Academic literature on the topic 'IoT, Security IoT, IoT Protocol, 5G'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IoT, Security IoT, IoT Protocol, 5G.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IoT, Security IoT, IoT Protocol, 5G"
Mrabet, Hichem, Sana Belguith, Adeeb Alhomoud, and Abderrazak Jemai. "A Survey of IoT Security Based on a Layered Architecture of Sensing and Data Analysis." Sensors 20, no. 13 (June 28, 2020): 3625. http://dx.doi.org/10.3390/s20133625.
Full textSanchez-Gomez, Jesus, Dan Garcia-Carrillo, Rafael Marin-Perez, and Antonio Skarmeta. "Secure Authentication and Credential Establishment in Narrowband IoT and 5G." Sensors 20, no. 3 (February 7, 2020): 882. http://dx.doi.org/10.3390/s20030882.
Full textPark, Kisung, and Youngho Park. "On the Security of a Lightweight and Secure Access Authentication Scheme for Both UE and mMTC Devices in 5G Networks." Applied Sciences 12, no. 9 (April 23, 2022): 4265. http://dx.doi.org/10.3390/app12094265.
Full textPan, Shin-Hung, and Shu-Ching Wang. "Optimal Consensus with Dual Abnormality Mode of Cellular IoT Based on Edge Computing." Sensors 21, no. 2 (January 19, 2021): 671. http://dx.doi.org/10.3390/s21020671.
Full textBrooks, Tyson. "Authenticating Devices in Fog-mobile Edge Computing Environments through a Wireless Grid Resource Sharing Protocol." International Journal of UbiComp 13, no. 2 (April 30, 2022): 1–17. http://dx.doi.org/10.5121/iju.2022.13201.
Full textGupta, Sunita, Meenakshi Nawal, Neha Janu, and Dinesh Goyal. "IoT, Enabling Technologies, and Sensor Node Deployment Pattern in WSN." ECS Transactions 107, no. 1 (April 24, 2022): 7441–55. http://dx.doi.org/10.1149/10701.7441ecst.
Full textWu, Tsuyang, Xinglan Guo, Yehcheng Chen, Saru Kumari, and Chienming Chen. "Amassing the Security: An Enhanced Authentication Protocol for Drone Communications over 5G Networks." Drones 6, no. 1 (December 31, 2021): 10. http://dx.doi.org/10.3390/drones6010010.
Full textKhalid, Madiha, Umar Mujahid, and Najam-ul-Islam Muhammad. "Ultralightweight RFID Authentication Protocols for Low-Cost Passive RFID Tags." Security and Communication Networks 2019 (July 21, 2019): 1–25. http://dx.doi.org/10.1155/2019/3295616.
Full textMathas, Christos-Minas, Costas Vassilakis, Nicholas Kolokotronis, Charilaos C. Zarakovitis, and Michail-Alexandros Kourtis. "On the Design of IoT Security: Analysis of Software Vulnerabilities for Smart Grids." Energies 14, no. 10 (May 14, 2021): 2818. http://dx.doi.org/10.3390/en14102818.
Full textChen, Chien-Ming, Zhen Li, Shehzad Ashraf Chaudhry, and Long Li. "Attacks and Solutions for a Two-Factor Authentication Protocol for Wireless Body Area Networks." Security and Communication Networks 2021 (October 21, 2021): 1–12. http://dx.doi.org/10.1155/2021/3116593.
Full textDissertations / Theses on the topic "IoT, Security IoT, IoT Protocol, 5G"
Centenaro, Marco. "On the Support of Massive Machine-to-Machine Traffic in Heterogeneous Networks and Fifth-Generation Cellular Networks." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3426783.
Full textLa diffusione capillare di molti servizi emergenti grazie all’Internet of Things (IoT) passa attraverso la capacità di fornire connettività senza fili a lungo raggio ad un numero massivo di cose, superando le note criticità delle reti ad hoc a corto raggio. Questa visione comporta grandi sfide, a partire dalle preoccupazioni riguardo l’efficienza delle rete di accesso fino alle minacce alla sicurezza delle reti IoT. In questa tesi, ci concentreremo sia sugli standard di comunicazione a lungo raggio per l’IoT sia sulla ricerca di base per le reti IoT. Dopo aver analizzato come vengono supportate le comunicazioni Machine-to-Machine (M2M) oggi, forniremo soluzioni innovative le quali i) soddisfano i requisiti in termini di scalabilità e latenza, ii) utilizzano una combinazione di bande di frequenza licenziate e libere e iii) assicurano efficienza energetica e sicurezza.
Makkar, Ankush. "Enhancing IoT Security Using 5G Capabilities." Thesis, Luleå tekniska universitet, Digitala tjänster och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85109.
Full textLindh, André. "5G, IoT och dess säkerhetsutmaningar: En litteraturstudie." Thesis, Uppsala universitet, Institutionen för informatik och media, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413640.
Full textDenna litteraturstudie identifierar de säkerhetsutmaningar som finns i relation till 5G och Internet of Things. Litteraturstudien använder en systematisk metod för litteratursökning som är författad av Okoli (2015). I samband med litteratursökningen görs ett urval på 60 artiklar som mot kvalitetskriterier avgränsas till 19 artiklar. Säkerhetsutmaningarna som presenteras i dessa 19 artiklar delas vidare upp delvis efter vilket område av säkerhet de behandlar samt om de presenterar en säkerhetsrisk eller säkerhetsåtgärd. Resultatet ger en överblick av vilka av dessa områden inom säkerhet relaterade till 5G och Internet of Things som är vanligast förekommande. Undersökningen belyser avsaknaden av vissa typer av säkerhetsrisker och åtgärder som svarar för dessa. Undersökningen belyser också en avsaknad av ett mer holistiskt perspektiv i synen på säkerhet relaterat till 5G och framtidens Internet of Things.
Shahidi, Hamed. "Security Challenges of Communication Protocols in IoT : Comparing security features of ZigBee and Z-Wave communication protocols in IoT devices." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40113.
Full textvan, Leeuwen Daniel, and Leonel Taku Ayuk. "Security testing of the Zigbee communication protocol in consumer grade IoT devices." Thesis, Högskolan i Halmstad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-40189.
Full textParvez, Imtiaz. "Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3879.
Full textConceicao, Filipe. "Network survival with energy harvesting : secure cooperation and device assisted networking." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL020/document.
Full textThe 5th Generation Cellular Network Technology (5G) will be the network supporting the Internet of Things (IoT) and it introduced a major feature, Device-to-Device (D2D) communications. D2D allows energy-constrained wireless devices to save energy by interacting in proximity at a lower transmission power. Cooperation and device-assisted networking therefore raise signicant interest with respect to energy saving, and can be used in conjunction with energy harvesting to prolong the lifetime of battery-powered devices. However, cooperation schemes increase networking between devices, increasing the need for security mechanisms to be executed to assure data protection and trust relations between network nodes. This leads to the use of cryptographic primitives and security mechanisms with a much higher frequency.Security mechanisms are fundamental for protection against malicious actions but they also represent an important source of energy consumption, often neglected due to the importance of data protection. Authentication procedures for secure channel establishment can be computationally and energetically expensive, especially if the devices are resource constrained. Security features such as condentiality and data authentication have a low energetic cost but are used constantly in a device engaged in data exchanges. It is therefore necessary to properly quantify the energy consumption due to security in a device. A security based energy model is proposed to achieve this goal.In User Equipment (UE) D2D networks, mobility is a key characteristic. It can be explored for connecting directly in proximity with IoT objects. A lightweight authentication solution is presented that allows direct UE-IoT communications, extending coverage and potentially saving signicant energy amounts. This approach can be particularly useful in Public Protection and Disaster Relief (PPDR) scenarios where the network infrastructure may not be available.Security features such as condentiality or data authentication are a significant source of consumption. Devices equipped with Energy Harvesting (EH) hardware can have a surplus or a deficit of energy. The applied security can therefore be adjusted to the available energy of a device, introducing an energy aware secure channel. After in depth analysis of 5G standards, it was found that D2D UE networks using this type of channel would spend a signicant amount of energy and be generally less secure. A lightweight rekeying mechanism is therefore proposed to reduce the security overhead of adapting security to energy. To complete the proposed rekeying mechanism, a security parameter bootstrapping method is also presented. The method denes the Core Network (CN) as the security policy maker, makes the overall network more secure and helps preventing communication outages.Adapting security features to energy levels raises the need for the study of the energy/security tradeoff. To this goal, an Markov Decision Process (MDP) modeling a communication channel is presented where an agent chooses the security features to apply to transmitted packets. This stochastic control optimization problem is solved via several dynamic programming and Reinforcement Learning (RL) algorithms. Results show that adapting security features to the available energy can signicantly prolong battery lifetime, improve data reliability while still providing security features. A comparative study is also presented for the different RL learning algorithms. Then a Deep Q-Learning (DQL) approach is presented and tested to improve the learning speed of the agent. Results confirm the faster learning speed. The approach is then tested under difficult EH hardware stability. Results show robust learning properties and excellent security decision making from the agent with a direct impact on data reliability. Finally, a memory footprint comparison is made to demonstrate the feasibility of the presented system even on resource constrained devices
Ralambotiana, Miora. "Key management with a trusted third party using LoRaWAN protocol : A study case for E2E security." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230671.
Full textIdag blir Internet av saker (IoT) applikationer allt viktigare i människors vardag. Beroende på användningen (för långeller kortdistanskommunikation, med låga eller höga effektenheter etc.) finns flera standarder. I denna studie ligger fokus på Low Power Wide Area Networks (LPWAN) och i synnerhet ett protokoll som ökar i popularitet för långsiktig lågkapacitetskommunikation i IoT: LoRaWAN. LoRaWAN är fortfarande på ett tidigt stadium och har i huvudsak använts i användarfall där nätverksservern hanterade nycklarna som säkerställer konfidentialitet och integritet av data. Gemalto har tagit upp frågan om intressekonflikter i det fall nätverksoperatören och programleverantören är två separata enheter: Om slutanordningen och applikationsservern utbyter känslig data, ska nätverksservern inte kunna läsa dem. För att lösa detta problem har en arkitektur som använder en betrodd tredje part för att generera och hantera nycklarna implementerats under det här projektet. Följande forskning syftar till att hitta säkerhetshot och svagheter om konfidentialiteten och integriteten hos data och enheternas autentisering i detta studiefall. LoRaWAN-protokollet och nyckelhanteringen i allmänhet kommer att studeras först innan författaren beskriver det studerade systemet och upptäcker de eventuella attacker som undersöker sårbarheten på de nämnda punkterna via ett angreppsträd. Dessa attacker kommer att simuleras för att definiera deras konsekvenser på systemet och enligt dem kommer säkerhetsförbättringar på arkitekturen att föreslås utifrån tidigare arbete med ämnet och undersökning av potentiella motåtgärder
Lindorin, Axel. "Säkerhet i smarta hem : En litteraturanalys på protokollsäkerhet för det smarta hemmet." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18940.
Full textThis study has examined the problems that arise in connection with the rapid development of the Internet of Things, where the low-energy units lack the power to implement advanced security solutions. Due to the low security and growing area of use, the Internet of Things units have become an attractive target for any attacks. The systematic literature analysis has been carried out by reviewing previously more detailed analyzes of the protocols and their security as well as the developers' specifications. This is to create a wide summary of the security of the protocols and then to compare the protocols to select one or more as the safer protocol for home use. All protocols that are included have some form of security implemented to provide authentication in the form of MAC, key management, integrity in the form of MIC and communication security with encryption. All protocols support AES-128 encryption and the use of IEEE 802.15.4 security suit as additional protection in addition to the protocol's own solutions. The majority of protocols also use Elleptic Curve to safely transport keys. The analysis concludes that Thread and Z-Wave are considered the two most secure home use protocols. It is based on how the protocols handle the various aspects with their noticeable prioritization of security along with the few deficiencies that can damage the smart home. Bluetooth Low Energy and EnOcean are thetwo less secure regarding an IoT environment. The survey also includes a discussion of various areas that emerged during the course of the investigation. Finally, some points that emerged during the review that may be good to consider when developing these protocols with security as focus.
Fredriksson, Tony, and Niklas Ljungberg. "Security in low power wireless networks : Evaluating and mitigating routing attacks in a reactive, on demand ad-hoc routing protocol." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-145362.
Full textBooks on the topic "IoT, Security IoT, IoT Protocol, 5G"
Abd El-Latif, Ahmed A., Bassem Abd-El-Atty, Salvador E. Venegas-Andraca, Wojciech Mazurczyk, and Brij B. Gupta, eds. Security and Privacy Preserving for IoT and 5G Networks. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85428-7.
Full textAdvanced Security Issues of IoT Based 5G Plus Wireless Communication for Industry 4. 0. Nova Science Publishers, Incorporated, 2019.
Find full textGupta, Brij B., Wojciech Mazurczyk, Salvador E. Venegas-Andraca, Ahmed A. Abd El-Latif, and Bassem Abd-El-Atty. Security and Privacy Preserving for IoT and 5G Networks: Techniques, Challenges, and New Directions. Springer International Publishing AG, 2021.
Find full textThayananthan, Vijey. Advanced Security Issues of IoT Based 5G Plus Wireless Communication for Industry 4. 0. Nova Science Publishers, Incorporated, 2019.
Find full textGupta, Brij B., Wojciech Mazurczyk, Salvador E. Venegas-Andraca, Ahmed A. Abd El-Latif, and Bassem Abd-El-Atty. Security and Privacy Preserving for IoT and 5G Networks: Techniques, Challenges, and New Directions. Springer International Publishing AG, 2022.
Find full textGovernment, U. S., Senate of the United States of America, and U. S. - China Security Review Commission. China, the United States, and Next Generation Connectivity - 5th Generation Wireless Technology (5G), Internet of Things (IOT) Standards and Technology Development, Huawei and ZTE Security Controversy. Independently Published, 2019.
Find full textBook chapters on the topic "IoT, Security IoT, IoT Protocol, 5G"
Prakash, Chandra, and Rakesh Kumar Saini. "A Model on IoT Security Method and Protocols for IoT Security Layers." In Mobile Radio Communications and 5G Networks, 771–80. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7130-5_63.
Full textGaur, Vimal, and Rajneesh Kumar. "GDH Key Exchange Protocol for Group Security Among Hypercube Deployed IoT Devices." In Mobile Radio Communications and 5G Networks, 639–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7130-5_50.
Full textSong, Byunghoon, Yoonchae Cheong, Taehyun Lee, and Jongpil Jeong. "Design and Security Analysis of Improved Identity Management Protocol for 5G/IoT Networks." In Advances in Intelligent Systems and Computing, 311–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56538-5_32.
Full textMonshizadeh, Mehrnoosh, and Vikramajeet Khatri. "IoT Security." In A Comprehensive Guide to 5G Security, 245–66. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119293071.ch11.
Full textBanerjee, Bannishikha, and Geetali Saha. "Emotion Independent Face Recognition-Based Security Protocol in IoT-Enabled Devices." In Cloud IoT, 199–218. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003155577-18.
Full textHamamreh, Jehad M. "Improving the Physical Layer Security of IoT-5G Systems." In Artificial Intelligence in IoT, 25–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04110-6_2.
Full textAnand, Darpan, and Vineeta Khemchandani. "Data Security and Privacy in 5G-Enabled IoT." In Blockchain for 5G-Enabled IoT, 279–301. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67490-8_11.
Full textSandhu, Jasminder Kaur, Prateek Srivastava, Yadunath Pathak, and Meena Pundir. "Intelligence and Security in the 5G-Oriented IoT." In 5G and Beyond, 29–43. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003045809-4.
Full textMani Sekhar, S. R., G. Nidhi Bhat, S. Vaishnavi, and G. M. Siddesh. "Security and Privacy in 5G-Enabled Internet of Things: A Data Analysis Perspective." In Blockchain for 5G-Enabled IoT, 303–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67490-8_12.
Full textChetna, Shikha, Sunil Gupta, and Tejinder Kaur. "Integration of IoT for MANET Network Security." In Mobile Radio Communications and 5G Networks, 185–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7982-8_16.
Full textConference papers on the topic "IoT, Security IoT, IoT Protocol, 5G"
Hammi, Mohamed Tahar, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni, and Pascale Minet. "A lightweight IoT security protocol." In 2017 1st Cyber Security in Networking Conference (CSNet). IEEE, 2017. http://dx.doi.org/10.1109/csnet.2017.8242001.
Full textVelastegui, Homero J., and Acurio M. Santiago. "IoT-based Security Alarm Protocol." In 2021 International Conference on Engineering and Emerging Technologies (ICEET). IEEE, 2021. http://dx.doi.org/10.1109/iceet53442.2021.9659560.
Full textCatania, Emanuele, and Aurelio La Corte. "IoT Privacy in 5G Networks." In 3rd International Conference on Internet of Things, Big Data and Security. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006710501230131.
Full textGvozdenovic, Stefan, Johannes K. Becker, John Mikulskis, and David Starobinski. "Multi-Protocol IoT Network Reconnaissance." In 2022 IEEE Conference on Communications and Network Security (CNS). IEEE, 2022. http://dx.doi.org/10.1109/cns56114.2022.9947261.
Full textDey, A., S. Nandi, and M. Sarkar. "Security Measures in IOT based 5G Networks." In 2018 3rd International Conference on Inventive Computation Technologies (ICICT). IEEE, 2018. http://dx.doi.org/10.1109/icict43934.2018.9034365.
Full textSharma, Suraj, Shaswat Satapathy, Shivani Singh, Amiya Kumar Sahu, Mohammad S. Obaidat, Sanjay Saxena, and Deepak Puthal. "Secure Authentication Protocol for 5G Enabled IoT Network." In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2018. http://dx.doi.org/10.1109/pdgc.2018.8745799.
Full textRahimi, Hamed, Ali Zibaeenejad, Parsa Rajabzadeh, and Ali Akbar Safavi. "On the Security of the 5G-IoT Architecture." In the international conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3269961.3269968.
Full textMasood, Adeel, and Anurag Gupta. "Enhanced Logistics Security Techniques Using IoT and 5G." In 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). IEEE, 2020. http://dx.doi.org/10.1109/wispnet48689.2020.9198510.
Full textSalzillo, Giovanni, and Massimiliano Rak. "A (in)Secure-by-Design IoT Protocol." In CCS '20: 2020 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3411498.3419965.
Full textSalman, Ola, Ayman Kayssi, Ali Chehab, and Imad Elhajj. "Multi-level security for the 5G/IoT ubiquitous network." In 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). IEEE, 2017. http://dx.doi.org/10.1109/fmec.2017.7946429.
Full text