paramagnetic polymer-coated iron oxide nanoparticle aminoSPARK is used as a fluorescence-mediated tomography (FMT) imaging agent for stratification of prostate cancer tumors. This is achieved by conjugating it to a peptide that targets SPARC (secreted protein acidic rich in cysteine), a biomarker protein associated with aggressive forms of prostate cancer. Several types of polymer coatings for iron oxide nanoparticles have been systematically explored using a novel high-throughput screening technique to optimize coating chemistries and synthetic conditions to produce nanoparticles with maximum stability and ability to lower T2 contrast for MR imaging (R2, or relaxivity). Carboxymethyl dextran emerged from the screen as an ideal coating for superparamagnetic iron oxide nanoparticles. A commercially available, FDA-approved nanoparticle with similar surface chemistry, Feraheme, was chosen as a platform nanoparticle for further development. This work presents the first instance of chemical modification of Feraheme, making it more amenable to bioconjugation by converting its free carboxyl groups to free amine groups. This amine-functionalized Feraheme nanoparticle (amino-FH) is then used as a base nanoparticle to which various targeting and reporting functionalities can be added. A FH-based nanoparticle that can be used for cell loading is synthesized by covalently combining Feraheme with protamine, a pharmaceutical that also acts as a membrane translocating agent. A rhodamine-protamine conjugate is synthesized and then covalently bound to amino-FH using carbodiimide (CDI) chemistry. This results in a magnetofluorescent cell-labeling nanoparticle (ProRho-FH) that is readily taken up by mouse mesenchymal stem cells and U87 glioma cells. ProRho-FH can be used to non-invasively track cells for development and monitoring of cell-based therapies or for further investigation of biological mechanisms such as cell migration, tumor growth, and metastasis. This combination of two FDA-approved, commercially available materials to yield a superparamagnetic and fluorescent cell labeling nanoparticle is an excellent alternative to the recently discontinued Feridex. All polymer-coated iron oxide nanoparticles used in this dissertation were thoroughly characterized to fully understand their physicochemical and magnetic properties.
by Suelin Chen.
Ph.D.
Abushrida, Ahmed. "Formulation of novel polymer coated iron oxide nanoparticles." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12537/.
Full textRequejo-Roque, Katherinne Isabel. "Iron oxide nanoparticles stable in the human body?" Revista de Química, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/101184.
Full textCurrently, it is possible to obtain iron oxide nanoparticles soluble in water with high stability in biological environments through thermal decomposition at high temperatures and ligand exchange. This method of synthesis allows good control of size distribution in order to obtain monodispersed nanoparticles with surfaces suitable for functionalization which is necessary for biological applications.
Hossain, Mohammad Enayet. "Iron Nanoparticles and Biopolymers for Plant Nutrient Fortification." Diss., North Dakota State University, 2016. http://hdl.handle.net/10365/25910.
Full textNational Science Foundation (NSF)
USDA-NIFA
North Dakota Water Resources Research Institute
North Dakota Department of Commerce
Roller, Jonathan William. "Arsenic mobilization through bioreduction of iron oxide nanoparticles." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/10066.
Full textMaster of Science
Haney, Carl Edwin. "Effects on Iron Nanoparticles on Pseudomonas Aeruginosa Biofilms." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1324058048.
Full textBrinza, Loredana. "Interactions of molybdenum and vanadium with iron nanoparticles." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/1082/.
Full textMasala, P. G. "IRON OXIDE NANOPARTICLES AND NANOCOMPOSITES: A DIFFRACTOMETRIC STUDY." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/244853.
Full textSreeja, V. "Synthesis and studies on superparamagnetic iron oxide nanoparticles." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2011. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3773.
Full textGonzalez, Lucena Fedora. "Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide Nanoparticles." Thesis, Université d'Ottawa / University of Ottawa, 2010. http://hdl.handle.net/10393/19608.
Full textLartigue, Lénaïc. "Synthesis, Characterization, and Theranostic Application of Iron Based Magnetic Nanoparticles." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20092/document.
Full textThe synthesis of nano-object is growing in the last 20 years. Basic research system has (and still allows) to find many areas of application for nanotechnology that is in catalysis, electronics, biomedical ...The thesis proceeds along two lines of research: the synthesis and the description of magnetic properties of iron nanoparticles stabilized by ionic liquids, and the synthesis, magnetic study, and their evaluation as a contrast agent and hyperthermia mediator of functionalized carbohydrate derivatives ferrite nanoparticles
Abdollah, M. R. A. "Developing superparamagnetic iron oxide nanoparticles as targeted cancer nanomedicine." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1473874/.
Full textBradford, Peter. "The aggregation of iron oxide nanoparticles in magnetic fields." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3815/.
Full textInsin, Numpon. "Surface modifications of iron oxide nanoparticles for biological applications." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62723.
Full textPage 192 blank. Vita. Cataloged from PDF version of thesis, 2011.
Includes bibliographical references.
Iron oxides magnetic nanoparticles (MPs) of high crystallinity, high magnetization, and size-monodispersity were synthesized with oleic acid as their native ligands. These hydrophobic and non-functionalized MPs have magnetic properties that are suitable for various biological applications. Surface modifications were studied for transferring these MPs into biological environments as well as transforming them into functional nanoparticles. Certain surface modifications of MPs, such as attaching silane groups and silica coating, lead to formation of more complex structures of superparamagnetic and fluorescent silica microspheres and nanostructures. These microspheres and nanostructures comprising MPs and semiconductor quantum dots (QDs) are useful tools for biological applications such as for magnetically controlling with fluorescent tracking of particles and for bimodal imaging. Surface modifications of MPs with hydrophobically-modified polyacrylic acid (mPAA) amphiphilic polymer and catechol-derivative surfactants resulted in hydrophilic MPs that are stable in physiological environment and small in their hydrodynamic size. These MPs are also designed to possess active functional groups that are necessary for further conjugations with proteins and molecules of interest. These hydrophilic and functional MPs are useful in biological applications such as magnetic resonance imaging and sensing applications.
by Numpon Insin.
Ph.D.
Lazauskas, Tomas. "Simulating radiation effects in iron with embedded oxide nanoparticles." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15411.
Full textAbayaweera, Gayani Sandeepa. "Diverse use of iron oxide nanoparticles for anticancer therapy." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17564.
Full textDepartment of Chemistry
Stefan H. Bossmann
Recent development of a variety of superparamagnetic and ferromagnetic iron/iron oxide (Fe/Fe₃O₄) nanoparticles with different surface chemistry have been widely studied for numerous biological applications such as drug delivery, as diagnostics, hyperthermia and magnetic resonance imaging. The wide applications of Fe/Fe₃O₄ nanoparticles are possible since they exhibit favorable properties as high magnetization ability, are smaller than 100 nm in size, they can be coated with several ligands which allow drug delivery at a specific site and are biocompatible. By using Fe/Fe₃O₄ nanoparticles as drug delivery agents treatment costs and side effects can be reduced, however treatment efficacy can be increased. We have demonstrated that Fe/Fe₃O₄ nanoparticles can be utilized in different methods depending on their properties, to be used as therapeutic agents for cancer treatment. In one method we have taken advantage of the Fe/Fe₃O₄ nanoparticles magnetic ability to produce hyperthermia (heat) in cancer cells when subjected to an alternative magnetic field. Here we use the cell based delivery system since the size of the nanoparticles are small they can be taken up by monocyte/ macrophage like cells for systemic transportation to the inflamed cancer cite. The hyperthermia study was conducted in mice with pancreatic cancer. This study demonstrated that the life expectancy of the mice increased by 31%. In the next method we took the advantage of the surface chemistry of the Fe/Fe₃O₄ nanoparticles and changed it with dopamine-peptide and dopamine-thiosemicarbazone ligands. The advantage of the peptide is to deliver the nanoparticle to its target site and the thiosemicarbazone analogue is used as an iron chelator that would initiate apoptosis in cancer cells. This nanoplatform was tested in 4T1 breast cancer cell line and normal fibroblast cell line and demonstrated that it was effective towards the cancer cell line than the normal cell line at a ratio of 5:1 of thiosemicarbazone analogue : dopamine on the nanoparticle. However further studies are needed to be done to clarify the effectiveness of this nanosystem.
VILLA, SILVIA. "Iron based magnetic nanoparticles: from synthesis to advanced applications." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929872.
Full textChin, Suk Fun. "Superparamagnetic nanoparticles for biomedical applications." University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0128.
Full textXiong, Zhong Zhao Dongye. "Destruction of perchlorate and nitrate by stabilized zero-valent iron nanoparticles and immobilization of mercury by a new class of iron sulfide nanoparticles." Auburn, Ala, 2007. http://repo.lib.auburn.edu/2007%20Fall%20Dissertations/Xiong_Zhong_0.pdf.
Full textCalderón, Roca Blanca. "Application of iron-based nanostructures to contaminant remediation." Doctoral thesis, Universidad de Alicante, 2017. http://hdl.handle.net/10045/69809.
Full textKeho, Aaron Lopez. "Iron oxide nanoparticles as a contrast agent for thermoacoustic tomography." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1741.
Full textAkçora, Pınar. "Synthesis and characterization of diblock copolymer templated iron oxide nanoparticles." College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2720.
Full textThesis research directed by: Chemical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Elihn, Karine. "Synthesis of carbon-covered iron nanoparticles by photolysis of ferrocene." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5302-3/.
Full textAl-Saadi, Ali. "Preparation and characterisation of encapsulation magnetic metal iron oxide nanoparticles." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:57bdcf38-9d45-48ab-a971-a2d60e2e4391.
Full textMoore, Roderick Guy Charles. "Chemical and electronic characterisation of surfactant stabilised iron oxide nanoparticles." Thesis, University of Leeds, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405671.
Full textCumberland, Susan Alison. "Synthesis and environmental chemistry of silver and iron oxide nanoparticles." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1736/.
Full textCanestrari, Nicolò. "Nucleation and growth of iron nanoparticles by gas phase condensation." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24849/.
Full textSitu, Shu F. "Optimizing Iron Oxide Nanoparticles for Magnetic Imaging and Antibacterial Applications." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459440473.
Full textShultz, Michael David. "Magnetic Nanoparticles Based on Iron: Synthesis, Characterization, Design, and Application." VCU Scholars Compass, 2008. http://scholarscompass.vcu.edu/etd/781.
Full textCOBIANCHI, MARCO. "Effects of Iron Nanoparticles Size and Coating on Hyperthermic Efficiency." Doctoral thesis, Università degli studi di Pavia, 2018. http://hdl.handle.net/11571/1214813.
Full textHemery, Gauvin. "Synthesis of magnetic and thermosensitive iron oxide based nanoparticles for biomedical applications." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0729/document.
Full textThis thesis reports the development of hybrid nanoparticles made of an inorganic iron oxide core and an organic shell for medical applications. Iron oxide nanoparticles (IONPs) were produced by the polyol pathway, leading to a good control over their crystallinity and morphology (monocore or multicore). IONPs with diameters in the range of 4 to 37 nm were produced. Their properties as MRI contrast agents were assessed and compared, for possible theranostic applications. They can be used for treating cancer by magnetic hyperthermia, and as contrast agents for MR imaging. The surface of the IONPs was modified to bring stability in biological conditions, as well as new functionalities. Poly(ethylene glycol) was grafted for its stealth property, poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) and elastin-like polypeptides (ELPs) for their thermosensitive capabilities, and a DY700 fluorescent probe was grafted for tracking nanoparticles in vitro and in vivo. The magnetic and thermosensitive properties of the nanoparticles were studied using a unique set-up combining magnetic hyperthermia with dynamic-light scattering. This set-up allowed measuring the elevations of temperature of the samples as well as variations in diameter and backscattered intensity. Monocore and multicore IONPs grafted with PEG, and monore IONPs grafted with a diblock ELP were tested in vitro. Their interactions with glioblastoma cells were studied, from the internalization pathway inside the cells to their cytotoxic effect (up to 90 %) under magnetic hyperthermia. In vivo, nanoparticles intravenously injected in mice accumulated in the tumors. Intratumoral administration followed by magnetic hyperthermia treatment led to elevations of temperature of up to 10 °C, with a significant effect on the tumor activity
Kriedemann, Brett Craig. "The critical process conditions for controlled growth of iron oxide nanoparticles synthesized using continuous hydrothermal synthesis." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/920.
Full textIron oxide nanoparticles have recently become attractive for use in gas sensing, as catalysts and have also shown promise in other fields, such as biomedicine, for targeted drug delivery and cancer treatment. Despite these growing applications, the ability to produce iron oxide and one dimensional (1D) iron oxide nanoparticles on an industrial scale has proven to be a challenge. The continuous hydrothermal synthesis, (CHS), method has been proposed as the most promising method, yet the effect of the operating parameters on particle characteristics are still widely contested in the literature. One such parameter, temperature, is still widely contested on its effect on APS. To address this issue, a CHS pilot plant was constructed and commissioned. The inability to isolate certain parameters in CHS is a common shortcoming. Parameters such as temperature and flow rate are prime examples, as changing the temperature has several effects on the system resulting in a change in reaction rate, a change in density and a change in the reactor residence time while the flow rate is closely linked to the residence time and mixing conditions. A 3-level Box-Behnken factorial design method was used to statistically analyze the correlations and interactions between operating parameters (temperature, concentration and flow rate) in CHS and evaluate their resulting effect on particle characteristics, with focus on morphology. All particles were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Reactions in the presence of solvents or surfactants proved incapable of modifying particle morphology, although significant particle size reduction revealed that they were actively involved in particle growth and may be used as a further tool for controlling particle characteristics. The concentration was found to have the greatest effect on particle characteristics including a slight alteration of particle shape and a massive influence on the average particle size. The interactions between operating parameters were significant, especially in the case of temperature and concentration. The temperature and concentration were found to interact revealing three different trends on APS, offering a solution to conflicting reports in the literature. The temperature was also observed to interact favourably with the flow rate, presenting a method of increasing the PY and RC, with little change in APS and PSD. This knowledge will prove invaluable for the design of future experiments in CHS.
Ban, Zhihui. "The Synthesis of Core-Shell Iron@Gold Nanoparticles and Their Characterization." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/83.
Full textMajid, Abdul. "Thermally responsive peptide coated superparamagnetic iron oxide nanoparticles for drug delivery." Thesis, University of Central Lancashire, 2017. http://clok.uclan.ac.uk/20743/.
Full textMarinin, Aleksandr. "Synthesis and characterization of superparamagnetic iron oxide nanoparticles coated with silica." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-121520.
Full textRaychoudhury, Trishikhi. "Transport of surface-modified iron nanoparticles through model subsurface porous media." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104765.
Full textL'objectif global de cette recherche est d'évaluer les mécanismes importants de déposition des particules NZVI modifiées en surface dans les milieux granulaires subsurfaciques pendant le transport. Bien que les particules NZVI modifiées en surface aient montré un transport plus facile que les particules NZVI nues, il y a un manque de connaissance sur la façon dont des simples paramètres, tel que la concentration des particules NZVI, leur taille, la vitesse d'écoulement de la phase aqueuse et la taille des particules de sable, influencent le transport des nanoparticules. Dans la première étude, on a étudié les modèles des particules CMC- et PAA-ZVI élues des colonnes remplies de sable dans une gamme de vitesses de l'eau des pores, et des concentrations influentes de particules NZVI. . Les concentrations effluentes relatives des deux types de particules NZVI ont diminué avec la diminution des vitesses d'écoulement et avec l'augmentation des concentrations des particules. Les particules PAA-NZVI présentaient une élution plus lente que les particules CMC-NZVI dans des conditions expérimentales identiques, ceci étant attribué à une cinétique d'agrégation plus rapide pour les particules PAA-NZVI. La réduction de la stabilité colloïdale due à l'agrégation des particules CMC- et PAA-NZVI a été vérifiée en utilisant les tests de sédimentation et on a trouvé que les particules PAA-NZVI ont été moins stables que les particules CMC-NZVI. La deuxième étude portait sur l'évaluation quantitative de la cinétique d'agrégation et les effets d'agrégation possibles sur la déposition des particules NZVI. L'agrégation des particules CMC-NZVI a entraîné un changement dans la distribution de la taille des particules (PSD) avec le temps, et les changements dans la taille des particules étaient évalués par l'analyse de suivi des nanoparticules (NTA). Les effets de la concentration des particules dans la gamme sur le transport dans les milieux poreux ont été évalués en comparant les profils de temps d'élution des particules CMC-NZVI dans les colonnes remplies de sable. Les profils d'élution des particules NZVI ont eu un bon ajustement avec les équations cinétiques d'agrégation couplées aux équations de transport colloïdal, qui tiennent compte de la déposition des particules et de détachement. La troisième étude portait sur l'évaluation de l'importance de la filtration des particules CMC-NZVI pendant le transport dans les milieux poreux subsurfaciques modèles. Des expériences de laboratoire ont été effectuées pour évaluer le transport des particules CMC-NZVI dans les colonnes et trois concentrations différentes. Les courbes percées (BTC) et les profils de rétention des particules CMC-NZVI le long de la colonne ont été analysés afin de caractériser le transport. Les courbes BTC suggèrent que les concentrations effluentes diminuent avec la diminution du diamètre moyen du sable. Une très élevée rétention des particules CMC-NZVI a été observée, particulièrement pour les sables plus fins. Ces observations sont en accord avec la rétention des particules dans les milieux poreux due à la filtration et au calage. Deux modèles de transport colloïdal qui considèrent 1) la déposition des particules uniquement par attachement, et 2) la rétention des particules par filtration et déposition par attachement, ont été ajustés aux données expérimentales. La comparaison des données expérimentales avec les calculs du modèle suggèrent qu'en plus de la déposition sur la surface du collecteur, les particules CMC-NZVI sont retirées de la solution par filtration dans les lits remplis de sable, avec des coefficients de filtration qui diminuent avec le diamètre du sable.
Lovely, Georgina Rose. "High resolution electron microscopy of the surfaces of iron oxide nanoparticles." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439596.
Full textMagqazolo, Siphesihle. "Synthesis and characterization of iron oxide nanoparticles embedded on various polymers." University of the Western Cape, 2018. http://hdl.handle.net/11394/6557.
Full textDuring the course of this study iron oxide nanoparticles, which have been researched for drug-targeted delivery, were synthesised via the co-precipitation method and characterised using various methods. This study focused on the role of relevant capping agents for the inhibition of agglomeration of the particles; chitosan, polyvinyl alcohol (PVA) and poly lactic glycolic acid (PLGA) were the capping agents of interest. The study is an assessment of the effects brought about the different capping agents used for this work. The prepared particles were then capped with the different capping agents followed by the loading of the drug curcumin. Various analytical methods were used to analyse the particles such as High resolution transmission electron microscopy (HR-TEM), Superconducting quantum interference device (SQUID), Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and zeta potential. PVA, chitosan and PLGA capped SPIONS were successfully prepared and verified by FT-IR spectrometry, various sizes were prepared almost ranging the same for the successfully prepared particles verified by XRD. The resultant particles were found to be spherical with an average particles size between 13- 22 nm. From the study it was concluded that the addition of the different capping agents resulted in the reduction of the intensity of the peaks in XRD, it was also found out the presence of the capping agents did not alter the crystalline phase of the particles. From the study it was also observed that higher saturation magnetization was experienced where PVA was used as the capping agents.
Bell, Gavin S. "Developments of iron oxide nanoparticles for magnetic thermotherapy and multimodal imaging." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10055094/.
Full textWei, He Ph D. Massachusetts Institute of Technology. "Synthesis and development of hydrophilic iron oxide nanoparticles for biomedical applications." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/96451.
Full textCataloged from PDF version of thesis. Vita.
Includes bibliographical references (pages 130-136).
Uniformly sized superparamagnetic iron oxide nanoparticles (SPIONs) with inorganic diameters of 3-35 nm were synthesized. New surface ligand coatings were designed and synthesized, and the resulting hydrophilic SPIONs in biological buffers were found to be compact, stable, highly magnetic, and biocompatible. Furthermore, the hydrophilic SPIONs were stable in vitro in serums and cells as well as in vivo in mice. Functionalized SPIONs demonstrated the ability of specific labeling. Finally, the hydrophilic SPIONs have potential as a non-toxic alternative to Gadolinium based contrast agents for T₁-weighted magnetic resonance imaging (MRI) and they have shown potential in multicolor MRI as well as magnetic particle imaging.
by He Wei.
Ph. D.
Silva, Nuno João de Oliveira. "Structural and magnetic studies on iron oxide nanoparticles in hybrid matrices." Doctoral thesis, Universidade de Aveiro, 2006. http://hdl.handle.net/10773/8944.
Full textEste trabalho aborda algumas propriedades magnéticas e estruturais de nanopartículas de óxidos e óxidos-hidróxidos de ferro crescidos em matrizes híbridas orgânicas-inorgânicas. As matrizes híbridas, denominadas di-ureasils e obtidas pelo processo sol-gel, são compostas por uma rede siliciosa ligada covalentemente por pontes ureia a cadeias orgânicas de diferente peso molecular. A estrutura local dos di-ureasils não dopados está modelada como grupos de domínios siliciosos com dimensões nanométricas, estruturalmente correlacionados no seio de uma matriz rica em polímero. Neste trabalho mostra-se que os di-ureasils permitem o crescimento controlado de óxidos e óxidos-hidróxidos de ferro, incluindo a magnetite, maguemite, oxihidroxinitrato de ferro e ferrihidrite. O crescimento das nanopartículas de ferrihidrite dá-se em condições ácidas à superfície dos domínios siliciosos, junto aos grupos carbonilo, que funcionam como pontos de nucleação. Desse modo dá-se uma nucleação heterogénea, onde o tamanho das nanopartículas depende da concentração de ferro (entre 1 e 6% em massa), sendo a concentração de partículas constante. As propriedades magnéticas das nanopartículas de ferrihidrite revelam a existência de interacções antiferromagnéticas e de momentos descompensados. A contribuição destas duas componentes nas curvas de magnetização em função do campo magnético pode ser separada usando um método aqui proposto, o que permite um adequado estudo da evolução do momento magnético com a temperatura. O estudo das propriedades magnéticas dinâmicas das partículas de ferrihidrite, através de susceptibilidade ac, medidas de relaxação e medidas de efeito Mossbauer, permitiu estudar a evolução das interacções dipolares em função da concentração de ferro, bem como determinar a distribuição de barreiras de energia de anisotropia no caso em que essas interacções são desprezáveis. É apresentado um novo método para comparação desta distribuição com a distribuição de tamanhos, que permitiu concluir que os momentos magnéticos descompensados estão aleatoriamente distribuídos em volume. Usando baixas concentrações de água, foi possível crescer fases de oxihidroxinitrato de ferro com diferentes graus de cristalinidade, sendo algumas precursoras da ferrihidrite (como observado noutros trabalhos) e sendo outras novas fases. O crescimento de nanopartículas de maguemite e magnetite acontece após incorporação de iões de Fe2+ e Fe3+ seguidos de tratamento básico e térmico. Estes sistemas apresentam propriedades magnéticas típicas de nanopartículas superparamagnéticas sem interacções dipolares. As propriedades magnéticas dependem criticamente da existência de grupos isocianato livres, que actuarão como pontos de nucleação.
The present work focus on the structure and the magnetic properties of iron oxide and iron oxide hydroxide nanoparticles grown in organic-inorganic hybrids. The sol-gel derived matrix, termed di-ureasils, is a siliceous network to which oligopolyoxyethilene chains with different molecular weight are grafted by means of urea cross-links. The di-ureasils local structure was modelled as groups of nanometric siloxane correlated domains embedded in a polymericrich media. In this thesis, the controlled growth of ferrihydrite, iron(III) oxyhydroxynitrate phases, maghemite and magnetite in di-ureasils is demonstrated. Ferrihydrite nanoparticles are formed at low pH on the siliceous surface, where the carbonyl groups act as nucleation points. This implies an heterogeneous nucleation, where the nanoparticles size depend on the amount of iron (in the 1 to 6% wt range) and the nanoparticles concentration is constant. The ferrihydrite nanoparticles have antiferromagnetic and uncompensated/canted moments, responsible for linear and saturation components in the dependence of the magnetization with field, respectively. These components can be separated by a new method here presented and an accurate dependence of the magnetic moment with temperature determined. The dynamic magnetic properties of ferrihydrite were studied by ac susceptibility, relaxation and Mossbauer measurements. These studies allowed the determination of the evolution of the dipolar interactions with the iron content and the determination of the anisotropy energy barrier distribution in cases where such interactions are negligible. Comparing the energy barrier distribution with the size distribution allowed to conclude that the uncompensated moments are randomly distributed in volume. This conclusion is based on a new method here presented, that uses distributions to investigate the power law relation between physical quantities. Antiferromagnetic iron(III) oxyhydroxynitrate phases with different degrees of crystallinity are formed when using low water concentrations in the sol-gel process. Some of these are precursors of ferrihydrite, as previously found in literature, but others constitute new phases. Maghemite and magnetite nanoparticles can be grown inside diureasils after the incorporation of Fe2+ and Fe3+ ions, followed by basic and thermal treatment. The magnetic properties show the existence of noninteracting superparamagnetic nanoparticles. Evidence for the possibility of tuning the magnetic properties of the system by allowing the existence of free isocyanate groups acting as nucleation sites was found.