Academic literature on the topic 'IRON HYDRIDES'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IRON HYDRIDES.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IRON HYDRIDES"
Serovaiskii, A. Yu, A. Yu Kolesnikov, and V. G. Kutcherov. "Formation of iron hydride and iron carbide from hydrocarbon systems at ultra high thermobaric conditions." Геохимия 64, no. 9 (September 20, 2019): 995–1002. http://dx.doi.org/10.31857/s0016-7525649995-1002.
Full textDufour, Jacques, Xavier Dufour, Fabienne Dioury, and Jenny D. Vinko. "Measurement of the enthalpy of formation of an iron pico-hydride and of its main properties." International Journal of Modern Physics B 31, no. 25 (October 10, 2017): 1745007. http://dx.doi.org/10.1142/s0217979217450072.
Full textHaim, Lorraine, François Robert, Laurent Peres, Pierre Lecante, Karine Philippot, Romuald Poteau, Marc Respaud, and Catherine Amiens. "Correlation between surface chemistry and magnetism in iron nanoparticles." Nanoscale Advances 3, no. 15 (2021): 4471–81. http://dx.doi.org/10.1039/d1na00258a.
Full textMorris, Robert H. "Iron Group Hydrides in Noyori Bifunctional Catalysis." Chemical Record 16, no. 6 (August 15, 2016): 2644–58. http://dx.doi.org/10.1002/tcr.201600080.
Full textAntonov, V. E., M. Baier, B. Dorner, V. K. Fedotov, G. Grosse, A. I. Kolesnikov, E. G. Ponyatovsky, G. Schneider, and F. E. Wagner. "High-pressure hydrides of iron and its alloys." Journal of Physics: Condensed Matter 14, no. 25 (June 13, 2002): 6427–45. http://dx.doi.org/10.1088/0953-8984/14/25/311.
Full textLiu, Jianguo, Ailing Zhang, Heng Song, Qingxiao Tong, Chen-Ho Tung, and Wenguang Wang. "Iron(II) hydrides bearing a tetradentate PSNP ligand." Chinese Chemical Letters 29, no. 6 (June 2018): 949–53. http://dx.doi.org/10.1016/j.cclet.2017.09.059.
Full textGee, Leland B., Vladimir Pelmenschikov, Hongxin Wang, Nakul Mishra, Yu-Chiao Liu, Yoshitaka Yoda, Kenji Tamasaku, Ming-Hsi Chiang, and Stephen P. Cramer. "Vibrational characterization of a diiron bridging hydride complex – a model for hydrogen catalysis." Chemical Science 11, no. 21 (2020): 5487–93. http://dx.doi.org/10.1039/d0sc01290d.
Full textKiernicki, John J., James P. Shanahan, Matthias Zeller, and Nathaniel K. Szymczak. "Tuning ligand field strength with pendent Lewis acids: access to high spin iron hydrides." Chemical Science 10, no. 21 (2019): 5539–45. http://dx.doi.org/10.1039/c9sc00561g.
Full textChang, Guoliang, Peng Zhang, Wenjing Yang, Shangqing Xie, Hongjian Sun, Xiaoyan Li, Olaf Fuhr, and Dieter Fenske. "Correction: Pyridine N-oxide promoted hydrosilylation of carbonyl compounds catalyzed by [PSiP]-pincer iron hydrides." Dalton Transactions 49, no. 32 (2020): 11412. http://dx.doi.org/10.1039/d0dt90147d.
Full textChang, Guoliang, Peng Zhang, Wenjing Yang, Shangqing Xie, Hongjian Sun, Xiaoyan Li, Olaf Fuhr, and Dieter Fenske. "Pyridine N-oxide promoted hydrosilylation of carbonyl compounds catalyzed by [PSiP]-pincer iron hydrides." Dalton Transactions 49, no. 27 (2020): 9349–54. http://dx.doi.org/10.1039/d0dt00392a.
Full textDissertations / Theses on the topic "IRON HYDRIDES"
Helleren, Caroline Anne. "A search for bridging-dinitrogen heterobimetallic complexes containing iron and molybdenum or tungsten." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241719.
Full textHullah, Daniel Fearnley. "The electronic spectra of FeH and TeOâ†2." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301915.
Full textFALCAO, RAILSON B. "Síntese por reação do TiFe nanoestruturado para o armazenamento de hidrogênio, a partir da moagem de alta energia de misturas de pós de TiH2 e Fe." reponame:Repositório Institucional do IPEN, 2016. http://repositorio.ipen.br:8080/xmlui/handle/123456789/27135.
Full textMade available in DSpace on 2017-03-10T16:23:34Z (GMT). No. of bitstreams: 0
Neste trabalho investigou-se a obtenção do composto TiFe a partir da moagem de alta energia de misturas de pós de TiH2 e Fe, seguida de aquecimento sob vácuo para a reação de síntese. No lugar do Ti, o TiH2 foi escolhido como precursor em razão de sua fragilidade, benéfica para a diminuição da aderência dos pós ao ferramental de moagem. Foram preparados dois lotes de misturas obedecendo-se a relação Ti:Fe de 50:50 e 56:44. Ambos foram processados em um moinho do tipo planetário por tempos que variaram de 5 até 40 horas, sob atmosfera de argônio de elevada pureza. Em todos os experimentos foram mantidos constantes a velocidade de rotação do prato do moinho, a quantidade de amostra, o diâmetro e o número de bolas. As amostras moídas foram caracterizadas por calorimetria exploratória diferencial (DSC), termogravimetria (TG), microscopia eletrônica de varredura (MEV), difração de raios X (DRX) e fluorescência de raios X por dispersão de energia (EDXRF). Apenas TiH2 e Fe foram observados nas amostras moídas, com um grau crescente de mistura em função do tempo de moagem. O composto TiFe nanoestruturado (12,5 a 21,4nm) foi obtido de forma majoritária em todas as amostras após a reação de síntese promovida pelo tratamento térmico a 600ºC (873K). As amostras reagidas foram caracterizadas por microscopia eletrônica de transmissão (MET) e DRX. Um equipamento do tipo Sievert, operando sob um fluxo constante (modo dinâmico), foi utilizado para levantar as curvas termodinâmicas de absorção e dessorção de hidrogênio. Todas as amostras absorveram hidrogênio à temperatura ambiente (~298K) sem a necessidade de ciclos térmicos de ativação. Os melhores resultados foram obtidos com as amostras moídas por 25 e 40 horas, de composição não estequiométrica 56:44. Tais amostras absorveram e dessorveram hidrogênio à temperatura ambiente, sob os platôs de aproximadamente 6,4 e 2,2bar (~0,6 e 0,2MPa), respectivamente. A capacidade máxima de armazenamento foi de 1,06% em massa de hidrogênio (H:M~0,546), sob pressão de até 11bar (1,1MPa), com reversão de até 1,085% em massa de hidrogênio (H:M~0,559), sob pressão de até 1bar (0,1MPa). Estas amostras também apresentaram maior cinética de absorção e dessorção de hidrogênio com fluxos de 1,23 (25h) e 2,86cm3/g.min. (40h). Tais resultados são atribuídos à variação composicional da fase TiFe e à maior quantidade de TiH2 livre.
Tese (Doutorado em Tecnologia Nuclear )
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
GALEGO, EGUIBERTO. "Estudo de ligas e imás preparados pelo processo hidrogenação, desproporção, dessorção e recombinação (HDDR) a base de Pr-Fe-B com adição de dopantes e elementos de liga." reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11611.
Full textMade available in DSpace on 2014-10-09T13:58:58Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Zhu, Kailong. "Iron-catalysed hydride and radical transfer reactions." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28732.
Full textWilson, Catherine. "Further analysis of the electronic spectrum of FeH." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365782.
Full textLavender, Mark Harley. "Phosphine stabilised di-iron complexes." Thesis, University College London (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283749.
Full textOlder, Jamie Edward John. "Asymmetric induction of n4-iron diene complexes." Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368217.
Full textGoodridge, Damian Mark. "The green and red systems of the FeH radical." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339345.
Full textGhostine, Karine. "Reactivity of Low-Valent Iron and Cobalt Complexes with Fluoroalkenes." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38558.
Full textBooks on the topic "IRON HYDRIDES"
Cappellani, Paul E. The acid-base properties of iron hydride complexes. Ottawa: National Library of Canada, 1990.
Find full textBook chapters on the topic "IRON HYDRIDES"
Sokolov, V. M. "The Technological Aspects of the Nickel — Iron Accumulator Batteries Recycling." In Hydrogen Materials Science and Chemistry of Metal Hydrides, 71–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0558-6_8.
Full textReilly, J. J., and G. Sandrock. "Iron Titanium Hydride (FeTih1.94)." In Inorganic Syntheses, 90–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132531.ch18.
Full textChevalier, B., J. Etourneau, and J. M. D. Coey. "Structural and Magnetic Properties of RE2Fe17Hx (RE = Nd,Sm) Hydrides and Iron-Rich Compounds Nd(Co1-xFex)9Si2 and Gd(FexAl1-x)12." In Concerted European Action on Magnets (CEAM), 134–45. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1135-2_11.
Full textArndt, Larry W., Christopher J. Bischoff, Marcetta Y. Darensbourg, and John E. Ellis. "Heterobinuclear Nonacarbonyl Complexes and Hydride Complexes of Iron-Chromium, Iron-Molybdenum, and Iron-Tungsten." In Inorganic Syntheses, 335–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132579.ch61.
Full textPeet, W. G., D. H. Gerlach, and D. D. Titus. "Hydride Complexes of Iron(II) and Ruthenium(II)." In Inorganic Syntheses, 38–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132463.ch11.
Full textPardasani, R. T., and P. Pardasani. "Magnetic properties of 17-electron iron(III) hydride radical cation." In Magnetic Properties of Paramagnetic Compounds, 51–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53971-2_20.
Full textPardasani, R. T., and P. Pardasani. "Magnetic properties of half-sandwich hydride complex of iron containing 1, 2-bis(diisopropylphosphino)ethane." In Magnetic Properties of Paramagnetic Compounds, 58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53971-2_24.
Full textBadding, J. V., H. K. Mao, and R. J. Hemley. "High-Pressure Crystal Structure and Equation of State of Iron Hydride: Implications for the Earth's Core." In High-Pressure Research: Application to Earth and Planetary Sciences, 363–71. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm067p0363.
Full textDrabowicz, J., D. Krasowska, and J. Wicha. "Using Nickel, Cobalt, Iron, or Copper Compounds and Metal Hydrides." In Alkanes, 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-048-00131.
Full textSaito, S. "Lithium Aluminum Hydride with Iron Compounds." In Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be...Ba), 1. Georg Thieme Verlag KG, 2004. http://dx.doi.org/10.1055/sos-sd-007-00036.
Full textConference papers on the topic "IRON HYDRIDES"
Rebak, Raul B., and Young-Jin Kim. "Hydrogen Diffusion in FeCrAl Alloys for Light Water Reactors Cladding Applications." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63164.
Full textYagi, T., T. Hishinuma, M. Yamakata, T. Uchida, W. Utsumi, and Y. Fukai. "Formation and structure of iron hydride under the condition of the Earth’s interior." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46190.
Full textYamakata, Masaaki, Takehiko Yagi, Wataru Utsumi, and Yuh Fukai. "Electrical conductivity and crystal structure of iron hydride under high pressure and high temperature." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46192.
Full textReports on the topic "IRON HYDRIDES"
Jackson, Cynthia R. Thermodynamic properties of halides, hydrides, and deuterides of cobalt, iron, and nickel :. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.tn.1244.
Full text