Academic literature on the topic 'IRMf à échantillonnage compressif'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IRMf à échantillonnage compressif.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "IRMf à échantillonnage compressif":

1

Chauffert, Nicolas. "Echantillonnage compressé le long de trajectoires physiquement plausibles en IRM." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112234/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'imagerie par résonance magnétique (IRM) est une technique d'imagerie non invasive et non ionisante qui permet d'imager et de discriminer les tissus mous grâce à une bonne sensibilité de contraste issue de la variation de paramètres physiques (T$_1$, T$_2$, densité de protons) spécifique à chaque tissu. Les données sont acquises dans l'espace-$k$, correspondant aux fréquences spatiales de l'image. Des contraintes physiques et matérielles contraignent le mode de fonctionnement des gradients de champ magnétique utilisés pour acquérir les données. Ainsi, ces dernières sont obtenues séquentiellement le long de trajectoires assez régulières (dérivée et dérivée seconde bornées). En conséquence, la durée d'acquisition augmente avec la résolution recherchée de l'image. Accélérer l'acquisition des données est crucial pour réduire la durée d'examen et ainsi améliorer le confort du sujet, diminuer les coûts, limiter les distorsions dans l'image~(e.g., dues au mouvement), ou encore augmenter la résolution temporelle en IRM fonctionnelle. L'échantillonnage compressif permet de sous-échantillonner l'espace-$k$, et de reconstruire une image de bonne qualité en utilisant une hypothèse de parcimonie de l'image dans une base d'ondelettes. Les théories d'échantillonnage compressif s'adaptent mal à l'IRM, même si certaines heuristiques ont permis d'obtenir des résultats prometteurs. Les problèmes rencontrés en IRM pour l'application de cette théorie sont i) d'une part, les bases d'acquisition~(Fourier) et de représentation~(ondelettes) sont cohérentes ; et ii) les schémas actuellement couverts par la théorie sont composés de mesures isolées, incompatibles avec l'échantillonnage continu le long de segments ou de courbes. Cette thèse vise à développer une théorie de l'échantillonnage compressif applicable à l'IRM et à d'autres modalités. D'une part, nous proposons une théorie d'échantillonnage à densité variable pour répondre au premier point. Les échantillons les plus informatifs ont une probabilité plus élevée d'être mesurés. D'autre part, nous proposons des schémas et concevons des trajectoires qui vérifient les contraintes d'acquisition tout en parcourant l'espace-$k$ avec la densité prescrite dans la théorie de l'échantillonnage à densité variable. Ce second point étant complexe, il est abordé par une séquence de contributions indépendantes. D'abord, nous proposons des schémas d'échantillonnage à densité variables le long de courbes continues~(marche aléatoire, voyageur de commerce). Ensuite, nous proposons un algorithme de projection sur l'espace des contraintes qui renvoie la courbe physiquement plausible la plus proche d'une courbe donnée~(e.g., une solution du voyageur de commerce). Nous donnons enfin un algorithme de projection sur des espaces de mesures qui permet de trouver la projection d'une distribution quelconque sur l'espace des mesures porté par les courbes admissibles. Ainsi, la courbe obtenue est physiquement admissible et réalise un échantillonnage à densité variable. Les résultats de reconstruction obtenus en simulation à partir de cette méthode dépassent ceux associées aux trajectoires d'acquisition utilisées classiquement~(spirale, radiale) de plusieurs décibels (de l'ordre de 3~dB) et permettent d'envisager une implémentation prochaine à 7~Tesla notamment dans le contexte de l'imagerie anatomique haute résolution
Magnetic Resonance Imaging~(MRI) is a non-invasive and non-ionizing imaging technique that provides images of body tissues, using the contrast sensitivity coming from the magnetic parameters (T$_1$, T$_2$ and proton density). Data are acquired in the $k$-space, corresponding to spatial Fourier frequencies. Because of physical constraints, the displacement in the $k$-space is subject to kinematic constraints. Indeed, magnetic field gradients and their temporal derivative are upper bounded. Hence, the scanning time increases with the image resolution. Decreasing scanning time is crucial to improve patient comfort, decrease exam costs, limit the image distortions~(eg, created by the patient movement), or decrease temporal resolution in functionnal MRI. Reducing scanning time can be addressed by Compressed Sensing~(CS) theory. The latter is a technique that guarantees the perfect recovery of an image from undersampled data in $k$-space, by assuming that the image is sparse in a wavelet basis. Unfortunately, CS theory cannot be directly cast to the MRI setting. The reasons are: i) acquisition~(Fourier) and representation~(wavelets) bases are coherent and ii) sampling schemes obtained using CS theorems are composed of isolated measurements and cannot be realistically implemented by magnetic field gradients: the sampling is usually performed along continuous or more regular curves. However, heuristic application of CS in MRI has provided promising results. In this thesis, we aim to develop theoretical tools to apply CS to MRI and other modalities. On the one hand, we propose a variable density sampling theory to answer the first inpediment. The more the sample contains information, the more it is likely to be drawn. On the other hand, we propose sampling schemes and design sampling trajectories that fulfill acquisition constraints, while traversing the $k$-space with the sampling density advocated by the theory. The second point is complex and is thus addressed step by step. First, we propose continuous sampling schemes based on random walks and on travelling salesman~(TSP) problem. Then, we propose a projection algorithm onto the space of constraints that returns the closest feasible curve of an input curve~(eg, a TSP solution). Finally, we provide an algorithm to project a measure onto a set of measures carried by parameterizations. In particular, if this set is the one carried by admissible curves, the algorithm returns a curve which sampling density is close to the measure to project. This designs an admissible variable density sampler. The reconstruction results obtained in simulations using this strategy outperform existing acquisition trajectories~(spiral, radial) by about 3~dB. They permit to envision a future implementation on a real 7~T scanner soon, notably in the context of high resolution anatomical imaging
2

Amor, Zaineb. "Non-Cartesian Sparkling encoding for High spatio-temporal resolution functional Magnetic Resonance Imaging (fMRI) at 7 Tesla and beyond." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'IRM fonctionnelle (IRMf) est actuellement l'une des techniques de neuroimagerie fonctionnelle les plus utilisées pour sonder l'activité cérébrale de manière non invasive grâce au contraste dépendant du niveau d'oxygène dans le sang (BOLD) qui reflète le couplage neurovasculaire. Elle offre un compromis intéressant entre la résolution spatiale et temporelle afin d'étudier le cerveau entier en tant qu'agrégation de systèmes fonctionnels intrinsèques. La recherche d'une résolution spatiale et/ou temporelle plus élevée en IRMf tout en préservant un rapport signal/bruit temporel suffisant~(tSNR) a généré une quantité considérable de contributions méthodologiques au cours de la dernière décennie, allant des methodes d'encodage cartésiennes ou non cartésiennes, des stratégies d'acquisition 2D ou 3D, de l'imagerie parallèle et/ou de échantillonnage compressif (CS) et des acquisitions multibande, pour n'en citer que quelques-unes. Dans ce travail, nous nous concentrons sur l'utilisation du CS dans l'IRMf, plus spécifiquement, nous considérons le schéma d'encodage SPARKLING.L'objectif principal de cette thèse est d'évaluer 3D-SPARKLING en tant que schéma d'acquisition viable pour l'IRMf à haute résolution et pour cerveau entier.À cet égard, nous avons d'abord comparé ses performances avec l'état de l'art en matière: 3D-EPI. Après avoir observé une plus grande sensibilité aux imperfections statiques et dynamiques du champ magnétique dans les données 3D-SPARKLING, nous avons établi un protocole expérimental pour les corriger. Enfin, nous avons étudié les possibilités et les limites de l'utilisation d'une reconstruction par fenêtre glissante en combinaison avec le schéma d'encodage SPARKLING pour améliorer rétrospectivement la résolution temporelle pendant la reconstruction des images en IRMf. Une étude de simulation dans laquelle la vérité terrain est contrôlée a été menée et a démontré la possibilité de détecter les oscillations à haute fréquence dans le signal BOLD et de séparer le bruit physiologique de l'activité neuronale
Functional MRI (fMRI) is currently one of the most commonly used functional neuroimaging techniques to probe brain activity non-invasively through the blood oxygen level-dependent (BOLD) contrast that reflects neurovascular coupling. It offers an interesting trade-off between spatial and temporal resolution in order to study the whole brain as an aggregation of intrinsic functional systems. The quest for higher spatial and/or temporal resolution in fMRI while preserving a sufficient temporal signal-to-noise ratio~(tSNR) has generated a tremendous amount of methodological contributions in the last decade ranging from Cartesian vs. non-Cartesian readouts, 2D vs. 3D acquisition strategies, parallel imaging and/or compressed sensing~(CS) accelerations and simultaneous multi-slice acquisitions to cite a few. In this work, we focus on the use of CS in fMRI; more specifically, we consider Spreading Projection Algorithm for Rapid K-space sampLING (SPARKLING) encoding scheme.The main focus and goal of this thesis involves the evaluation of 3D-SPARKLING as a viable acquisition scheme for high-resolution whole-brain fMRI. In this regard, we initially compared its capabilities with state-of-the-art 3D-EPI. After observing higher sensitivity to static and dynamic magnetic field imperfections in 3D-SPARKLING data, we established an experimental protocol to correct them. Finally, we studied the capabilities and limitations of employing a sliding-window reconstruction in combination with the SPARKLING encoding scheme to enhance temporal resolution during image reconstruction in fMRI retrospectively. A simulation study where the ground truth is controlled was conducted and demonstrated the possibility of detecting high-frequency oscillations in the BOLD signal and separating physiological noise from neural activity
3

Sipouo, Ngandjon Maurice. "Utilisation de l'échantillonnage compressif pour la détection des véhicules par un réseau de capteurs sans fil." Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/5510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Une nouvelle technique pour étudier le trafic routier, est la détection des véhicules par un réseau de capteurs sans fil installés dans la chaussée. Cette technologie se distingue de la plupart des systèmes classiques de détection de véhicules par son faible coût, son niveau élevé de flexibilité dans la configuration, sa multifonctionnalité par l'ajout d'autres modalités de détection et sa capacité à transmettre les informations via un réseau sans fil. Cependant, quand un capteur sans fil effectue l'acquisition du signal de champ magnétique terrestre dans l'optique de détecter le passage des véhicules, il l'échantillonne à une certaine fréquence, afin de ne pas rater le passage d'un véhicule. Lorsque la séquence de mesure dure plusieurs heures et qu'on a des dizaines ou des centaines de capteurs sans fil installés dans la chaussée, on se retrouve rapidement avec des données à stocker et à traiter qui peuvent être de taille importante. En outre, les communications sans fil de ces données sont très coûteuses en énergie et réduisent ainsi la durée de vie du capteur sans fil qui dispose des ressources limitées en énergie. Le compressive sensing (échantillonnage compressif), nouvelle méthode d'échantillonnage des signaux, tente justement de donner des solutions à ces problèmes, en réduisant significativement le nombre de mesures nécessaires et en utilisant par la suite des algorithmes d'optimisation convexe pour reconstruire tout le signal sans trop de perte perceptuel [i.e. perceptuelle]. À travers des simulations effectuées sur des signaux enregistrés par les capteurs sans fil de la compagnie allemande Coalesenses , nous montrons dans ce projet de recherche que l'échantillonnage compressif peut contribuer à maximiser considérablement la durée de vie d'un réseau de capteurs sans fil.
4

Chahid, Makhlad. "Echantillonnage compressif appliqué à la microscopie de fluorescence et à la microscopie de super résolution." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0426/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Mes travaux de thèse portent sur l’application de la théorie de l’échantillonnagecompressif (Compressed Sensing ou Compressive Sampling, CS) à la microscopie defluorescence, domaine en constante évolution et outil privilégié de la recherche fondamentaleen biologie. La récente théorie du CS a démontré que pour des signauxparticuliers, dits parcimonieux, il est possible de réduire la fréquence d’échantillonnagede l’information à une valeur bien plus faible que ne le prédit la théorie classiquede l’échantillonnage. La théorie du CS stipule qu’il est possible de reconstruireun signal, sans perte d’information, à partir de mesures aléatoires fortement incomplèteset/ou corrompues de ce signal à la seule condition que celui-ci présente unestructure parcimonieuse.Nous avons développé une approche expérimentale inédite de la théorie du CSà la microscopie de fluorescence, domaine où les signaux sont naturellement parcimonieux.La méthode est basée sur l’association d’une illumination dynamiquestructurée à champs large et d’une détection rapide à point unique. Cette modalitépermet d’inclure l’étape de compression pendant l’acquisition. En outre, nous avonsmontré que l’introduction de dimensions supplémentaires (2D+couleur) augmentela redondance du signal, qui peut être pleinement exploitée par le CS afin d’atteindredes taux de compression très importants.Dans la continuité de ces travaux, nous nous sommes intéressés à une autre applicationdu CS à la microscopie de super résolution, par localisation de moléculesindividuelles (PALM/STORM). Ces nouvelles techniques de microscopie de fluorescenceont permis de s’affranchir de la limite de diffraction pour atteindre des résolutionsnanométriques. Nous avons exploré la possibilité d’exploiter le CS pour réduiredrastiquement les temps d’acquisition et de traitement.Mots clefs : échantillonnage compressif, microscopie de fluorescence, parcimonie,microscopie de super résolution, redondance, traitement du signal, localisation demolécules uniques, bio-imagerie
My PhD work deals with the application of Compressed Sensing (or CompressiveSampling, CS) in fluorescence microscopy as a powerful toolkit for fundamental biologicalresearch. The recent mathematical theory of CS has demonstrated that, for aparticular type of signal, called sparse, it is possible to reduce the sampling frequencyto rates well below that which the sampling theorem classically requires. Its centralresult states it is possible to losslessly reconstruct a signal from highly incompleteand/or inaccurate measurements if the original signal possesses a sparse representation.We developed a unique experimental approach of a CS implementation in fluorescencemicroscopy, where most signals are naturally sparse. Our CS microscopecombines dynamic structured wide-field illumination with fast and sensitive singlepointfluorescence detection. In this scheme, the compression is directly integratedin the measurement process. Additionally, we showed that introducing extra dimensions(2D+color) results in extreme redundancy that is fully exploited by CS to greatlyincrease compression ratios.The second purpose of this thesis is another appealing application of CS forsuper-resolution microscopy using single molecule localization techniques (e.g.PALM/STORM). This new powerful tool has allowed to break the diffraction barrierdown to nanometric resolutions. We explored the possibility of using CS to drasticallyreduce acquisition and processing times
5

Nguyen, Van Khieu. "MR microscopy of neuronal tissue : acquisition acceleration, modelling and experimental validation of water diffusion." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS086/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La technique d’acquisition comprimée ou compressed sensing (CS) exploite la compressibilité de différents types d’images pour reconstruire des données sous-échantillonnées sans perte d’informations. Cette technique peut être appliquée à l’IRM pour réduire les temps d’acquisition. CS est basée sur trois composantes majeures : (1) la représentation parcimonieuse du signal dans un domaine de transformation, (2) des mesures incohérentes et (3) une méthode de reconstruction non-linéaire avec une contrainte de parcimonie. Dans la première résultats partie de cette thèse, nous proposons un nouveau modèle de sous-échantillonnage basé sur la théorie de l’agrégation limitée par la diffusion (DLA) et montrons qu’il est plus performant que la méthode de sous-échantillonnage aléatoire. Le modèle de sous-échantillonnage DLA a été utilisé pour implémenter la technique de CS pour l’imagerie haute résolution pondérée T2 et T1 sur un champ magnétique très intense (17.2T). Pour chacune des pondérations, le temps d’acquisition a été réduit de 50% tout en conservant la qualité des images en termes de résolution spatiale, rapport contraste sur bruit et quantification de l’intensité du signal. Les deux nouvelles séquences d’impulsions CS (csRARE et csFLASH) ont été implémentées sur le logiciel commercial ParaVision 5.1. La seconde résultats partie de la thèse est centrée sur l’étude de la dépendance en temps de la diffusivité dans le ganglion abdominal de l’Aplysia Californica. Le ganglion abdominal de l’aplysie a été choisi pour cette étude d’imagerie car l’IRM à haute résolution permet la description anatomique fine du réseau cellulaire (taille des neurones individuels et orientation des axones). Utiliser les tissus neuronaux de l’aplysie pour étudier la relation entre la structure cellulaire et le signal d’IRM de diffusion peut permettre de comprendre cette relation pour des organismes plus complexes. Le signal d’IRM de diffusion (IRMd) a été mesuré à différents temps de diffusion dans le ganglion abdominal et des simulations de la diffusion de l’eau dans des géométries obtenues à partir de la segmentation d’images haute résolution pondérées T2 et l’incorporation d’informations sur la structure cellulaire trouvées dans la littérature ont été réalisées. Pour comparer le signal d’IRMd dans des neurones composés d’une seule cellule avec le signal des simulations numériques, des cellules de grande taille ont été segmentées à partir d’images anatomiques pondérées T2. A l’intérieur des cellules, un noyau à forme irrégulière a été généré manuellement (environ 25-30% en fraction volumique). Les petites cellules ont été modélisées comme des petites sphères avec un petit noyau sphérique concentrique (environ 25% en fraction volumique). Le nerf a été modélisé en combinant des axones (cylindres) de différents diamètres en cohérence avec la littérature. Le signal numérique d’IRMd a été simulé en résolvant l’équation de Bloch-Torrey pour les domaines géométriques décris ci-dessus. En fittant le signal expérimental avec le signal simulé pour différents types de cellules comme les grandes cellules neuronales (diamètre entre 150 et 420 µm), des agrégats de petites cellules neuronales ayant la forme d’un sac (jusqu’à 400 cellule chez l’aplysie adulte dans chaque sac avec une taille cellulaire entre 40 et 100 µm de diamètre), des nerfs (groupes d’axones de forme cylindrique avec un diamètre de moins de 1 à 25 µm) pour une grande gamme de temps de diffusions, nous avons obtenu des estimations du coefficient de diffusion intrinsèque dans le noyau et le cytoplasme (pour les neurones) et le coefficient de diffusion intrinsèque dans les axones (pour les nerfs). Nous avons aussi évalué la pertinence d’utiliser une formule préexistante décrivant la dépendance en temps du coefficient de diffusion pour estimer la taille des cellules
Compressed sensing (CS) exploits the compressibility of different types of images to reconstruct undersampled data without loss of information. The technique can be applied to MRI to reduce the acquisition times. The CS is based on three major components: (1) sparsity representation of the signal in some transform domain, (2) incoherent measurements, and (3) sparsity-constrained nonlinear reconstruction method. If the total number of points in the image is larger than four times the number of sparse coefficients, then the reconstruction of under sampled data is feasible. In the first results part of this thesis, we propose a new under sampling model based on the diffusion limited aggregation (DLA) theory and show that it performs better than the random variable under sampling method. The DLA under sampling model was used to implement the CS for T2-weighted and T1-weighted high resolution imaging at the ultra-high magnetic field (17.2T). In both cases, the acquisition time was reduced by 50% while maintaining the quality of the images in terms of spatial resolution, contrast to noise ratio, and signal intensity quantification. Both new CS pulse sequences (csRARE and csFLASH) were implemented in ParaVision 5.1 commercial software. The second results part of the thesis is focused on the study of the time-dependent diffusivity in the abdominal ganglion of Aplysia California. The Aplysia abdominal ganglion was chosen in this imaging study because high resolution MR imaging allows the fine anatomical description of the cellular network (size of individual neurons and orientation of axons). Using the Aplysia ganglia to study the relationship between the cellular structure and the diffusion MRI signal can shed light on this relationship for more complex organisms. We measured the dMRI signal at several diffusion times in the abdominal ganglion and performed simulations of water diffusion in geometries obtained after segmenting high resolution T2-weighted images and incorporating known information about the cellular structure from the literature. To match the dMRI signal in the single cell neurons with numerical simulations signal, the large cell outline was segmented from the anatomical T2 weighted image. Inside this cell shape, an irregularly shaped nucleus was manually generated (around 25-30% volume fraction). The small cells were modeled as small spheres with a smaller concentric spherical nucleus (around 25% volume fraction). The nerve was modeled by combining axons (cylinders) of different diameters consistent with the literature. The numerical dMRI signal can be simulated by solving Bloch-Torrey equation under the geometries domain described above. By fitting the experimental signal to the simulated signal for several types of cells such as: large cell neurons (diameter between 150 µm and 420 µm); cluster of small neuron cells gathered in the shape of a bag (up to 400 cells in adult Aplysia in each bag with cell size between 40 µm to 100 µm in diameter); and nerves (group of axons cylindrical shape diameter from less than 1 µm to 25 µm) at a wide range of diffusion times, we obtained estimates of the intrinsic diffusion coefficient in the nucleus and the cytoplasm (for cell neurons) and the intrinsic diffusion coefficient in the axons (for the nerves). We also evaluated the reliability of using an existing formula for the time-dependent diffusion coefficient to estimate cell size
6

Huang, Jianping. "Etude de l’imagerie de tenseur de diffusion en utilisant l’acquisition comprimée." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0136/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L’étude de la structure microscopique des fibres du coeur offre une nouvelle approche pour expliquer les maladies du coeur et pour trouver des moyens de thérapie efficaces. L’imagerie de tenseur de diffusion par résonance magnétique (DTMR) ou l’imagerie de tenseur de diffusion (DTI) fournit actuellement un outil unique pour étudier les structures tridimensionnelles (3D) de fibres cardiaques in vivo. Cependant, DTI est connu pour souffrir des temps d'acquisition longs, ce qui limite considérablement son application pratique et clinique. Les méthodes traditionnelles pour l’acquisition et la reconstruction de l’image ne peuvent pas résoudre ce problème. La motivation principale de cette thèse est alors d’étudier des techniques d'imagerie rapide en reconstruisant des images de haute qualité à partir des données fortement sous-échantillonnées. La méthode adoptée est basée sur la nouvelle théorie de l’acquisition comprimée (CS). Plus précisément, nous étudions l’utilisation de la théorie de CS pour l’imagerie par résonance magnétique (IRM) et DTI cardiaque. Tout d'abord, nous formulons la reconstruction de l’image par résonance magnétique (MR) comme un problème d'optimisation avec les contraintes de trames ajustées guidées par les données (TF) et de variation totale généralisée (TGV) dans le cadre de CS, dans lequel, le TF guidé par les données est utilisé pour apprendre de manière adaptative un ensemble de filtres à partir des données fortement sous-échantillonné afin d’obtenir une meilleure approximation parcimonieuse des images, et le TGV est dédié à régulariser de façon adaptative les régions d'image et à réduire ainsi les effets d'escalier. Ensuite, nous proposons une nouvelle méthode CS qui emploie conjointement la parcimonie et la déficience de rang pour reconstruire des images de DTMR cardiaques à partir des données de l'espace k fortement sous-échantillonnées. Puis, toujours dans le cadre de la théorie CS, nous introduisons la contrainte de rang faible et la régularisation de variation totale (TV) dans la formulation de la reconstruction par CS. Deux régularisations TV sont considérées: TV locale (i.e. TV classique) et TV non locale (NLTV). Enfin, nous proposons deux schémas de sous-échantillonnage radial aléatoire (angle d’or et angle aléatoire) et une méthode d’optimisation avec la contrainte de faible rang et la régularisation TV pour traiter des données espace k fortement sous-échantillonnées en DTI cardiaque. Enfin, nous comparons nos méthodes avec des stratégies existantes de sous-échantillonnage radial telles que l’angle uniforme, l’angle uniforme perturbé aléatoirement, l’angle d’or et l’angle aléatoire
The investigation of the micro fiber structures of the heart provides a new approach to explaining heart disease and investigating effective therapy means. Diffusion tensor magnetic resonance (DTMR) imaging or diffusion tensor imaging (DTI) currently provides a unique tool to image the three-dimensional (3D) fiber structures of the heart in vivo. However, DTI is known to suffer from long acquisition time, which greatly limits its practical and clinical use. Classical acquisition and reconstruction methods do not allow coping with the problem. The main motivation of this thesis is then to investigae fast imaging techniques by reconstructing high-quality images from highly undersampled data. The methodology adopted is based on the recent theory of compressed sensing (CS). More precisely, we address the use of CS for magnetic resonance imaging (MRI) and cardiac DTI. First, we formulate the magnetic resonance (MR) image reconstruction as a problem of optimization with data-driven tight frame (TF) and total generalized variation (TGV) constraints in the framework of CS, in which the data-driven TF is used to adaptively learn a set of filters from the highly under-sampled data itself to provide a better sparse approximation of images and the TGV is devoted to regularizing adaptively image regions and thus supprressing staircase effects. Second, we propose a new CS method that employs joint sparsity and rank deficiency prior to reconstruct cardiac DTMR images from highly undersampled k-space data. Then, always in the framework of CS theory, we introduce low rank constraint and total variation (TV) regularizations in the CS reconstruction formulation, to reconstruct cardiac DTI images from highly undersampled k-space data. Two TV regularizations are considered: local TV (i.e. classical TV) and nonlocal TV (NLTV). Finally, we propose two randomly perturbed radial undersampling schemes (golden-angle and random angle) and the optimization with low rank constraint and TV regularizations to deal with highly undersampled k-space acquisitons in cardiac DTI, and compare the proposed CS-based DTI with existing radial undersampling strategies such as uniformity-angle, randomly perturbed uniformity-angle, golden-angle, and random angle
7

Roux, Marine. "Inférence de graphes par une procédure de test multiple avec application en Neuroimagerie." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT058/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette thèse est motivée par l’analyse des données issues de l’imagerie par résonance magnétique fonctionnelle (IRMf). La nécessité de développer des méthodes capables d’extraire la structure sous-jacente des données d’IRMf constitue un challenge mathématique attractif. A cet égard, nous modélisons les réseaux de connectivité cérébrale par un graphe et nous étudions des procédures permettant d’inférer ce graphe.Plus précisément, nous nous intéressons à l’inférence de la structure d’un modèle graphique non orienté par une procédure de test multiple. Nous considérons deux types de structure, à savoir celle induite par la corrélation et celle induite par la corrélation partielle entre les variables aléatoires. Les statistiques de tests basées sur ces deux dernières mesures sont connues pour présenter une forte dépendance et nous les supposerons être asymptotiquement gaussiennes. Dans ce contexte, nous analysons plusieurs procédures de test multiple permettant un contrôle des arêtes incluses à tort dans le graphe inféré.Dans un premier temps, nous questionnons théoriquement le contrôle du False Discovery Rate (FDR) de la procédure de Benjamini et Hochberg dans un cadre gaussien pour des statistiques de test non nécessairement positivement dépendantes. Nous interrogeons par suite le contrôle du FDR et du Family Wise Error Rate (FWER) dans un cadre gaussien asymptotique. Nous présentons plusieurs procédures de test multiple, adaptées aux tests de corrélations (resp. corrélations partielles), qui contrôlent asymptotiquement le FWER. Nous proposons de plus quelques pistes théoriques relatives au contrôle asymptotique du FDR.Dans un second temps, nous illustrons les propriétés des procédures contrôlant asymptotiquement le FWER à travers une étude sur simulation pour des tests basés sur la corrélation. Nous concluons finalement par l’extraction de réseaux de connectivité cérébrale sur données réelles
This thesis is motivated by the analysis of the functional magnetic resonance imaging (fMRI). The need for methods to build such structures from fMRI data gives rise to exciting new challenges for mathematics. In this regards, the brain connectivity networks are modelized by a graph and we study some procedures that allow us to infer this graph.More precisely, we investigate the problem of the inference of the structure of an undirected graphical model by a multiple testing procedure. The structure induced by both the correlation and the partial correlation are considered. The statistical tests based on the latter are known to be highly dependent and we assume that they have an asymptotic Gaussian distribution. Within this framework, we study some multiple testing procedures that allow a control of false edges included in the inferred graph.First, we theoretically examine the False Discovery Rate (FDR) control of Benjamini and Hochberg’s procedure in Gaussian setting for non necessary positive dependent statistical tests. Then, we explore both the FDR and the Family Wise Error Rate (FWER) control in asymptotic Gaussian setting. We present some multiple testing procedures, well-suited for correlation (resp. partial correlation) tests, which provide an asymptotic control of the FWER. Furthermore, some first theoretical results regarding asymptotic FDR control are established.Second, the properties of the multiple testing procedures that asymptotically control the FWER are illustrated on a simulation study, for statistical tests based on correlation. We finally conclude with the extraction of cerebral connectivity networks on real data set

To the bibliography