Academic literature on the topic 'Iridium(III) Photocatalysts'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Iridium(III) Photocatalysts.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Iridium(III) Photocatalysts"

1

Ochola, J. R., and M. O. Wolf. "The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis." Organic & Biomolecular Chemistry 14, no. 38 (2016): 9088–92. http://dx.doi.org/10.1039/c6ob01717g.

Full text
Abstract:
Four different iridium(iii) polypyridyl complexes with varying excited state lifetimes are used as photocatalysts to study the effect of excited state lifetime on the rate of a prototypical photoredox-catalyzed reaction, the trifluoromethylation of quinoline.
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Chang-ting, Jinfan Chen, Jiayuan Xu, Fangfang Wei, Chi Yung Yam, Keith Man-Chung Wong, Patrick H. L. Sit, and Wey Yang Teoh. "Selective visible light reduction of carbon dioxide over iridium(III)-terpyridine photocatalysts." Materials Today Chemistry 22 (December 2021): 100563. http://dx.doi.org/10.1016/j.mtchem.2021.100563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hossain, Asik, Aditya Bhattacharyya, and Oliver Reiser. "Copper’s rapid ascent in visible-light photoredox catalysis." Science 364, no. 6439 (May 2, 2019): eaav9713. http://dx.doi.org/10.1126/science.aav9713.

Full text
Abstract:
Visible-light photoredox catalysis offers a distinct activation mode complementary to thermal transition metal catalyzed reactions. The vast majority of photoredox processes capitalizes on precious metal ruthenium(II) or iridium(III) complexes that serve as single-electron reductants or oxidants in their photoexcited states. As a low-cost alternative, organic dyes are also frequently used but in general suffer from lower photostability. Copper-based photocatalysts are rapidly emerging, offering not only economic and ecological advantages but also otherwise inaccessible inner-sphere mechanisms, which have been successfully applied to challenging transformations. Moreover, the combination of conventional photocatalysts with copper(I) or copper(II) salts has emerged as an efficient dual catalytic system for cross-coupling reactions.
APA, Harvard, Vancouver, ISO, and other styles
4

Huang, Can, Chao Liang, Tumpa Sadhukhan, Samya Banerjee, Zhongxian Fan, Tingxuan Li, Zilin Zhu, Pingyu Zhang, Krishnan Raghavachari, and Huaiyi Huang. "In‐vitro and In‐vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts." Angewandte Chemie International Edition 60, no. 17 (March 17, 2021): 9474–79. http://dx.doi.org/10.1002/anie.202015671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Can, Chao Liang, Tumpa Sadhukhan, Samya Banerjee, Zhongxian Fan, Tingxuan Li, Zilin Zhu, Pingyu Zhang, Krishnan Raghavachari, and Huaiyi Huang. "In‐vitro and In‐vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts." Angewandte Chemie 133, no. 17 (March 17, 2021): 9560–65. http://dx.doi.org/10.1002/ange.202015671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cai, Rong, Wuming Yan, Matthew G. Bologna, Kaushalya de Silva, Zhao Ma, Harry O. Finklea, Jeffrey L. Petersen, Minyong Li, and Xiaodong Shi. "Synthesis and characterization of N-2-aryl-1,2,3-triazole based iridium complexes as photocatalysts with tunable photoredox potential." Organic Chemistry Frontiers 2, no. 2 (2015): 141–44. http://dx.doi.org/10.1039/c4qo00281d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mdluli, Velabo, Stephen Diluzio, Jacqueline Lewis, Jakub F. Kowalewski, Timothy U. Connell, David Yaron, Tomasz Kowalewski, and Stefan Bernhard. "High-throughput Synthesis and Screening of Iridium(III) Photocatalysts for the Fast and Chemoselective Dehalogenation of Aryl Bromides." ACS Catalysis 10, no. 13 (May 28, 2020): 6977–87. http://dx.doi.org/10.1021/acscatal.0c02247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pan, Long, Meng-Ying Xu, Li-Juan Feng, Qi Chen, Yu-Jian He, and Bao-Hang Han. "Correction: Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(iii) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis." Polymer Chemistry 7, no. 12 (2016): 2308. http://dx.doi.org/10.1039/c6py90040b.

Full text
Abstract:
Correction for ‘Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(iii) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis’ by Long Pan, et al., Polym. Chem., 2016, DOI: 10.1039/c5py01955a.
APA, Harvard, Vancouver, ISO, and other styles
9

Pan, Long, Meng-Ying Xu, Li-Juan Feng, Qi Chen, Yu-Jian He, and Bao-Hang Han. "Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(iii) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis." Polymer Chemistry 7, no. 12 (2016): 2299–307. http://dx.doi.org/10.1039/c5py01955a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Reithmeier, R. O., S. Meister, A. Siebel, and B. Rieger. "Synthesis and characterization of a trinuclear iridium(iii) based catalyst for the photocatalytic reduction of CO2." Dalton Transactions 44, no. 14 (2015): 6466–72. http://dx.doi.org/10.1039/c5dt00370a.

Full text
Abstract:
A trimetallic Ir(iii) based photocatalyst for the reduction of CO2 was developed and investigated, regarding the influence of spatial proximity between the catalyst centers towards the catalytic performance.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Iridium(III) Photocatalysts"

1

Ochola, Rispah Janet. "The preparation and study of photocatalysts : from core-shell palladium-titanium dioxide nanoparticles to iridium(III) complexes." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/63140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sauvageot, Elodie. "Nouveaux complexes d’Ir(III) à ligands azotés : catalyse photoredox (enantiosélective) et inhibition du TNF-alpha." Caen, 2015. http://www.theses.fr/2015CAEN2061.

Full text
Abstract:
Dans le cadre d'une chimie verte et respectueuse de l’environnement, la catalyse photoredox sous lumière visible est devenue depuis quelques années un domaine en pleine expansion. Ce nouvel outil a permis de réaliser de nombreuses transformations chimiques dans des conditions douces. Cependant, les transformations stéréosélectives sont encore rares et nécessitent la présence de liaisons polarisées sur les substrats. L'objectif était alors de développer de nouveaux catalyseurs chiraux, et en particulier des métalloenzymes artificielles, pour des applications stéréosélectives sur une grande variété de substrats. Ce travail a été réalisé en deux étapes: (i) synthèse et évaluation catalytique de complexes d’iridium(III) et de ruthénium(II) coordinés à des ligands dipyridylamines fonctionnalisables; puis (ii) incorporation au sein de protéines telles que les glucosidases et la streptavidine pour les complexes présentant la meilleure activité photocatalytique. L'activité des nouveaux biohybrides a ensuite été étudiée en catalyse photoredox. Les propriétés anti-inflammatoires des complexes d’iridium(III) ont été par ailleurs évaluées in vitro à travers l’inhibition de l’interaction entre le TNF- et son récepteur TNFR-1. Les résultats obtenus lors de ces travaux ouvrent la voie vers une nouvelle classe de catalyseurs photoredox et d’inhibiteurs du TNF-
In the context of green and sustainable chemistry, visible light-mediated photoredox catalysis has become a rapidly growing field in the last few years. This new tool allowed to achieve numerous and diverse chemical transformations in mild conditions. However, stereoselective reactions are still rare and require the presence of polarized bonds on the substrates. The aim of this thesis was to develop new chiral catalysts, especially artificial metalloenzymes, for stereoselective applications on a broad range of substrates. This work was completed in two steps: (i) synthesis and catalytic evaluation of iridium(III) and ruthenium(II) complexes bearing adjustable dipyridylamine ligands; (ii) incorporation of the complexes exhibiting the best photocatalytic activity within protein, such as glucosidases and streptavidin. The activity of the new biohybrids catalysts was then assessed in photoredox catalysis. Anti-inflammatory properties of iridium(III) complexes were also evaluated in vitro as potent inhibitors of TNF-/TNFR-1 interaction. The results obtained during this work pave the way toward a new class of photoredox catalysts and TNF-inhibitors
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Iridium(III) Photocatalysts"

1

Ziessel, R. "Photocatalysis: Reduction of Carbon Dioxide and Water-Gas-Shift Reaction Photocatalyzed by 2,2′-Bipyridine or 1,10-Phenanthroline Cobalt(II), Ruthenium(II), Rhenium(I) and Iridium(III) Complexes." In Catalysis by Metal Complexes, 217–45. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2626-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography